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Abstract

In this paper, we integrate two decision problems related to the management of port terminals, the berth allocation problem
and the machine assignment problem. The berth allocation problem consists of assigning and scheduling incoming vessels to
berthing positions, and the machine assignment problem consists of assigning a machine pattern/profile. The machines can be
quay cranes, trucks, or any other machine. We present two MILP formulations, one with machine patterns for the quay and
another for berths. The objective function aims to minimize the waiting time and the handling time of the vessels. To solve
the problem, we developed a heuristic algorithm capable of solving a problem instance in seconds. To compare the results, we
generate several instance problems based on real data and solve them with our MILP formulation, our heuristic, and a FIFO
algorithm. We tested our heuristic with instances with more than 100 berths, 500 vessels, and 250 machines. The solver was
unable at finding solutions for instances with more than 4 berths after three hours of processing. The heuristic was able to
solve all the instances in less than 3 seconds. On average, the heuristic solution is 8% worse than the optimal solution.

Keywords: Berth allocation problem, quay crane assignment problem, port machines assignment, mixed integer linear pro-

gramming, heuristic method

1. Introduction

Maritime transportation has always played a crucial role in the international exchange of goods, and re-
ducing the time and cost of such transportation continues to be an important goal. In order to reduce
transportation costs, terminal managers seek to increase cargo handling efficiency, with larger container
ships for long-haul routes and terminals with better infrastructure and technologies able to efficiently han-
dle them [5]. Containers, dry bulk and oil bulk are the majority of cargo handled by maritime shipping.
The container is the driver of intermodal transportation, which permits easy handling between modal
systems. Since intermodal transportation with containers is more efficient and cheap, containerization is
increasing [22].
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The need for efficient management of logistic activities at modern terminals is a well-known problem
and several papers addressed this problem in the literature, one of the most relevant is the Berth Allocation
Problem (BAP) which consists of assigning and scheduling vessels to berthing positions along the quay,
with the aim of minimizing the waiting time of the vessels [13]. Since quay cranes are one of the main
terminal equipment used for container movement, an inefficient quay crane employment could impact
negatively in handling operations, many papers address the integration between the BAP and the quay
crane (QC) allocation or scheduling problem, this problem is known as Quay Crane Assignment Problem
(QCAP) which consists of deciding how many QCs to assign and for how long for each vessel [7]
and [10].

The majority of integrated BAP models address the QCAP, although some address others types of port
structures or machines, such as yard allocation [21] or bulk unloaders [19]. In this paper, we present two
new mathematical models that address the BAP integrated with the allocation of several types of trans-
portation machines, such as quay cranes, mobile cranes, straddle carriers, forklifts, trucks, and others. In
an attempt to address the intermodal transportation that could take place in a terminal, the models work
with a pattern or profiles of machines for terminals or berths, with the aim of minimizing the waiting
time and the handling time of the vessels. Besides addressing any type of machine, our model uses a
continuous horizon time, which differs from most of the integrated models for BAP.

Most of the operational decisions in major ports are made by ship and port operators using solutions
generated by the first-come, first-served model. The solutions generated with the proposed model have
up to 78% less berth and machine usage time and 20% less on average, which leads to fewer fees and
charges, reducing the transportation costs. The paper is organized as follows. The literature review related
to the berth allocation problem is in Section 2. The problem formulation is presented and analyzed in
Section 3. A heuristic to solve the problem is presented and discussed in Section 4. The computational
analyses of the models, the heuristic, and numerical experiments are presented in Section 5. The final
section concludes the paper.

2. Literature Review

One of the first mathematical models for the BAP can be found in [11], where the port berths have a
fixed length and are considered fixed points along the quay. In this model, the authors assume a situation
named static, where all vessels are in the port. This model is referred as static discrete BAP or static
DBAP by the authors. The model aims to minimize the allocation time of the vessels on the berths to
provide a better solution than the first in, first out technique (or FIFO) also called first in, first served
technique (or FIFS). The FIFO technique consists of handling the vessels by arrival order, and it is widely
used in commercial ports.

In [12] the BAP of [11] is extended to the dynamic version, where all vessels that have an arrival
time on the planning horizon time are considered by the mathematical model. Those models are called
dynamic DBAP by the authors. The dynamic DBAP models assume that the handling of any vessel can
be done at any berth.

Cordeau et al. [4] formulates the BAP as a vehicle routing problem with time windows (MDVRPTW)
and develops a heuristic based on the tabu search to solve the model instances. The heuristic also has a
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version for the continuous BAP (or CBAP), where the berths can have a variable length.
The Tactical Berth Allocation Problem (or TBAP) was first proposed in [17] where their TBAP model

aims to represent the trade-off between the waiting time of the vessels and the costs of moving containers
between the berths and yards. The model is based on the rectangular packing problem on a cylinder and
uses a simulated annealing-based heuristic to solve the instances of the model. The objective of their
model is to maximize the level of service (defined as the number of vessels serviced in two hours) and
minimizes the costs related to the container movements between the berths and yards.

Giallombardo et al. [7] proposed another TBAP model to integrate the BAP with the quay crane
schedule (CS). The model discretizes the time horizon into several time partitions of the same length
and defines every variable and parameter with an index related to each time partition. The variables and
parameters associated with the vessels and berths are very similar to the variables and parameters of the
DBAP. The quay crane schedule (CS) presupposes that a reallocation of the quay cranes can occur at the
end of each work shift change, and, therefore, the length of each time partition used in this model is given
by the work shift duration. The yard cost depends on the berthing position of each vessel. This model
is one of the first to consider the integration between the BAP and the quay crane scheduling, but the
partition of the horizon time causes a large increase in the number of variables, and consequently, that
increases the memory and processing needed to solve the instances of this model.

Zhen et al. [29] proposed an integrated template-planning model for berthing locations in continuous
indexes and yard container stack arrangements. They provide a heuristic to solve instances of the model.
Hendriks et al. [8] extend the BAP model for a multi-terminal port, which can allocate two connected
vessels in different terminals by means of inter-terminal container transport. The objectives of the model
are to balance the working load of the quay crane between the terminals over time and minimize the
number of containers transported between terminals. Hendriks et al. [9] approach a TBAP for terminals
with discrete berths integrated with the allocation of yard spaces. Those studies do not consider machine
allocation.

Shang et al. [25] investigates the integrated berth allocation and quay crane assignment problem in
container terminals under data uncertainties. A deterministic model was formulated by considering the
setup time of quay cranes in discretized horizon time. Our proposed model considers a continuous
horizon time, which significantly reduces the number of variables and does not generate time gaps in the
solution. Zheng et al. [30] studies an integrated berth allocation and quay crane assignment model where
quay crane maintenance is involved and establishes a MILP with the objective of minimizing the total
turnaround time. The authors also provide a GA-based metaheuristic to solve large instances.

Xiang and Liu [28] integrated berth allocation and quay crane assignment problem considering uncer-
tainties in the late arrival of ships. They formulated the problem as an almost robust model by introduc-
ing the weighted max penalty function with the objective of minimizing the total cost. They separate the
problem into a deterministic master problem and a stochastic subproblem, they claim their results demon-
strate the robustness of the model and the effectiveness of their proposed model and solution method. Our
proposed model and solution method solve a single problem, capable of finding the allocation of vessels
and any type of port machine.

Martin-Iradi et al. [15] reformulates a multiport berth allocation problem, which is a mixed-integer
problem, into a generalized set partitioning problem in which each variable refers to a sequence of fea-
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sible berths in the ports that the vessel visits. The authors also propose a column generation and cut
separation in a branch-and-cut-and-price procedure method to solve their problem, which they claim it
was able to outperform commercial solvers. Our proposed model and solution method are capable of
allocating any type of port machine.

Tang et al. [26] proposes a large neighborhood search algorithm to solve the continuous berth alloca-
tion and quay crane assignment problem. The continuous berth is separated into discrete segments via a
proposed discretization strategy. They claim to obtain the optimal solution for small-scale instances and
a more efficient solution than the genetic algorithms for large-scale instances. Our model considers a
discrete set of berths, and we also present a discussion regarding berthing positions and machine alloca-
tion considering the quay geography. Besides our proposed heuristic, we also propose new mathematical
models for the berth and machine allocation problems.

The papers [1], [2], [23] and [14] contain a review of publications related to the BAP and QCAP.
The mathematic models of [18], [10] and [16] makes an hour-by-hour relocation of machines and [7]

and [27] makes a turn-by-turn relocation in order to find the machine schedule. Our proposed model
uses novel variables and constraints that can detect simultaneous allocations in different berths, and,
with this information, the model can allocate the machine pattern to the handling of the vessels, without
discretizing the horizon time. The proposed mathematical model of [3] uses variables and contraints
to archive the machine allocation, while the proposed model uses machine patterns for berths, which
generates a model with less variables and less complex constraints.

3. Mathematical Model

Before the introduction of the mathematical formulation, we address the issue of which berths will com-
pete for the usage of machines. As an example, consider the situation of Figure 1, where the container
port has berths distributed by sets of three, and each set has disconnected rails.

1 2 3 4
5

6

7 8 9

10
11

12

...

Figure 1. Exemple of berths division.

Berths only compete for the usage of quay cranes with the ones in the same rail. To address this issue,
we introduce in this work the concept of regions of the quay. We define sets of berths that compete for
the usage of a given type of machine. Each set has a number of available machines. In our example, for
the quay crane, we have the sets given by Figure 2.

The sets generated by different types of machines are not necessarily equal. In our example, the sets
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Figure 2. Exemple of terminal/quay regions.

of Figure 2 are not the same for trucks. Since trucks have free mobility between berths, we have a single
set, which contains all berths and has the total number of trucks available.

With the concept of berth sets, we present the mathematical model created to optimize the handling
of vessels on a terminal with multiple types of machines. To avoid confusion, we address the sets of
berths generated by a type of machine as regions generated by that type of machine. Each type of
machine generates its own rate of handling in the model, based in the number of machines assigned,
and the handling rate of a vessel is given by the slowest rate generated by the machines. The Model 1
is defined with machine patterns for the terminal therefore, the concept of regions should be addressed
in the creation of patterns. The Model 2 uses machine patterns for berths , therefore, the regions are
addressed directly in the model.
Sets

• B: set of berths.

• N : set of vessels.

• O: set of service order.

• P : set of machine patterns.

Variables

• xi,o,k =

{
1, if the vessel i is the o-th in berth k
0, otherwise.

• yi,k,p =

{
1, if the handling of vessel i occurs in berth k with pattern p
0, otherwise.

• Ti: allocation time of vessel i.

• ti: handling time of vessel i.

• si,j =


1, if the end of vessel i handling occurs before the beginning of
vessel j

0, otherwise.
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• wi,j =


1, if the beginning of vessel i handling occurs before the end of
the vessel j
0, otherwise.

If the handling of any two vessels i and j have an intersection, which is, exists a moment where those
vessels are simultaneously allocated (in different berths), then si,j = wi,j = 1. Parameters

• βi and β
′
i: weights related to the vessel i waiting handling time, respectively.

• ai and bi: arrival and departure time of vessel i, respectively.

• t
′
i,p: handling time of vessel i in berth k with pattern p.

• H: large number.

Mathematical Model

min
∑
i∈N

βi(Ti − ai) + β
′

iti (1a)

s.t ti ≥ yi,k,p t
′

i,p ∀i ∈ N, ∀k ∈ B, ∀p ∈ P (1b)∑
k∈B

yi,k,p ≥
∑
k∈B

yj,k,p + (wi,j + si,j − 1)− 1 ∀i ∈ N,∀j ∈ N, ∀p ∈ P (1c)∑
k∈B

∑
p∈P

yi,k,p = 1 ∀i ∈ N (1d)∑
p∈P

yi,k,p ≥
∑
o∈O

xi,o,k ∀i ∈ N, k ∈ B (1e)

Ti ≥ ai ∀i ∈ N (1f)

Ti + ti ≤ bi ∀i ∈ N (1g)∑
i∈N

xi,o,k ≤ 1 ∀o ∈ O, ∀k ∈ B (1h)∑
o∈O

∑
k∈B

xi,o,k = 1 ∀i ∈ N (1i)∑
i∈N

xi,o,k ≤
∑
i∈N

xi,o−1,k ∀o ∈ O\{1}, k ∈ B (1j)

Ti −H(2− xi,o,k − xj,o−1,k) ≥ Tj + tj ∀i ∈ N, ∀j ∈ N,∀o ∈ O\{1}, k ∈ B (1k)

Ti + ti −Hsi,j ≤ Tj ∀i ∈ N,∀j ∈ N (1l)

Ti +Hwi,j ≥ Tj + tj ∀i ∈ N, ∀j ∈ N (1m)

xi,o,k ∈ {0, 1} ∀i ∈ N, o ∈ O, ∀k ∈ B (1n)

yi,k,p ∈ {0, 1} ∀i ∈ N,∀k ∈ B, ∀p ∈ P (1o)

Ti ≥ 0 ∀i ∈ N (1p)

si,j, wi,j ∈ {0, 1} ∀i ∈ N,∀j ∈ N. (1q)

The Function 1a is the sum of the time window and handling time of the vessels. Some vessels
could have priority, therefore, a constant was added to the objective function. The Constraints 1b is
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the handling time calculation, given by the machine pattern used. As Constraints 1c ensure the same
machine pattern for two vessels with simultaneous handling. The Constraints 1d allows only one pattern
for each vessel. The Constraints 1e associates berths and machine patterns. The Constraints 1f ensure
the allocation time before the arrival time. The Constraints 1g ensure the handling before the departure
time. The Constraints 1h and 1i ensure the handling of each vessel occurs one time in one berth. The
Constraints 1j ensure the position of each vessel. The Constraints 1k calculate the allocation time of the
vessels. The Constraints 1l and 1m compute the case where the vessels have simultaneous allocation. If
the vessels i and j are simultaneously allocated in different berths, then si,j + wi,j = 2. The Constraints
1q ensure binary allocation variables and non-negative continuous time variables.
Sets

• B: set of berths.

• Br: berths subset of region r.

• Br
k: subset of all k-combinations of Br elements.

• N : set of vessels.

• Nk: set of all k-combinations of N elements without repetition.

• CNk
: set of combination two-by-two of Nk elements.

• O: set of service order.

• P : set of machine patterns.

• Rα: set of regions of machine type α.

Variables

• xi,o,k =

{
1, if the vessel i is the o-th in berth k
0, otherwise.

• yi,p =

{
1, if the handling of vessel i occurs with pattern p
0, otherwise.

• Ti: allocation time of vessel i.

• ti: handling time of vessel i.

• si,j =


1, if the end of vessel i handling occurs before the beginning of
vessel j

0, otherwise.

• wi,j =


1, if the beginning of vessel i occurs before the end of
the vessel j
0, otherwise.

• mi,α: number of α type machines allocated for the service of vessel i.
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Parameters

• βi and β
′
i: weights related to the vessel i waiting time and handling time, respectively.

• ai and bi: arrival time and maximum departure time of vessel i, respectively.

• t
′
i,p: handling time of vessel i with pattern p.

• M r
α: number of α machines in region r.

• H: large number.

Mathematical Model

min
∑
i∈N

(βi(Ti − ai) + β
′

iti) (2a)

s.t. ti ≥ yi,pt
′

i,p ∀i ∈ N, ∀p ∈ P (2b)∑
p∈P

yi,p = 1 ∀i ∈ N (2c)∑
p∈P

t
′

i,k,p ≥
∑
o∈O

xi,o,k ∀i ∈ N, k ∈ B (2d)

Ti ≥ ai ∀i ∈ N (2e)

Ti + ti ≤ bi ∀i ∈ N (2f)∑
i∈N

xi,o,k ≤ 1 ∀o ∈ O, ∀k ∈ B (2g)∑
o∈O

∑
k∈B

xi,o,k = 1 ∀i ∈ N (2h)∑
i∈N

xi,o,k ≤
∑
i∈N

xi,o−1,k ∀o ∈ O\{1}, k ∈ B (2i)

Ti −H(2− xi,o,k − xj,o−1,k) ≥ Tj + tj (2j)

∀i ∈ N, ∀j ∈ N,∀o ∈ O\{1}, k ∈ B

Ti + ti −Hsi,j ≤ Tj ∀i ∈ N, ∀j ∈ N (2k)

Ti +Hwi,j ≥ Tj + tj ∀i ∈ N,∀j ∈ N (2l)∑
i∈N̄

mi,α ≤

(k2 + 1)−
∑
v∈CN̄

(wv + sv)−
∑
b∈B̄

∑
i∈N̄

∑
o∈O

xi,o,b

M r
α (2m)

∀α ∈ P, ∀N̄ ∈ Nk, ∀B̄ ∈ Br
k, ∀r ∈ Rα,∀k ∈ {1, 2, ..., |B̄|}

xi,o,k ∈ {0, 1} ∀i ∈ N,∀o ∈ O, ∀k ∈ B (2n)

t
′

i,k,p ∈ {0, 1} ∀i ∈ N,∀k ∈ B, p ∈ P (2o)

Ti ≥ 0 ∀i ∈ N (2p)

si,j, wi,j ∈ {0, 1} ∀i ∈ N,∀j ∈ N. (2q)

The Constraints 2b is the handling time calculation, given by the machine pattern used. The Con-
straints 2c allows only one pattern for each vessel. The Constraints 2d associates berths and machine
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patterns. The Constraints 2e ensure the allocation time before the arrival time. The Constraints 2f ensure
the handling before the departure time. The Constraints 2g ensure the handling of each vessel occurs
one time in one berth. The Constraints 2i ensure the position of each vessel. The Constraints 2j calcu-
late the allocation time of the vessels. The Constraints 2k and 2l compute the case where the vessels
have simultaneous allocation. If the vessels i and j are simultaneously allocated in different berths, then
si,j + wi,j = 2. Constraints 2m compute the maximum number of machines. For example, to a given
region r̂ with two berths we have the sets B r̂ = {k1, k2}, defining C2, N2 and B r̂

2 as:

• B r̂
2 = {k1, k2}.

• N2 = {{i, j}} ∀i ∈ N, j ∈ N, i ̸= j.

• C2 = {(i, j)} ∀i ∈ N, j ∈ N, i ̸= j.

Constraints 2m can be written as Constraints 3.

mi,α +mj,α ≤ (5− wi,j − si,j −
∑
o∈O

xi,o,k1 −
∑
o∈O

xj,o,k2)M
r̂
α ∀i ∈ N,∀j ∈ N, ∀α ∈ P. (3)

If wI,j = 1 and sI,j = 1 the handling of vessels i and j are simultaneous. If
∑

o∈O xI,oh,k1 = 1

and
∑

o∈O xj,o,k2 = 1, the handling of vessels i and j occurs in berths of the same region. Therefore, if
wI,j = 1, sI,j = 1,

∑
o∈O xI,o,k1 = 1 and

∑
o∈O xj,o,k2 = 1, the machines of this region will be divided

between the vessels i and j. If r̂ has three berths, which are B r̂ = {k1, k2, k3}, defining C2, C3, N2, N3,
B r̂

2 and B r̂
3 as:

• B r̂
2 = {{k1, k2}, {k1, k3}, {k2, k3}}.

• B r̂
3 = {{k1, k2}}.

• N2 = {{i, j}} ∀i ∈ N, j ∈ N, i ̸= j.

• N3 = {{i, j, p}} ∀i ∈ N, j ∈ N, p ∈ N, i ̸= j ̸= p.

• C2 = {(i, j)} ∀i ∈ N, j ∈ N, i ̸= j.

• C3 = {(i, j), (i, p), (j, p)} ∀i ∈ N, j ∈ N, p ∈ N, i ̸= j ̸= p.

Constraints 2m can be written as Constraints 4, 5, 6 and 7.

mi,α +mj,α ≤ (5− wi,j − si,j −
∑
o∈O

xi,o,k1 −
∑
o∈O

xj,o,k2)M
r̂
α ∀i ∈ N,∀j ∈ N, ∀α ∈ P, (4)

mi,α +mj,α ≤ (5− wi,j − si,j −
∑
o∈O

xi,o,k2 −
∑
o∈O

xj,o,k3)M
r̂
α ∀i ∈ N,∀j ∈ N, ∀α ∈ P, (5)

mi,α +mj,α ≤ (5− wi,j − si,j −
∑
o∈O

xi,o,k1 −
∑
o∈O

xj,o,k3)M
r̂
α ∀i ∈ N,∀j ∈ N, ∀α ∈ P, (6)
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mi,α +mj,α+mp,α ≤

(
10− wi,j − si,j − wi,p − si,p − wj,p − sj,p −

∑
o∈O

xi,o,k1−

∑
o∈O

xj,o,k2 −
∑
o∈O

xq,o,k3

)
M r̂

α ∀i ∈ N,∀j ∈ N, ∀p ∈ N,∀α ∈ P. (7)

The Constraints 2n, 2o, 2p e 2q ensure binary allocation variables and non-negative continuous time
variables. In the next section, we define the form of a machine pattern and several theorems to minimize
the number of patterns before the optimization of a model instance.

3.1. Machine Patterns

A berth pattern has information regarding the number of machines allocated in one berth, and a terminal
pattern has information regarding the number of machines allocated in all berths. The terminal pattern
can be interpreted as a combination of berth patterns.

The berth pattern can be defined as a vector and a terminal pattern as a matrix or a set of vectors. In a
terminal with m types of machine, and the set B with n berths, letting qp,i,k be the number of machines
type i allocated in berth k of the pattern p where k ∈ B and α ∈ {1, ...,m} and

∑
k∈Br

qp,α,k ≤ M r
α,

∀α ∈ 1, ...,m, p ∈ P , r ∈ Rα. The Set 8 is an example of a terminal pattern.


qp,1,1

qp,2,1

...

qp,m,1

 ;


qp,1,2

qp,2,2

...

qp,m,2

 ; ...;


qp,1,n

qp,2,n

...

qp,m,n


 . (8)

For example, a terminal with two berths, five trucks, and three quay cranes, where a truck has a flow
rate of 50 containers per day and a quay crane has a flow rate of 100 containers per day.{(

1

1

)
;

(
4

1

)}
. (9)

The Pattern 9 generates a flow rate of 50 containers per day in berth 1 and 100 containers per day
in berth 2, where the rate of a berth is given by the slowest rate between the trucks and the quay cranes
allocated in the respective berth. Consider another pattern given by{(

1

1

)
;

(
4

2

)}
. (10)

The Pattern 10 generates a flow rate of 50 containers per day in berth 1 and 200 containers per day
in berth 2. By replacingPattern 9 with Pattern 10 will improve a solution without violation. There-
fore,Pattern 9 can be omitted from the Model 1.

We propose several theorems to help filter the machine patterns used to solve the models. The the-
orems and their proofs are based on the multi-objective optimization theory. As a reference for multi-
objective optimization, we can cite [6], [24] and [20]. We begin by defining the efficiency of a machine
pattern.
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Definition 1 (Effective flow rate of a terminal pattern). The effective flow rate of the berth
k ∈ B with the terminal pattern p ∈ P is given by: δp,k = minα∈M (qp,α,k δα), where qp,α,k is the number
of machine type α ∈M of pattern p allocated on berth k and δα is the flow rate of machines type α.

Definition 2 (Efficient terminal pattern). Given p ∈ P a terminal machine pattern. The pattern
p is efficient if every pattern p̂ defined as

qp̂,α,k =

{
qp,m,b − 1, if α = m and k = b

qp,α,k, otherwise.
(11)

where m ∈M and b ∈ B , have δp̂m < δpm.

In summary, an efficient pattern does not have idle machines. If the pattern p is not efficient, it is
possible to remove at least one (idle) machine without changing the effective flow rate. Let Ap,α,k be the
number of idle machines type α ∈M of berth k ∈ B and pattern p ∈ P .

Property 1. Inefficient pattern: The pattern p is an inefficient pattern if admitted Ap,α,k > 0 for
any α ∈M and k ∈ B .

In summary, an inefficient pattern has idle machines.
Given a solution with at least one inefficient terminal pattern, the theorem 1 ensure the existence of

an alternative solution, which contains only efficient patterns.

Theorem 1. Let U be the non-empty set of feasible solutions of a model instance. For every solution
u ∈ U , where u has at least one inefficient terminal pattern, at least one solution û ∈ U has the same
objective function value that contains only efficient terminal patterns.

Proof. Let u ∈ U be a feasible solution of a model instance with at least one inefficient terminal
pattern. Defining:

• pui : The terminal pattern selected for the service of vessel i of solution u.

• T u
i : The allocation time of vessel i of solution u.

• tui : The handling time of vessel i of solution u.

• zu =
∑

i∈N(βT
u
i + β

′
tui ): The objective function value on solution u.

By hypothesis, there is at least one vessel j ∈ N such that the pattern puj is inefficient. Let:

qpûj ,α,k = qpuj ,α,k − Aα,k, ∀k ∈ B,α ∈M. (12)

Where Am,k is the largest positive value such that δ
pûj
k = δ

puj
k ,∀k ∈ B. In this way

tûi = tui ∀i ∈ N. (13)

Using Theorem 13 we have:
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T û
i = T u

i ∀i ∈ N. (14)

With Theorem 13 and 14 we have zû = zu, which completes the proof. □

Given a solution with at least one inefficient terminal pattern, the theorem 2 ensures the existence of
a better or alternative solution, which contains only efficient patterns.

Theorem 2. Given the patterns p
′ ∈ P and p̂ ∈ P both feasible, such that δp̂,k ≥ δp′ ,k,∀k ∈ B and

there is at least one k̂ ∈ B such that δp̂
k̂
> δp

′

k̂
, that is, if the pattern p̂ dominates the pattern p by the multi

objective function max δpk where p ∈ P e k ∈ B , so one solution of this problem instance that contains
the pattern is not optimal, or it is an alternative optimal solution.

Proof. Let U be the set of all feasible solutions of a problem instance. For all solution u ∈ U :

• pui : Is the terminal pattern selected to serve the vessel i of solution u.

• oui : The order of vessel i of solution u.

• bui : The allocation berth of vessel i of solution u.

• T u
i : The allocation time of vessel i of solution u.

• tui : The handling time of vessel i of solution u.

• zu =
∑

i∈N(βT
u
i + β

′
tui ): The objective function values of solution u.

Let u ∈ U be a solution that contains at least one pattern p
′ ∈ P which is dominated by the pattern

p̂ ∈ P according to the multi-objective function max δpk where p ∈ P and k ∈ B . Therefore, at least one

k̂ ∈ B has δp̂
k̂
> δp

′

k̂
, and exists at least one j ∈ N such that pui = p

′ . Defining the solution û ∈ U where:

• oûi = oui ,∀i ∈ N .

• bûi = bui ,∀i ∈ N .

• pûi =

{
p̂, if i = j

pui , otherwise.

In this way:

tûi ≤ tui ,∀i ∈ N. (15)

So, it is easy to verify that:
T û
i ≤ T u

i ,∀i ∈ N. (16)

Therefore, of Theorem 15 and 16 we have zû ≤ zu, which completes the proof. □

If all terminal pattern that uses all machines are inefficient, the theorem 3 establishes a number of
machines that can be removed from the problem without losing solution quality.
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Theorem 3. It is possible to remove of the problem nr
m = min

p∈P ∗

∑
k∈Br

Ap,m,k machines type m of the

region r ∈ Rm, where P ∗ ⊂ P = {p∗ ∈ P ∗|
∑
k∈Br

qp∗,m,k = M r
m,∀m ∈M,∀r ∈ Rm} is the subset of

machine patterns that uses all available machines and Ap,m,k it is the maximum numbers of machine type
m that can be removed from berth k of pattern p such that the pattern p̂ defined as:

qp̂,m,k = qp,m,k − Ap,m,k, ∀k ∈ B,m ∈M. (17)

where δp̂,k = δp,k,∀k ∈ B.

Proof. Defining:

qp̂,m,k = qp,m,k − Ap,m,k p ∈ P ∗,m ∈M,k ∈ B, (18)

where Ap,m,k ∈ Z+ is such that δp̂k = δpk, k ∈ B, ∀p ∈ P .
Defining the set P̂ = {p̂ : qp̂,m,k = qp,m,k−Ap,m,k, ∀p ∈ P ∗,m ∈M,k ∈ B}. The set P̂ is equivalent

to the set P in relation to the rates of terminal patterns, that is, for all pinP there exist a terminal pattern
p̂ ∈ P̂ such that δp̂k = δpk,∀k ∈ B. Besides that:

∑
k∈Br

qp̂,m,k <= qp̂,m,k − nr
m ∀r ∈ Rm,∀p̂ ∈ P̂ , (19)

which completes the poof. □

Given a solution with at least one terminal pattern which does not make use of all machines, the
Theorem 4 ensures the existence of a better or alternative solution, which contains only patterns that
make use of all the machines.

Theorem 4. Let the pattern p ∈ P \P ∗, where P ∗ ⊂ P = {p ∈ P |
∑
k∈Br

qp,m,k = M r
m, ∀m ∈ M, ∀r ∈

Rm}, that is, p do not make use of all existing machines. The instance solution of the Model 1 which
contains p it is not an optimal solution or is an alternative optimal solution of that instance.

Proof. Given any p ∈ P \P ∗ and let nr
m = M r

m −
∑
k∈Br

qp,m,k, where m ∈ M, r ∈ Rm. By hypothesis,

there exists at least one m̂ ∈M e r̂ ∈ R such that nr̂
m̂ > 0.

Given m̂ ∈M and defining k̂r
m̂ such that:

min
m∈M

(qp,m,k̂rm̂
δm) = qp,m̂,k̂rm̂

δm̂. (20)

If there is no k̂r
m̂ satisfying the Equation 20, take any k̂r

m̂ = k ∈ Br, that is, for any region r ∈ Rm,
take a berth k̂r

m with a bottleneck in machine type m, if such berth does not exist, take any berth k̂r
m of

region r. The pattern defining as:
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qp̂,m,k −

{
qp,m,k + nr̂

m̂, if k = k̂r
m,∀m ∈M and ∀r ∈ Rm

qp,m,k, otherwise.
(21)

For all k̂r
m̂ satisfying the Equation 20 we have δp̂

k̂rm̂
> δp

k̂rm̂
and by Theorem 2 a solution of an instance

of the Model 1 that contains p is not optimal, or it is an alternative optimal solution.
If none k̂r

m̂ satisfy Equation 20 then δp̂,k = δp,k,∀k ∈ B and replacing p for p̂. That generates an
alternative optimal solution, which completes the proof.

□

4. Solution Method

This section contains the main heuristics used to solve the instances of the models. The heuristic first
finds an upper time limit (T ), this time limit will be used to calculate the set of vessels which will be
assigned to a berth in the iteration. Each iteration assigns the vessels of (S) to berths, the set S is given
by all not assigned vessels which has an arrival time less than T . The set S can contain more vessels than
the total number of available berths, in that case, we prioritize vessels with less load. After allocating the
vessels, a machine pattern is selected. After assigning all vessels of S, the value of T is updated and a
new iteration is initiated.

To show an example of the Algorithm 1, consider Figure 3.

B1

B2

...

Bn

T

BTB2
BTB1 BTBn

time

s1

s2

sn

Figure 3. Example of Heuristic 1 - Iteration 1.

Figure 3 shows three berths, B1, B2 and Bn. Each rectangle represents a vessel and its length rep-
resents the handling time. The solid rectangles are vessels treated in previous iterations, and the dotted
rectangles are vessels treated in the actual iteration. Each berth became available in the time BTBi

,
which is given by the end of the handling of previous vessels. The Step 19 of the Algorithm 1 results in
I = {B1, B2, Bn}.

In the Step 21, the best machine pattern p∗ is determined. With p∗, the values of T ∗
i ; t

∗
i and z∗ are

calculated. In this step all berths are available at the time T = maxb∈BBTb, and every machine is
available to work at any berth, therefore, we can choose any feasible machine pattern. The set of vessels
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1: Sb is the vessel schedule of Berth b ∈ B;
2: N is the set of Vessels;
3: qp,α,k is the number of machines of pattern p, type α in berth k;
4: Ti; ti; z are the allocation time, handling time, objective function value, respectively. Where i ∈ N ;
5: T ∗

i ; t
∗
i ; z

∗; p∗ are the best allocation time, handling time, objective function value and machine pattern, respectively.
Where i ∈ N ;

6: BTb is the opening time of berth b ∈ B;
7: ob ← 1 for b ∈ B, is the position of the schedule of berth b;
8: T ← minb∈B(apb

+ tpb
), is the initial time reference;

9: mBb,α is the number of machines type α in the berth b, where b ∈ B and α ∈ P ;
10: n← 0;
11: Initialize the values of T ∗

i ; z
∗;mBb,α as zero;

12: ti ← estimate handling time of the vessel i ∈ N ;
13: while n < |N | do
14: for b ∈ B do
15: if ob > |Sb| then
16: Remove the berth b of set B;
17: end if
18: end for
19: I ← {b : BTb < T, b ∈ B} ;
20: S ← {Sb(ob) : b ∈ I};
21: Find T ∗

i ; t
∗
i ; z

∗; p∗ for i ∈ S by testing the machine patterns for terminals;
22: Ordered I and S according to the value of BT in descendant order;
23: for i ∈ I do
24: T ← BTi + tS(i);
25: Find Tj ; tj ; z; p for j ∈ S and p ∈ P by selection patterns with

∑
i∈S qp,α,i ≤

∑
i∈S mBi,α ;

26: if z < z∗ then
27: z∗ ← z;
28: BTi ← TS(i) + tS(i); mBi,α ← qp,α,S(i) T

∗
j ← Tj ; t∗j ← tj ; p∗ ← p where j ∈ S.

29: end if
30: Remove S(i) from S;
31: end for
32: T ← maxb∈B{T ∗

Sb(ob)
+ t∗Sb(ob)

};
33: BTb ← T ∗

Sb(ob)
+ t∗Sb(ob)

for all b ∈ B;
34: mBb ← qp∗,α,S(i) for all b ∈ B and machine type α;
35: ob ← ob + 1 for all b ∈ I;
36: n← n+ |I|;
37: end while

Algorithm 1. Algorithm to Solve the Berth and Machine Allocation Problem

is S = {s1, s2, sn}. In the Step 22 the set S is ordered by berth time BTb in descendant order, which
is S = {s2, sn, s1}. The Step 23 begins with T = maxb∈BBTb, in the example, T = BTB2 . Then, the
vessel in B2 has its position fixed, and it is removed from S, and the values of allocation time, handling
time and machine pattern are given by T ∗

B2
, t∗B2

and p∗, respectively. In the next step, the value of T
returns to the previous position, which is T = BTBn . Figure 4 shows the second iteration of the Loop 23.

In the second iteration of loop 23, T = BTBn and S = {sn, s1}. Adding the constraint limiting
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B1

B2

...

Bn

T

TB2
TB1 TBn

time

s1

s2

sn

Figure 4. Example of Heuristic 1 - Iteration 2.

the machines of vessels s1 and sn to the sum of machines in B1 plus the machines in Bn plus the idle
machines, which is qp,s1,α + qp,sn,α ≤ mBB1,α + mBBn,α + (|Mα| −

∑
b∈B mBb) for all machine type

α to the problem. In Step 21 the best machine pattern, which does not violate the new constraint, is
selected. If the objective function value z, is better than z∗, which is z < z∗ than z∗ ← z, T ∗

s1
← Ts1 ,

t∗s1 ← ts1 , T ∗
sn ← Tsn , t∗sn ← tsn and p∗ ← p. If z ≥ z∗ or the solution is infeasible, nothing changes for

T ∗
s1
, t∗s1 , T

∗
sn , t

∗
sn and q∗. The vessel sn is fixed with the values of T ∗

sn , t
∗
sn . In the example, the value of z

is greater than the value of z∗, therefore, the vessel sn is fixed with Tsn = BTB2 , which can be seen in
Figure 5.

In the iteration 3, T = BTB1 and S = {s1}. Figure 5 shows the iteration 3.

B1

B2

...

Bn

T

BTB2
BTB1 BTBn

time

s1

s2

sn

Figure 5. Example of Heuristic 1 - Iteration 3.

The iteration 3 begins adding the constraint limiting the machines of vessel s1 to the sum of machines
in B1 plus the idle machines, which is qp,s1,α ≤ mBB1,α + (|Mα| −

∑
b∈B mBb) for all machine type

α. With that constraint and the initial berth time set to BT = TB1 the best machine pattern is selected.
In the example, z < z∗, therefore, z∗ ← z, T ∗

sn ← Tsn , t∗sn ← tsn , p∗ ← p. The value Ts1 is fixed as
Ts1 = BTB1 , s1 is removed from S and the Loop 23 ends. Figure 6 shows the final allocation of s1, s2
and sn.
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B1

B2

...

Bn

T

BTB2
BTB1 BTBn

time

s1

s2

sn

Figure 6. Example of Heuristic 1 - Final.

After the selection of the machine pattern to S, the values of BT , mB, p, and T are updated, and in
the next iteration of the main loop, T will be used to select the new group of vessels.

5. Tests and Results

The model, heuristic and FIFO has been implemented in MatLab using the commercial solver CPLEX
12.3 when needed and tested on the same set of instances. Instances generated to validate our models are
based on real data, from a small terminal with two berths, a small number of vessels, and machines to
a large multi-terminal with more than a hundred berths, vessels, and machines. Table 1 brings the data
interval of the instances of Table 2.

Table 1. Parameters interval

Parameter interval
Number of berths [2; 125]

Number of vessels [4; 600]
Types of machines [1; 3]

Mα [2; 300]
ai [1; 100]
Qi [1; 100000]
ci,α [1; 2]
di,α [2; 10]
δα [3000; 9000]
β 4

β
′

1

Experiments have been run with a time limit of 1 hour for instances with less than 4 berths and 3 hours
otherwise. The solver was able to find solutions only in some small-scale instances, but not all. As the
number of berths and vessels increases, the solver was only able to solve instances close to trivial, where
the arrival of vessels is sparse. In cases with more than 4 berths, the solver was not able to find a solution
in any instance.

Table 2 brings the results of some instances. In Table 2 the name of each case is composed by:
[number of berths] + B + [number of vessels] + N +[quantity of machine Type 1 ] + [quantity of
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machine Type 2 ] + [quantity of machine Type 3].
In Table 2 the column Case bring the instance name, all columns of Solver, Heuristic and FIFO brings

the respective results. The O.F. columns are the value of the objective function of models 1 and 2, respec-
tively, gap is the difference between the primal and the dual function obtained by the respective strategy.
The time columns are the processing time in seconds, the column Solver vs Heu is the comparison be-
tween solver and heuristic solutions and Heu vs FIFO is the comparison between heuristic and FIFO
solutions.

A negative value in column Solver vs Heu indicates a better solution of the solver over the heuristic
by the respective percentage and a negative value the otherwise, same for the column Heu vs FIFO.
The FIFO implementation needed only a few seconds for finding solutions even in large-scale instances,
therefore, the processing time was omitted in Table 2.

The instances from 2B4N54 to 3B8N735 have up to three berths, nine vessels, and 3 types of machines.
In those instances, the heuristic obtained solutions close to the optimal obtained by the solver. In 16 of
51 instances, the solutions of the heuristic and solver are the same. All heuristic solutions are at most
40% worse than the solver solution. The instance 3B5N34 has the worst result, with 40% higher value
than the solver solution. In all instances, the heuristic solution is better or equal to the FIFO solution.

The instances from 10B35N2834 to 4B50N1806 have from 4 to 10 berths, from 35 to 80 vessels and
2 types of machines. The solver found a high gap feasible solution with up to three hours of processing.
The heuristic obtained solutions better or equal than FIFO in at most 3 seconds, in one instance the
solution is up to 78% better. The FIFO and the heuristic solution have the same objective function value,
due to the arrival time of the vessels in those instances being sparse.

The instances from 8B50N30 to 125B600N300250 have from 8 to 125 berths, from 50 to 600 vessels
and 2 types of machines. The solver was unable at finding solutions after three hours of processing.
The heuristic was able to obtain better or equal solutions than FIFO in at most three seconds, only two
instances have the same solutions and the others have solutions up to 82% better.

Most of the optimal results of the small-scale instances prioritize the allocation of vessels with low
handling time, which are related to the choice of β ≥ β

′ . Choosing β ≥ β
′ prioritizes the allocation time

over handling time. If two vessels are waiting in a berth queue, the sum of the allocation time of both
vessels will be minimal by choosing to allocate the vessel with the smaller handling time first, which
leads to a better objective function. Choosing β ≥ β

′ also leads to a better occupation of the berths, since
we want to allocate the vessels early as possible, it is better to split the number of machines into different
berths to be possible to allocate the vessels early. The usage of β ≥ β

′ seems more adequate, since
choosing the β

′ ≥ β can lead to the concentration of the machines in a few berths to reduce the handling
time of the vessels. The insight obtained from the small-scale instances was used in the heuristic. The
heuristic prioritizes the allocation of vessels with less handling time in the step 22.

6. Conclusions

A mixed integer programming formulation has been presented to address the integration of the berth
allocation problem with the machine assignment problem. The model has been validated on instances
based on real data using a solver. These tests show that the problem is hardly solvable even in small



Acc
ep

ted
man

us
cri

pt

An innovative mathematical model.. 19

instances. The proposed theorem can be used to reduce the computational complexity in some instances.
As the number of berths and vessels increase, the solver was unable to find solutions, even with the
application of the theorem, due to the high computational complexity. A heuristic algorithm to efficiently
solve instances of the problem has also been presented, the heuristic is able to provide good feasible
solutions in minutes.

The solver and heuristic solutions had similar results in the small instances. On average the solver
obtained solutions 8% better than the heuristic, and both are more than 20% better than the FIFO strategy,
on average. In larger instances, the solver was unable at finding solutions and the heuristic obtains
solutions around 21% better than the FIFO strategy. The heuristic was able to solve instances with more
than 100 berths, 500 vessels, and 250 machines in three seconds. These dimensions are similar to the
biggest terminals in the world.

Data availability statement: The data that support the findings of this study are openly available in A
Mathematical Model for the Berth Allocation Problem with Variable Service Time and Continuous Time
Horizon at http://doi.org/10.17632/kdr7cn53k4.5, reference number 10.17632/kdr7cn53k4.5.
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Table 2. Tests and results

Solver Heuristic FIFO Solver Heu
Case O.F.1 gap 1 O.F.2 gap 2 time O.F. time O.F. vs Heu vs FIFO

2B4N43 23,9 0% 21,6 0% 0 24,9 0 39,8 13% -60%
2B4N44 16,5 0% 16,5 0% 0 16,5 0 16,5 0% 0%
2B4N52 119,4 0% 119,4 0% 0 125,2 0 125,2 5% 0%
2B4N54 10,5 0% 10,5 0% 0 10,5 0 11,1 0% -6%
2B4N63 43,7 0% 43,7 0% 0 43,6 0 43,6 0% 0%
2B5N27 141,4 0% 141,4 0% 1 178,7 0 194,4 21% -9%
2B5N32 181,1 0% 181,1 0% 1 181,1 0 227,0 0% -25%
2B5N86 40,0 0% 40,0 0% 0 45,9 0 45,9 13% 0%
2B6N43 81,9 0% 82,0 0% 1 88,7 0 94,7 8% -7%
2B6N53 72,1 0% 72,1 0% 1 76,8 0 86,3 6% -12%
2B6N66 72,3 0% 72,3 0% 0 72,5 0 105,4 0% -45%
2B6N75 42,8 0% 42,8 0% 1 46,3 0 46,3 7% 0%
2B8N33 534,8 0% 534,8 0% 254 565,0 0 643,8 5% -14%

2B4N272 81,8 0% 81,8 0% 0 85,8 0 147,1 5% -71%
2B4N375 86,9 0% 86,9 0% 0 86,9 0 92,7 0% -7%
2B4N432 131,7 0% 131,7 0% 0 136,5 0 138,7 4% -2%
2B4N678 100,6 0% 100,6 0% 0 101,0 0 101,0 0% 0%
2B4N714 242,4 0% 242,4 0% 0 242,4 0 296,1 0% -22%
2B5N354 53,8 0% 53,8 0% 0 63,7 0 63,7 16% 0%
2B5N363 76,2 0% 76,2 0% 0 80,0 0 80,0 5% 0%
2B5N772 78,9 0% 78,9 0% 0 84,0 0 84,0 6% 0%
2B5N837 56,6 0% 56,6 0% 0 58,6 0 148,2 3% -153%
2B6N235 143,5 0% 143,5 0% 1 160,6 0 251,9 11% -57%
2B6N455 71,8 0% 71,8 0% 0 85,2 0 89,6 16% -5%
2B6N628 221,0 0% 221,0 0% 1 231,0 0 282,9 4% -22%
2B7N256 509,3 0% 509,3 0% 6 509,3 0 657,5 0% -29%
2B7N346 130,1 0% 130,1 0% 6 137,4 0 165,7 5% -21%
2B8N237 73,0 0% 73,0 0% 1 74,6 1 74,6 2% 0%
2B8N428 592,3 0% 592,3 0% 47 592,3 0 742,5 0% -25%
2B9N476 215,5 0% 215,5 0% 368 215,5 0 319,3 0% -48%
3B4N26 56,7 0% 56,7 0% 0 56,7 0 56,7 0% 0%
3B4N34 30,4 0% 30,4 0% 0 39,8 0 39,8 24% 0%
3B4N36 27,8 0% 27,8 0% 0 28,5 0 39,6 3% -39%
3B4N55 8,8 0% 8,8 0% 0 8,8 0 20,4 0% -133%
3B4N66 31,1 0% 31,1 0% 0 31.1 0 32,5 0% -11%
3B4N72 89,1 0% 89,1 0% 0 109,3 0 160,3 18% -47%
3B4N73 64,1 0% 64,1 0% 0 64,1 0 64,1 0% 0%
3B4N86 5,6 0% 5,6 0% 0 5,6 0 15,3 0% -173%
3B5N34 20,8 0% 20,8 0% 1 34,9 0 35,5 40% -2%
3B5N35 84,6 0% 84,5 0% 10 91,1 0 91,1 7% 0%
3B5N45 62,8 0% 62,8 0% 0 85,2 0 104,9 26% -23%
3B5N57 75,4 0% 74,0 0% 18 90,8 0 95,3 19% -5%
3B6N22 216,3 0% 216,3 0% 129 228,7 0 228,7 5% 0%
3B6N37 96,6 0% 94,6 0% 8 116,5 0 116,5 19% 0%
3B6N55 68,2 0% 67,6 0% 15 74,1 0 74,1 9% 0%
3B7N43 133,0 0% 133,0 0% 8 182,4 0 182,6 27% 0%
3B7N45 112,1 0% 110,6 0% 523 164,6 0 258,9 33% -57%

3B4N433 26,0 0% 26,0 0% 1 26,0 0 27,7 0% -7%
3B4N725 81,4 0% 81,4 0% 0 86,3 0 112,0 6% -30%
3B4N832 44,1 0% 44,0 0% 0 46,8 0 59,2 6% -26%
3B5N478 42,2 0% 42,2 0% 1 44,4 0 53,9 5% -21%
3B6N457 151,5 0% 151,5 0% 3 162,3 0 205,7 7% -27%
3B8N735 272,8 0% 272,0 0% 1442 284,1 0 288,6 4% -2%

10B35N2834 360,0 97% 359,9 96% 35196 71,2 1 71,2 -405% 0%
9B55N2923 1024,8 97% 1024,8 97% 3619 449,2 1 449,2 -128% 0%
8B70N1726 892,0 99% 891,9 98% 3670 26,7 1 26,7 -3237% 0%
7B80N1520 3296,7 90% 3296,7 90% 3170 104,9 1 104,9 -3043% 0%
7B40N1221 144,2 96% 144,2 96% 3612 15,4 1 15,4 -839% 0%
6B65N1120 1477,4 99% 1477,4 99% 3688 39,5 1 39,5 -3639% 0%
5B60N1207 13180,7 95% 13180,7 95% 3626 7012,4 1 12477,5 -88% -78%
4B50N1806 570,9 98% 570,9 98% 12991 39,4 1 39,4 -1349% 0%

8B50N30 4866,5 0 8864,1 -82%
16B50N47 628,2 0 628,2 0%

20B60N5445 776,8 0 801,3 -3%
30B100N6745 565,8 1 654,4 -16%
30B100N7550 4415,3 0 6045,8 -37%
30B200N6099 575,5 1 602,0 -5%

60B300N150120 777,8 2 1057,9 -36%
125B600N300250 1622,0 3 2080,8 -28%
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