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Abstract

The order picking is the most time- and work-consuming component of total warehouse operations. As travelling takes up
the most of the order picking time, reduction of the picker’s route length can help decreasing it. The aim of the research is to
develop a new routing metaheuristic with the use of I language for designing the picker’s route in warehouse management
that will provide better results than other, widely used routing heuristics. We apply the proposed metaheuristic in the classical,
picker-to-parts, one-block rectangular warehouse with random storage assignment. We compare the results with the results
obtained by its means with the most widely used routing heuristics: s-shape, return and midpoint. We assume the shared
storage and various take-out strategies. Locations to be visited were obtained by using the COPRAS (COmplex PRoportial
ASsessment) method. The criterion for assessment of applied metaheuristic is the length of the picking route for every take-
out strategy. Obtained results indicate that the proposed metaheuristic provided shorter routes as compared with other routing
heuristics.

Keywords: warehouse management; order picking; shared storage; multi-criteria decision-making; routing metaheuristic;

simulation methods

1. Introduction

Warehouse management plays a very important role in running the whole company. The total warehouse
activities constitute about 39% of total logistic costs in Europe and 23% in the U.S.A. [10]. At the
beginning of the 21st century about 80% companies still utilised the classical, manual picker-to-parts
systems [4]. More recent research indicated that this share had dropped to 74%[17]. The latest research
suggests the existence of this type of warehouses in 60% of companies [16]. In such systems about 55%
of all warehouse operating costs are generated by order picking [1]. Time of order picking consists of
four main activities (Table 1).
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Table 1. Division of order-picking time (Source: [1])

Activity Percentage of order-picking time
Travelling 55%
Searching 15%
Extracting 10%

Other activities 20%

Because travelling constitutes over half of total order picking time, it is the biggest area for improve-
ment. This can be done by applying the appropriate storage assignment, warehouse layout and routing
technique. When we consider the storage assignment, the following are used [13]:

• random,

• closest-open-location,

• dedicated,

• class-based,

• family-grouping.

Random storage assignment means that when a company replenishes its items, they are assigned
randomly in the warehouse. As a result, the same items become scattered across the warehouse – they
can be stored in various, sometimes very distant locations. It is worth nothing that if such items arrive
to the warehouse in different replenishment orders, they are assigned to various locations. Even if they
have the same identification codes, they can be described by different other identifier, like arrival date,
which can help in distinguishing them with respect to the storage time. Although this type of storage
assignment is rarely used in practice, it is the theoretical benchmark for comparison with more organised
ones.

The closest-open-location storage assignment is characterised by assigning incoming items to the
closest to the I/O (depot) point available location in the warehouse. This method is very simple and is
often used when the pickers select storage locations themselves. In long turn, this storage assignment
converges to the random one.

Dedicated storage means that each item has its own location or several locations (if the stored amount
of this item exceeds the capacity of a single location). The virtue of this storage assignment is that it is
relatively easy to remember for the pickers and does not require a specialised warehouse management
system. The main drawback of such approach is poor space utilisation. This system is rarely used in
practice and only for special items that, due to their size, need to have dedicated space in the warehouse.
However, this storage assignment should be used for as small number of items as possible [11].

Class-based storage assignment is one of the most widely used ones. The items stored in a warehouse
are divided with accordance to appropriate class membership. The most natural division criterion is
their turnover. The most popular division method is based on Pareto’s approach (80-20 rule). It states
that 20% of the fastest-moving items account for 80% of the company’s total turnover – these products
constitute class A. Class B consists of 30% of medium-moving items that make up 15% of the company’s
total turnover and class C – 50% of the slowest-moving items that constitute the remaining 5% of the
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company’s total turnover. Of course, the 80-20 rule is the most typical one, but there are possible other
rules, like 85-15, or 50-30 [11, 13]. Items belonging to the class A are usually stored closest to the I/O
point or in locations that are the most convenient for the picker to visit. They are followed by the class
B items. Class C items should be placed in locations that are most distant from the I/O point. Research
shows that the application of the ABC-class assignment can save up to between 32% and 45% of the
picker’s travel distance in comparison to the random storage assignment [13].

The family grouping storage assessment groups products that often appear in orders together. Such
products are then placed close to each other in order to be picked during the same tour. In order to group
products this way, we need to be able to estimate the statistical correlation between the products [14, 15].

Of course, the storage assignments can be mixed. For example we can utilise the ABC-class storage
and within each class we use the random or dedicated storage.

Apart from storage assignment, we also must consider the storage type. We can talk about two storage
types: dedicated (described earlier) and shared one [1]. Shared storage means that any item can be stored
in many, sometimes very distant locations and, at the same time, many different items can be stored in
any single location. Such system provides much better storage space utilisation in comparison with the
dedicated storage. On the other hand, as locations of items change constantly, it is impossible for the
pickers to memorise them. Therefore, we need to utilise a warehouse management system. Also, shared
storage requires high level of discipline amongst the pickers, i.e. they need to obey the indications given
by the system even, if they seem illogical at the first glance.

When utilising the shared storage, the problem of selection of locations, from which needed items
need to be picked, becomes an issue, which is non-existent in case of dedicated storage. Generally, the
problem of selecting locations in the shared storage systems is addressed scarcely in the existing litera-
ture. Gudehus and Kotzab [11] described four take-out strategies (FIFO, quantity adjustment, priority of
partial units and taking the access unit). They will be presented and described (along with three more
strategies) further in the article. Bartholdi and Hackman [1] mentioned about the necessity of certain
trade-offs. The selection of least-filled locations can help emptying and replenishing them, but increases
labour and travel time. On the other hand, selection of the most convenient location (the closest to the
I/O point or fully satisfying the demand) saves time and labour, but result in small quantities of items
remaining in the locations. We can also propose several other strategies of selection of locations. Firstly,
we can prefer location located closest ti the I/O point or locations, where stored items on the pick list, are
close to each other (for example they are located at the same picking aisle).

When we wish to select locations from which items being on the pick list need to be picked, we
must somehow differentiate between them in order to apply any of proposed selection strategies. We
can solve this problem by describing locations, where needed items are located, by means of decision
criteria. Next, we can apply the appropriate multi-criteria decision-making method in order to select the
locations, from which the needed items are to be picked. Realisation of specific strategy of selection of
locations can be guaranteed by applying the appropriate combination of criteria’s weights.

Having selected locations that are to be visited by the picker, the final issue is to designate his/her
route. There are many methods of designation of the picker’s route. Designation of the optimal (shortest)
route seems to be the most obvious choice. For rectangular, one-block warehouse with narrow picking
aisles, the optimal route can be designated by means of a special case of the Travelling Salesman Problem
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(TSP). This approach was first proposed by Ratliff and Rosenthal [20]. Wildt et al. [32] considered the
extensions of the TSP for the single-picker routing problem in scattered storage systems. Although in
many cases it is possible to obtain the optimal routes, the results (despite having the shortest route) do
not necessary are the best for functioning of the warehouse. The main reason for this is that the obtained
routes often seem illogical for the pickers (they often need to switch the direction of movement), so
they tend to deviate from them. Thirdly, optimal routes do not consider the usual movement direction
in a warehouse [13]. Therefore, companies usually use routing heuristics that do not aim at finding the
optimal routes (and never guarantee that), but are easy to obtain and implement. On some occasions,
route obtained by a routing heuristic can be also optimal, but it is just a coincidence.

It is worth mentioning that it could be possible to optimise the order picking by analysing selection
of locations and designation of the picker’s route simultaneously [2]. However, in case of our research it
would be a difficult task, as we must select locations that satisfy the take-out strategies. Therefore, both
tasks – selection of locations and designation of the picker’s route – are done separately.

The aim of the research is to develop a new metaheuristic for the warehouse management that will
provide better solution for the routing problems (shorter route lengths) than the most widely used routing
heuristics: s-shape, return and midpoint. We use the I language [19] to develop the metaheuristic.
We apply the proposed metaheuristic in the classical, picker-to-parts, one-block rectangular warehouse
with random storage order. We assume the shared storage and various take-out strategies. We use the
COmplex PRoportial ASsessment (COPRAS) method to select locations to be visited by the picker. We
compare the results with the results obtained for the most widely used routing heuristic. We generate the
orders (scenarios) by means of the simulation methods.

The remaining part of the manuscript is organised as follows: section 2 presents the research method-
ology (presentation of the criteria describing the locations, the COPRAS method and the new metaheuris-
tic). Section 3 presents the experimental results. The article ends with the concluding remarks.

2. Research methodology

2.1. Assumptions of the simulation experiment

• We assume a simple, rectangular, one-block warehouse with two main aisles (front and rear) and
20 picking aisles. Every picking aisle contains 50 locations (25 at each side of the aisle). The total
number of locations is 1,000.

• The I/O (depot) point is located at the far left-hand side of the front main aisle.

• We assume the random storage assignment.

• We assume shared storage.

• Every scenario assumed an independently generated order consisting of 10 items.

• Every item was stored in variable number of locations (1–10, generated from the uniform discrete
distribution).

• The available quantities of each item in each location ranged from a single unit to a quantity satis-
fying the demand twice and were generated from a discrete uniform distribution.
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• Every location, where items on the pick list were stored, was described using five criteria:

– storage time (x1),

– distance from the I/O point (x2),

– degree of demand satisfaction (x3),

– degree of demand satisfaction in full units (boxes) of stored item (x4),

– number of other items on the pick list stored in the proximity of the analysed location (in the
same picking aisle) (x5).

• We considered the following take-out strategies:

– benchmark,

– FIFO,

– preference of locations located the closest to the I/O point (MDI/O),

– quantity adjustment (QA),

– taking the access unit (TAU),

– minimisation of number of visited picking aisles (MNPA),

– priority of partial units (PPU).

• We select the locations by means of the COPRAS method.

• We generate 100 orders (scenarios).

• For each scenario after selecting locations, we designate the picker’s route by means of the the
following heuristics:

– s-shape,

– return,

– midpoint,

– proposed metaheuristic.

The stages of the experiment are as follows:

1. We generate every of the 100 orders (scenarios) independently.

2. For every order We select locations to be visited by the picker by means of the COPRAS method.
We apply appropriate weights to the criteria in order to ensure realisation of analysed take-out
strategies. It means that for every scenario we obtain seven sent of selected locations (because we
have seven take-out strategies).

3. We designate the picker’s routes for locations selected for every take-out strategy in every scenario.

4. We analyse the descriptive statistics of the picker’s routes obtained for every routing heuristic in
every routing strategy.
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5. We compare the average route lengths obtained for the s-shape, return and midpoint with the route
lengths obtained for the proposed metaheuristic.

The presented research adopts some elements and assumptions (some of the criteria – distance from
the I/O point, degree of demand satisfaction and number of other items on the pick list stored in the
proximity of the analysed location, take-out strategies, warehouse layout, methods of generation of:
orders, locations and values of some decision criteria, and the philosophy of selection of locations) from
previous researches [5–7].

The extension of previous analyses lies in adding more criteria to the set (thus considering more
take-out strategies) and proposal of a new routing heuristic. The assumptions (regarding the number of
items on the pick list, number of locations in which any item can be stored, normalisation of demand,
existence of full units, the assumption about the neighbourhood of locations, or independent replications
of scenarios) are adopted in order to make analysed scenarios comparable.

Certainly, analysis of functioning of warehouse in a long term would give better insight into its per-
formance. In such analysis we need to consider the facts that demand in orders decreases the stock levels,
empties locations, thus requires more locations to be visited to pick orders, etc. However, in the present
research we focus solely on the performance of routing heuristics in applied take-out strategies.

2.2. Description of the decision criteria and take-out strategies

The first criterion – storage time – is the profit-type one. It is measured on the ratio scale in days. We
assume that storage time ranges between 1 and 30 days (and has discrete uniform distribution). Locations
with longer storage time are more preferable than those with shorter storage time.

The second criterion – distance from the I/O point – is measured on the ratio scale. It is the loss-type
criterion, measured in a contractual unit, which is the shelf width. The distance itself is calculated by
means of the taxicab geometry as follows:

x2 = d01 + d12 (1)

where d01 – distance from the I/O point to the entrance of the picking aisle, at which the analysed location
is located on the front main aisle and d12 – distance of the location from the front main aisle on the picking
aisle.

The third criterion – the degree of demand satisfaction – is calculated by means of the following
formula:

x3 =

{
l
z

if z > l

1 if l ⩾ z
(2)

where l – number of units of the item on the pick list in the analysed location and z – demand for this
item.

It is measured on the ratio scale and generally is the profit-type one (only for the priority of partial
units strategy it is the loss-type criterion). The demand for each item is normalised at 100 units. For this
normalised demand, we assume that the available amount of every item on the pick list in every location
it is stored, follows the discrete uniform distribution with the possible values: l ∈ {1, 2, . . . , 200}. The
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probability of any single value from this set is then equal 1
200

= 0.005. Therefore, probability that the
demand for given item on the pick list is fully satisfied in a single location is: P (l ⩾ 100) = 101

200
= 0.505.

On the other hand, probability that the demand is not satisfied in a single location is: P (l < 100) =

1− P (l ⩾ 100) = 0.495.
The fourth criterion – degree of demand satisfaction in full units (boxes) of stored item – is the profit-

type one, also measured on the ratio scale. The existence of full boxes was only taken into account
for those locations with a demand satisfaction rate of 1. The probability of existence of full boxes was
assumed to be 0.5. Full boxes were assumed to contain 20 units of the item. The number of full units
of the item was generated from a discrete uniform distribution and takes values from 1 to the maximum
possible number of full boxes resulting from the available quantity of the item at the location. The final
value of the criterion is then calculated as a value of 1 if the number of units of the item in full packs
is greater than or equal to the demand for the item, or the number of full boxes is divided by 5 in the
opposite situation. Algorithm 1 presents the pseudocode for calculation of the value of the criterion x4.

Notions used the algorithm are as follows:
P (fb = 1 | l ⩾ 100) – probability of existence of full boxes,
fb – binary variable describing the existence of full boxes,
afb – number of units in full box of an item,
nfb – number of full boxes.

Require: values of: l ∈ {1, 2, . . . , 200}, P (fb = 1 | l ⩾ 100) = 0.5, fb ∈ {0, 1}, afb = 20, nfb ∈
{
1, . . . ,

⌊
l
20

⌋}
Ensure: The value of criterion x4

1: Check if l ⩾ 100

2: if l ⩾ 100 then
3: Check if fb = 1

4: if fb = 1 then

5: Generate nfb from uniform discrete distribution and calculate x4 =

{
nfb

5 if nfb < 5

1 if nfb ⩾ 5
6: end if
7: x4 = 0

8: end if
9: x4 = 0

10: return x4

Algorithm 1. Pseudocode for calculation of the value of criterion x4 (Source: own elaboration)

The fifth criterion – number of other items on the pick list stored in the proximity of the analysed
location (in the same picking aisle) – is the profit-type one and measured on the ratio scale. The proximity
of the analysed location consists of all locations placed on the shelves within the same picking aisle.
Proximity can be understood very widely. It can be assumed that there are the shelves in the same rack.
In such case the proximity would be very narrow, thus the probability that no other items on the pick list
are stored in the same rack would be very high. On the other hand, having very large neighbourhood
(proximity) of, for example, a whole sector of a warehouse would cause a large number of other items
on the pick list being stored in the ”neighbourhood” of an analysed location. Therefore, assuming that
the proximity consists of locations located at the same picking aisle seems to be a reasonable approach.
Moreover, it can serve as the strategy for selection of locations in order picking – minimisation of visited
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picking aisles [25].
We calculate the value of the criterion x5 by means of the following formula:

x5 =
10∑
p=1

yp − 1 (3)

where:
p = 1, . . . , 10 – subsequent item numbers,
yp – binary variable depicting the fact of storing the p-th item in the location located at the same picking
aisle.

We subtract the value ”1” because we exclude the analysed item in the analysed location from the
sum.

Having calculated the values of the criteria, we must assign weights to them in order to apply a
multi-criteria decision method. There are various methods of assigning weights. We can apply the naïve
method meaning that all criteria have equal weights. If we, however, need to assign different weights to
the decision criteria, we can divide the weighting methods into two main groups:

• expert methods,

• methods based on statistical properties of criteria.

Expert methods include: application of the Analytic Hierarchy Process (AHP) [22], rank ordering [3],
or by assigning points to the criteria [12]. Methods based on statistical properties include: Shannon’s
entropy measure [21], correlation coefficients [8, 9], coefficients of variation [12], or method based on
taking into account the normalised values of the criteria [34].

Another method of assigning weights to the criteria is application of the simulation methods – we
can analyse various combinations of weights of the criteria and select this one, which would for example
ensure obtaining the shortest route length [6].

In our research the appropriate weights of the criteria are applied to ensure realisation of take-out
strategies (Table 2).

Table 2. Weights assigned to the criteria (Source: own elaboration)

Strategies Criteria
x1 x2 x3 x4 x5

benchmark 0.2 0.2 0.2 0.2 0.2
FIFO 0.8 0.05 0.05 0.05 0.05

MDI/O 0.05 0.8 0.05 0.05 0.05
QA 0.05 0.05 0.8 0.05 0.05
TAU 0.05 0.05 0.05 0.8 0.05

MNPA 0.05 0.05 0.05 0.05 0.8
PPU 0.05 0.05 0.8 0.05 0.05

The benchmark strategy uses the naïve method of assigning weights. Although this method does not
represent any strategy, we use it as the basis for comparisons to other strategies. This strategy does not
prefer any criterion when selecting locations. The FIFO strategy assumes that the first criterion – storage
time – dominates the remaining ones. We assume that when one criterion dominates the other ones, the
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weight assigned to such criterion equals 0.8 and the other criteria have weights equal 0.05. Assigning the
highest weight to the storage time ensures that items, which have arrived to the warehouse first, will also
be picked first.

Realisation of the strategy preferring locations located the closest to the I/O point assigns the highest
weight to the second criterion – distance from the I/O point. This take-out strategy should provide that
the selected locations to be visited by the picker are clustered close to the I/O point. Realisation of the
strategy ”taking the access unit” assigns the highest weight to the fourth criterion – degree of demand
satisfaction in full units (boxes) of stored item. It aims at picking units that are already in full packs. The
strategy that minimises the number of visited picking aisles is realised by assigning the highest weight to
the firth criterion – number of other items on the pick list stored in the proximity of the analysed location.
Adoption of this take-out strategy should allow decreasing the number of picking aisles to be visited by
the picker.

The highest weight assigned to the third criterion – degree of demand satisfaction – ensures that
two strategies are realised: quantity adjustment and priority of partial units. The difference lies in the
fact that in the former strategy this criterion is the profit-type and in the latter – the loss-type. The
aim of application of the ”quantity adjustment” strategy is to decrease the number of visited locations
(by selecting the most filled, possibly fully satisfying the demand ones). The aim of application of the
”priority of partial units” strategy is visiting the least-filled locations (in relation to demand in analysed
orders) in order to clear as many locations as possible from small amounts of items.

2.3. The COPRAS method

Selection of locations described by multiple criteria can be done by means of one of many multi-criteria
decision-making methods. General recommendation for selection the appropriate one is that such method
should be able to be used without the active participation of the decision-maker, only on the basis of the
values of the criteria and their weights. It is for example possible to use the modified Hellwig’s Com-
posite Measure of Development, named the Taxonomic Measure of Location’s Attractiveness (Polish
abbreviation TMAL) [6], the TOPSIS method [6, 7], or the Synthetic Measure constructed on the basis
of the Generalised Distance Measure (GDM) [5, 6].

In our research, we use the COPRAS method. It was developed by Zavadskas et al. [33]. It does
not use the reference points (i.e. the best and worst alternatives), but is based on weighed sums of the
profit-type (where the highest values are desirable) and loss-type (where the lowest values are desirable)
criteria.

The starting point of the COPRAS method is the decision matrix X:

X =


x11 x12 · · · x1m

x21 x22 · · · x2m

...
... . . . ...

xn1 xn2 · · · xnm

 (4)

where: xij – value of j-th criterion in i-th alternative (i = 1, . . . , n, j = 1, . . . ,m), m – number of
criteria, n – number of alternatives.

In our case the alternatives (decision variants) are the locations, where analysed item on the pick list
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is stored. There are five, described earlier, decision criteria (storage time, distance from the I/O point,
degree of demand satisfaction, degree of demand satisfaction in full units of stored item, and the number
of other items on the pick list stored in the proximity of the analysed location).

Because all criteria are measured on the ratio scale, we can normalise them by means one of the
quotient inversions (such normalisation method preserves the scale strength and enables normalisation
even in the case, when for given item all values of the analysed criterion are the same):

zij =
xij√∑n
i=1 x

2
ij

(5)

where: zij – normalised value of j-th criterion in i-th alternative (i = 1, . . . , n, j = 1, . . . ,m).
We multiply normalised values of criteria by their weights, thus creating the weighed, normalised

decision matrix:

tij = wjzij, i = 1, . . . , n, j = 1, . . . ,m (6)

In the next step we calculate the weighted sums of the profit-type (S+
i ) and loss-type (S−

i ) criteria:

S+
i =

∑
j∈J+

tij, i = 1, . . . , n (7)

S−
i =

∑
j∈J−

tij, i = 1, . . . , n (8)

where: J+ – profit-type criteria, J− – loss-type criteria.
In the final step of the COPRAS method we calculate the value of the composite measure:

qi = S+
i +

∑n
i=1 S

−
i

S−
i

∑n
i=1

1
S−
i

, i = 1, . . . , n (9)

maxi {qi} – the best alternative (location), mini {qi} – the worst alternative (location).
We apply the COPRAS method for every item on the pick list separately. We select the highest-

ranking locations, where given item is stored. If the demand for selected item in the highest-ranking
location is fully satisfied, we select only this one. If the demand in the highest-ranking location is not
satisfied, we select the second one in the ranking, and so on.

Although multi-criteria decision analysis (MCDA) can be used on various stages of warehouse man-
agement, in our research we use it to select locations with accordance to applied take-out strategies.
Other example of using the MCDA could be the evaluation of presented method of selection of locations
with respect to the values of presented criteria in selected locations. It is not, however, the aim of our
research.

2.4. Metaheuristic

Having selected locations, we need to designate the picker’s route. As mentioned earlier, the optimal
one is very rarely designated. Therefore, we focus on the widely-used routing heuristics. There are five
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heuristics of route designation [13, 24]:

• s-shape or traversal,

• return,

• midpoint,

• largest gap,

• composite/combined.

The most frequently used heuristics in warehouse management practice are the first two (s-shape and
return) [18, 26]. The easy one to designate is also the midpoint and it also yields good results (relatively
short picker’s routes) [26]. Therefore, we compare the results obtained by these routes with the results of
proposed metaheuristic. The metaheuristic has the following assumptions:

• It is based on the loss function.

• It is the combination of the s-shape and the midpoint heuristics.

• In order to shorten the picker’s route, we analyse replacement of crossing the whole picking aisle
(like in the s-shape heuristic) by picking items from this aisle like in the midpoint heuristic.

• We calculate the values of the loss function for all combinations of replaced and not replaced visited
picking aisles.

• We select the combination that minimises the total loss function.

• The basic assumption is that the number of subsequent picking aisles crossed in accordance with the
s-shape heuristic was even. The metaheuristic tries to visit all aisles where entering from the bottom
and returning is shorter than traversing the entire aisle on the way to the end of the warehouse, and
all aisles where entering from the top and returning is shorter than traversing the entire aisle on the
way back. If the number of picking aisles crossed according to the s-shape heuristic is even, the
metaheuristic can generate a return route that visits all picking points; otherwise, the already visited
paths should be included in the route, which in most cases breaks the optimisation.

• We assume that for one-block, rectangular warehouse the results obtained by the metaheuristic
should yield not worse results than the remaining heuristics.

Stages of the metaheuristic designation are as follows:

• We assume that we need to pick items from locations being at the m picking aisles (where m is the
number of picking aisles to be visited by the picker. These are the picking aisles in which all visited
locations are located).

• We generate all possible combinations of replacements of crossing the picking aisles. For m picking
aisles we have 2m combinations.

• We analyse every combination:
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– Reject combination, for which the parity constraint connected with subsequent full crossings is
not satisfied.

– Replace crossings according to the current combination.

– Calculate the loss function for the new crossing.

• Store the combinations with the lowest loss function and update it if a new combination with its
smaller value is found.

• After analysing all combinations select the one with the lowest loss function.

• When picking the items from the last picking aisle while returning on the rear main aisle, the route
goes back to the front main aisle and returns to the I/O point (as in the s-shape heuristic).

The loss function is calculated by means of the following formula:

Lj = dj − min
i∈{1,...,nj−1}

{2 [dij + (dj − di+1,j)]− di,i+1,j} (10)

where:

• nj is total number of visited locations in j-th aisle,

• di,i+1,j is the distance between the i-th and i+ 1 in j-th aisle,

• dj – length of the j-th aisle,

• dij , di+1,j – distance of the i-th and i+ 1-th location in the j-th aisle from the front main aisle,

• Lj is total loss for the j-th aisle.

The method is outlined in the pseudocode below:
The example comparison of routes obtained for the s-shape, return, midpoint heuristics and the new

metaheuristic is presented on the Figure 1.
In the presented example the metaheuristic works similarly to the midpoint heuristic. The only differ-

ence is that the sixth picking aisle from the left is visited not from the front main aisle, but from the rear
one. However, it does not have any impact on the route length, as the visited location in this picking aisle
is exactly the middle rack. Bold edges on the graphs indicate that these parts of the route are traversed
more than once.

3. Experimental results

We applied the following computational software:

• We generated scenarios (orders) and selected locations by means of the COPRAS method in MicrosoftTM

Excel®.

• All heuristics and proposed metaheuristic were obtained by means of the own software written in
the I language [19] with the use of packages: clusterSim [27], openxlsx [23], tidyverse [29],
tidyverse [29], dplyr [30], tidyr [31], stringr [28].
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1: Calculate loss function for every aisle
2: Remove empty aisles from right
3: for all combinations of full aisles and aisles visited to and from midpoint do
4: binary_vector_raw = binary representation of j

5: bits = bits of binary_vector_raw
6: # For combinations with subsequent number of even full aisles
7: if if parity_full_s(count_by_sequence(TRUE, bits, TRUE)) is TRUE then
8: current_loss = sum(loss where bits are FALSE)
9: if current_loss < min_change then

10: find the combination that minimises the overall loss
11: min_change_bits = bits
12: min_change = current_loss
13: end if
14: end if
15: end for
16: Create route due to combination minimising loss function
17: Remove empty aisles from optimal combination

Algorithm 2. Pseudocode for the metaheuristic (Source: own elaboration)

Elaborated own new functions will be included and shared in a new I package, which is currently
under construction.

We present the results in the form of the basic descriptive statistics for every take-out strategy sepa-
rately. We use the following notations:
n̄loc – average number of visited locations,
x̄ – arithmetic mean,
S(x) – standard deviation,
Vs – coefficient of variation,
Me – median,
Q1 – first quartile,
Q3 – third quartile,
A – Pearson’s moment skewness coefficient,
S–W – p-value of the Shapiro-Wilk normality test,
95% C.I. – 95-percentage confidence interval for the arithmetic mean.

We present the results for the benchmark take-out strategy in Table 3.
All measures of central tendency indicate that the results obtained by the new metaheuristic yielded

better results than other heuristics. The average route length for this strategy for the proposed meta-
heuristic was just over 258 units, followed by the results obtained by the midpoint heuristic (almost
267.3 units). Much longer route lengths were obtained on the average for the s-shape heuristic (325.6
units) and the longest (334) – for the return heuristic. Median values were similar to the averages mean-
ing that the distribution of the route lengths for all heuristics were symmetric, with quite low variability
(coefficients of variation were just over a dozen) thus not significantly different from normal (p-values
for the Shapiro-Wilk test were for all heuristics much higher than the threshold value of 0.05). The s-
shape and return heuristics yielded much worse results. Confidence intervals for the s-shape and return
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Figure 1. Routes obtained for the routing heuristics. Source: own elaboration.

heuristics overlapped. The same held for the midpoint and the new metaheuristic. The average number
of location to pick an order when using this strategy was on the average equal 12.79.

We present the results for the FIFO take-out strategy in Table 4.
Route lengths obtained for the FIFO strategy were longer than for the benchmark one and ranged

from just over 296 units for the best metaheuristic to just over 404 for the worst – the return heuristic.
The second best results were obtained for the midpoint heuristic (with average route length equal 306.74
units) and the second worst – for the s-shape heuristic (381.7 units). Similarly as in the case of the
benchmark strategy, median values were similar to the averages, so the distribution of the route lengths
for all heuristics were symmetric, with quite low variability (coefficients of variation were just over a
dozen) and mostly not significantly different from normal. Only for the s-shape heuristic the distribution
of route length deviated from normal at the significance level 0.1. In case of this strategy, all measures of
central tendency indicate that the new metaheuristic yielded better results than the remaining heuristics.
The confidence intervals for the s-shape and return did not overlap, while for the midpoint and the new
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Table 3. Results for the benchmark strategy (Source: own elaboration)

Descriptive
statistics

Heuristics
s-shape return midpoint metaheuristic

n̄loc 12.79
x̄ 325.60 334.00 267.32 258.32

S(x) 46.99 56.02 33.08 32.62
Vs 14.43% 16.77% 12.38% 12.63%
Me 324.00 332.00 266.00 258.00
Q1 295.50 300.00 244.00 239.50
Q3 358.00 366.00 287.50 276.50
A -0.211 0.224 0.322 0.137

S–W 0.574 0.622 0.379 0.584
95% C.I. [316.28, 334.92] [322.88, 345.12] [260.76, 273.88] [251.85, 264.79]

Table 4. Results for the FIFO strategy (Source: own elaboration)

Descriptive
statistics

Heuristics
s-shape return midpoint metaheuristic

n̄loc 14.75
x̄ 381.70 404.18 306.74 296.22

S(x) 49.15 64.30 38.05 35.69
Vs 12.88% 15.91% 12.40% 12.05%
Me 376.00 407.00 305.00 292.00
Q1 352.00 367.00 278.00 274.00
Q3 422.00 436.00 336.00 324.00
A -0.147 0.100 0.138 -0.062

S–W 0.074 0.800 0.786 0.502
95% C.I. [371.95, 391.45] [391.42, 416.94] [299.19, 314.29] [289.14, 303.30]

metaheuristic they did. When using this strategy, the average number of locations to pick an order was
much higher than for the benchmark take-out strategy and equal 14.75.

We present the results for the quantity adjustment take-out strategy in Table 5.

Table 5. Results for the quantity adjustment strategy (Source: own elaboration)

Descriptive
statistics

Heuristics
s-shape return midpoint metaheuristic

n̄loc 10.98
x̄ 313.98 328.06 258.26 251.00

S(x) 35.91 53.54 31.39 31.74
Vs 11.44% 16.32% 12.15% 12.65%
Me 318.00 333.00 256.00 250.00
Q1 303.50 295.50 238.00 232.00
Q3 332.00 359.00 280.00 270.50
A -0.370 -0.289 0.210 -0.071

S–W 0.001 0.734 0.556 0.620
95% C.I. [306.85, 321.11] [317.44, 338.68] [252.03, 264.49] [244.70, 257.30]

The quantity adjustment strategy yielded much better results (shorter route lengths). They ranged
from average 251 units for the metaheuristic to 328 units for the return heuristic. Again, the metaheuris-
tic provided the best results (but to quite small degree with the comparison to the midpoint heuristic).
As previously, the variability of obtained distributions was small (with coefficients of variation not ex-
ceeding 16.32% for the return heuristic). Distributions of route lengths obtained by the s-shape and
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return were moderately negatively skewed. In case of the midpoint heuristic it was moderately positively
skewed. The distribution of route lengths obtained for the new metaheuristic was virtually symmetric
(with skewness coefficient equal -0,071). The distribution of route lengths for the s-shape deviated from
normal significantly, which was also visible by difference between the average (almost 314) and median
(318) route length. As expected, the average number of locations that need to be visited to pick an order
was the lowest (less than 11) – this take-out strategy prefers locations that satisfy demand for items to the
highest degree (possibly fully).

We present the results for taking the access unit take-out strategy in Table 6.

Table 6. Results for taking the access unit strategy (Source: own elaboration)

Descriptive
statistics

Heuristics
s-shape return midpoint metaheuristic

n̄loc 12.78
x̄ 347.80 371.18 280.90 272.10

S(x) 40.93 54.90 30.01 27.85
Vs 11.77% 14.79% 10.68% 10.24%
Me 347.00 373.00 277.00 271.00
Q1 323.50 328.00 262.00 254.00
Q3 376.00 410.50 302.50 290.00
A 0.403 0.377 0.729 0.578

S–W 0.015 0.068 0.010 0.021
95% C.I. [339.68, 355.92] [360.29, 382.07] [274.95, 286.85] [266.57, 277.63]

The ”taking the access unit” take-out strategy prefers locations with the highest degree of demand
satisfaction in full units (boxes). Therefore, the picker needed to visit more locations (on the average
12.78) in order to pick the order than in the ”quantity adjustment” strategy. The need to visit more
locations caused also longer mean route lengths (ranging from 272.1 for the metaheuristic to 371 for the
return heuristic). Although the median route lengths were close to the average values, the skewness of
obtained distributions was always positive and strong (the highest skewness was in the case of application
of the return heuristic – the coefficient was equal 0.729). It is because we have longer right tails of the
distribution (cases in which we must visit more locations, or locations located further from the I/O point).
It resulted in significant deviations from the normal distribution (in case of the s-shape, midpoint and
metaheuristic at the significance level 0.05 and for the return heuristic – 0.1).

We present the results for the take-out strategy preferring locations located the closest to the I/O point
in Table 7.

When applying the take-out strategy, which prefers locations located the closest to the I/O point, the
obtained route lengths were a bit shorter than when applying the benchmark strategy (Table 4). The
average number of visited locations was 13.02. The ranking of heuristics was the same as in the case of
previous strategies – the new metaheuristic generated the best results (with the average route length equal
255.54 units). It was followed by the midpoint heuristic (266.22 units), then the s-shape (323.4). It was
closely followed by the return heuristic with the longest route length (on the average equal 327.7 units).
The shape of the distribution of the route lengths for the s-shape heuristic differed from the ones obtained
for other heuristics. It was strongly negatively skewed (with the coefficient of skewness equal -0.508),
thus differed significantly from the normal distribution (at the 0.05 significance level). The distributions
obtained for the remaining heuristics did not differ from normal and were virtually symmetrical.
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Table 7. Results for the strategy preferring locations located the closest to the I/O point (Source: own elaboration)

Descriptive
statistics

Heuristics
s-shape return midpoint metaheuristic

n̄loc 13.02
x̄ 323.40 327.70 266.22 255.54

S(x) 45.49 57.68 34.64 34.77
Vs 14.07% 17.60% 13.01% 13.61%
Me 324.00 324.00 272.00 262.00
Q1 304.50 283.00 240.00 229.50
Q3 364.00 364.50 286.50 278.00
A -0.508 0.088 -0.044 -0.081

S–W 0.014 0.721 0.675 0.483
95% C.I. [314.37, 332.43] [316.26, 339.14] [259.35, 273.09] [248.64, 262.44]

We present the results for the take-out strategy minimising the number of visited picking aisles in
Table 8.

Table 8. Results for the strategy minimising the number of visited picking aisles (Source: own elaboration)

Descriptive
statistics

Heuristics
s-shape return midpoint metaheuristic

n̄loc 14.71
x̄ 285.66 314.74 263.28 245.80

S(x) 46.75 55.26 39.86 36.83
Vs 16.37% 17.56% 15.14% 14.98%
Me 294.00 317.00 267.00 245.00
Q1 259.50 282.00 234.00 224.00
Q3 312.00 348.50 292.00 270.00
A -0.338 -0.386 0.064 -0.012

S–W 0.009 0.335 0.428 0.511
95% C.I. [276.38, 294.94] [303.77, 325.71] [255.37, 271.19] [238.49, 253.11]

The realisation of the take-out strategy that minimises the number of visited picking aisles yielded the
shortest route lengths, despite relatively high number of visited locations (on the average equal 14.71). It
was in accordance with previous research in this area [25]. Even if we need to visit more locations (be-
cause we do not necessarily select the most filled), but if they are clustered in smaller number of picking
aisles, then the total route length can be in most cases shorter. The shortest route lengths were obtained
for the new metaheuristic (on the average 245.8 units). The second best results were obtained for the mid-
point heuristic (average route length equal 263.3 units). It was followed by the s-shape heuristic (average
285.66 units). The longest route lengths (on the average equal 314.74 units) were obtained for the return
heuristic. The distributions of route lengths obtained for various heuristics had slightly higher level of
variability (partially caused by the lowest average values). The distributions for the midpoint heuristic
and the metaheuristic were symmetric, while the distributions for the s-shape and return heuristics had
moderate negative skew (in case of the s-shape heuristic it also deviated significantly from the normal
distribution). In case of this strategy the confidence intervals for route lengths of all heuristics did not
overlap, so in most cases there was clear distinction between the results obtained for every heuristic.

Finally, we present the results for the priority of partial units take-out strategy in Table 9.
The priority of partial units strategy always yields the longest route lengths. It was mentioned as the

trade-off by Bartholdi and Hackman [1] and proved by Dmytrów [7]. If the strategy prefers the locations
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Table 9. Results for the priority of partial units take-out strategy (Source: own elaboration)

Descriptive
statistics

Heuristics
s-shape return midpoint metaheuristic

n̄loc 25.36
x̄ 476.04 546.30 405.58 380.12

S(x) 45.48 73.08 46.90 38.52
Vs 9.55% 13.38% 11.56% 10.13%
Me 480.00 538.00 405.00 380.00
Q1 452.00 498.50 378.00 362.00
Q3 510.50 592.00 430.50 404.00
A -0.658 0.006 -0.316 -0.551

S–W 0.004 0.961 0.139 0.009
95% C.I. [467.02, 485.06] [531.80, 560.80] [396.28, 414.88] [372.48, 387.76]

with the smallest possible degree of demand satisfaction, the picker needs to visit much more locations
(in our case on the average over 25 per order), thus travel longer distance than in case of other take-out
strategies. In our case the ranking of heuristics with respect to the route lengths was the same as in
previous cases. The shortest route lengths were obtained for the new metaheuristic (on the average just
above 380). It was followed by the midpoint heuristic (with average route length equal 405.6 units). The
second worst results were obtained for the s-shape heuristic (on the average 476 units). The longest route
lengths (on the average equal 546.3 units) were obtained for the return heuristic. Variability of obtained
distributions of route lengths is the lowest (mostly due to the highest mean values). Only in case of the
return heuristic the distribution was symmetric, for all other heuristics the distributions were negatively
skewed, for s-shape and the metaheuristic strongly. Also, in these two cases the obtained distributions
differed significantly from normal (at the 0.01 significance level). All confidence intervals were disjoint,
so similarly as in case of the previous strategy, there was clear distinction between the results obtained
for all heuristics.

In order to visualise the relative differences between the average route lengths obtained for the meta-
heuristic and the remaining routing heuristics, we present the Figure 2.

Because all the relative differences were positive, all heuristics for all take-out strategies yielded worse
results (longer route lengths) than the proposed metaheuristic. The closest to the metaheuristic results
were obtained for the midpoint heuristic. The s-shape and return heuristics yielded much worse results.
The relative difference between the midpoint heuristic and the proposed new metaheuristic ranged from
2.9% for the ”quantity adjustment” strategy to 7.1% for the strategy that minimises the number of visited
picking aisles. In case of the ”priority of partial units” take-out strategy, the midpoint heuristic yielded
route lengths on the average by 6.7% longer than the metaheuristic. For the remaining take-out strategies
application of the midpoint heuristic resulted in route lengths longer on the average by about 3.5% than
in case of the new metaheuristic. The s-shape heuristic yielded worse results than the metaheuristic on
the average by 25% (with the exception of the strategy minimising the number of visited picking aisles,
for which the average route length for the s-shape heuristic was longer by 16.2% in comparison with the
results obtained for the metaheuristic). The use of the return heuristic yielded the longest route lengths.
They were on the average longer than in case of the metaheuristic from just above 28% (for the strategies
minimising the number of visited picking aisles and preferring locations located the closest to the I/O
point) to almost 44% in case of the ”priority of partial units” strategy.
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Figure 2. Comparison of average route lengths for individual heuristics with results obtained for the metaheuristic. Source:
own elaboration.

The closest results to the new metaheuristic with respect to the route lengths were obtained for the
midpoint heuristic. When we analysed closer the relative differences between the midpoint heuristic
and the metaheuristic and compared them to the average number of visited locations for every take-out
strategy, presented in tables 3– 9, they were seemingly closely related. The smallest number of visited
locations was needed to pick an order when realising the ”quantity adjustment” (average 10.98 loca-
tions), ”taking the access unit” (average 12.78 locations) and the benchmark (average 12.79 locations)
take-out strategies. For these strategies the differences in order picking route between the metaheuristic
and the midpoint heuristic were the smallest. This difference was the largest for the strategies minimising
the number of visited picking aisles (with the average number of visited locations equal 14.71) and the
”priority of partial units” (with the average number of visited locations equal 25.36). There was, how-
ever, one exception – for the FIFO take-out strategy the average number of visited locations was 14.75
(virtually the same as for the strategy minimising the number of visited picking aisles), but the relative
difference between the route lengths was less than 3.6%. Moreover, the relative differences between the
new metaheuristic and the midpoint heuristic in cases of the strategies minimising the number of visited
picking aisles and the ”priority of partial units” seemed to stabilise. However, it needs to be confirmed in
further research with larger number of items on the pick list.
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4. Conclusions

The aim of the research has been successfully realised – proposed new metaheuristic proved to yield bet-
ter results (shorter route lengths) than the three most widely used routing heuristics: s-shape, return and
midpoint. We applied it to the simple, one-block rectangular warehouse with random storage assignment.
We compared the results for various take-out strategies used in the shared storage systems. The advantage
of this metaheuristic over the s-shape, return heuristics was very big – the former heuristic generated re-
sults on the average by 25% worse and the latter – on the average by 33% worse. The midpoint heuristic
generated the results on the average by 4.45% worse. However, in most cases the advantage on the new
metaheuristic increased when the number of visited locations also increased. Nevertheless, this finding
needs to be confirmed in the future research. Better performance of the proposed metaheuristic might
indicate that it can be used in practical applications.

Having the designation and experimental analysis of the proposed metaheuristic complete, we can
consider its pros and cons. The pros of the proposed metaheuristic are as follows:

• It is a methodology based on two well-known routing heuristics: s-shape and midpoint.

• It contains the elements of optimisation – minimisation of the loss function.

• It was designed and proved that its application allows obtaining not worse (on the average better)
results than the compared well-known routing heuristics.

We can also consider the cons of our proposal:

• It is not designed to obtain the optimal solution.

• It is not as easy to be implemented as the s-shape, return and midpoint heuristics.

The decision to implement any method of selection of locations and routing method is always subjec-
tive. The subjectivity can be decreased by analysing realisation of some evaluation criteria, like picking
route length, order picking time, or realisation of the described criteria of selection of locations for all
take-out strategies. After such evaluation, overall the best combination of multi-criteria decision-making
method of selection of locations, routing heuristic and take-out strategy can be selected.

Our research has, of course, some limitations. Firstly, it was conducted for a typical, simplest type of
warehouse. Secondly, for every strategy we generated only 100 replications of the simulation. The reason
for this was the early stage of the algorithm, which had not yet been optimised for faster execution. And
thirdly, we applied our metaheuristic only to the random storage assignment.

In order to address these limitations, the possible future directions of our research will include:

• Application of the metaheuristic to more organised storage assignments:

– ABC within aisle,

– ABC across aisle,

– ABC diagonal,

– ABC perimeter.
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• Adjustment of the metaheuristic to the high-level warehouse.

• Adjustment of the metaheuristic to the multi-block warehouse.

• Conducting more detailed experiment with more (at least 1000) repetitions for each storage assign-
ment and take-out strategy.

• Verification of the results generated by the metaheuristic for more items in a pick list.

• Preparation of a new I package that will include the elaborated functions.

• Simultaneous, multi-criteria evaluation of both results of selection of locations satisfying the various
take-out strategies and obtained route lengths.
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