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Abstract

We prove that under the Jefferson–D’Hondt method of apportionment, given certain distributional assumptions regarding mean
rounding residuals, as well as absence of correlations between party vote shares, district sizes (in votes), and multipliers, the
seat share of each relevant party is an affine function of the aggregate vote share, the number of relevant parties, and the
mean district magnitude. We further show that the first of those assumptions follows approximately from more general ones
regarding smoothness, vanishing at the extremes, and total variation of the density of the distribution of vote shares. We also
discuss how our main result differs from the simple generalization of the single-district asymptotic seat bias formulae, and
how it can be used to derive an estimate of the natural threshold and certain properties thereof.
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1. Introduction

The Jefferson–D’Hondt method of apportionment1 was originally devised in 1792 by Thomas Jef-
ferson to apportion seats in the U.S. House of Representatives among the states [24], and later it was
proposed by a Belgian mathematician and lawyer Victor D’Hondt [8, 10]2 for use in parliamentary elec-
tions3. It calls for finding such a divisor δ that if each party i = 1, . . . , n, where n ∈ N is the number of

1The Jefferson–D’Hondt method is also known as the Hagenbach-Bischoff method, the method of greatest divisors, the
method of highest averages, and the method of rejected fractions. In Israel the method is called the Bader-Ofer method after
two members of the Knesset who proposed it in 1975: Yohanan Bader and Avraham Ofer.

2The method was also rediscovered by several authors in various contexts between 1860 and 1874, see [28, p. 6] for details.
3It is unclear whether D’Hondt knew of Jefferson’s work on the subject. James [21, p. 36] has probably been the first to

notice that the Jefferson method is equivalent to the D’Hondt method, but it appears that this finding has escaped the attention
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parties, were to be allocated as many seats si as its number of votes vi divided by δ, rounding down to the
nearest integer, i.e., if si = ⌊vi/δ⌋, no seats would remain unallocated, i.e.,

∑n
i=1 si = s, where s is the

overall number of seats. It is easy to demonstrate that – unless an electoral tie occurs – there are always
uncountably many such divisors and they always yield the same apportionment of seats.

Whether because of its relative simplicity or a bias in favor of the largest parties (who are usually set-
ting the rules), the Jefferson–D’Hondt method has attained wide popularity. It is currently employed to
allocate all or some parliamentary seats in Albania, Argentina, Aruba, Austria, Belgium, Cape Verde,
Chile, Croatia, the Czech Republic, Denmark, the Dominican Republic, East Timor, Faroe Islands,
Fiji, Finland, Greenland, Iceland, Israel, Japan, Luxembourg, Macedonia, Montenegro, the Netherlands,
Paraguay, Peru, Poland, Portugal, Săo Tome and Prı́ncipe, Serbia, Spain, Suriname, Switzerland, and
Turkey [13], and to allocate European Parliamentary seats in a majority of the EU member states, mak-
ing it one of the most popular proportional representation formulae.

Drawing on earlier works by Janson [23] and Pukelsheim [35] (see Sec. 3), Flis et al. [13] have
proposed a seat allocation formula describing, under assumptions discussed in Sec. 4, the relationship
between the seat share of the i-th party qi and the vector of aggregate electoral results (v1, . . . , vn), given
mean district magnitude m and assuming that parties are sorted degressively by the number of votes

qi =

p̂i + p̂i
n̂

2m
− 1

2m
for i ≤ n̂,

0 for i > n̂,
(1.1)

where n̂ is the number of “relevant” parties

n̂ := max

{
l = 1, . . . , n :

vl∑l
j=1 vj

>
1

2m+ l

}
, (1.2)

and p̂i is the renormalized vote share of the i-th party

p̂i :=
vi∑n̂
j=1 vj

. (1.3)

However, while they have established that (1.1) is (approximately) accurate as an empirical regularity,
they did not explain why it works. In this article, we fill that gap by proving that the seat allocation
formula (1.1) holds under its assumptions, and demonstrating how some of the latter follow from certain
more fundamental probabilistic assumptions about vote distribution in district-based elections.

In Sec. 2 we discuss the Jefferson–D’Hondt method and some of its mathematical properties. In Sec. 3
we summarize the prior work on seat bias. In Sec. 4 we formalize our main result as Theorem 1 and prove
it. In Sec. 5 we present a probabilistic model under which some of the technical assumptions appearing
in Theorem 1 are asymptotically justified. Finally, in Sec. 6 we return to the concept of party relevance,
using it to define the natural threshold of representation and derive certain properties thereof.

of the subsequent generations of scholars. As far as we are aware, Balinski and Young [1, p. 703] have been the first modern
authors to credit Jefferson with the original authorship of the method. It should be noted that the Jefferson method was enacted
into law (Act of Apr. 14, 1792, c. 23, 1 Stat. 253) and had remained in use for apportioning representatives among the states
until 1842.
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Throughout the remainder of this article, we use lowercase letters for numbers and density functions,
uppercase letters for sets, random variables, and cumulative distribution functions, and bold font for
vectors. For variables defined by aggregating over parties, the hat symbol denotes aggregation over
relevant parties only, while its absence denotes aggregation over all parties.

Notation. Let:

• n ∈ N+ be the number of parties;

• s ∈ N+ be the number of seats to be allocated;

• c ∈ N+ be the number of districts;

• mk be the magnitude of the k-th district, k = 1, . . . , c, i.e., the number of seats to be allocated in
that district; note that

∑c
k=1mk = s;

• m := s/c be the mean district magnitude;

• vi be the aggregate number of votes for the i-th party, i = 1, . . . , n; we assume that parties are
sorted degressively by the number of votes;

• vki be the number of votes for the i-th party in the k-th district; obviously, vi =
∑c

k=1 v
k
i ;

• n̂ be the number of relevant parties given by

n̂ := max

{
l = 1, . . . , n :

vl∑l
j=1 vj

>
1

2m+ l

}
; (1.4)

• wk :=
∑n

i=1 v
k
i be the number of votes cast for all parties in the k-th district;

• ŵk :=
∑n̂

i=1 v
k
i be the number of votes cast for relevant parties in the k-th district;

• v :=
∑n

i=1 vi =
∑c

k=1wk be the aggregate number of votes cast for all parties;

• v̂ :=
∑n̂

i=1 vi =
∑c

k=1 ŵk be the aggregate number of votes cast for relevant parties;

• pi := vi/v be the (non-renormalized) aggregate vote share of the i-th party;

• p̂i := vi/v̂ be the renormalized aggregate vote share of the i-th party;

• pki := vki /wk be the (non-renormalized) vote share of the i-th party in the k-th district;

• p̂ki := vki /ŵk be the renormalized vote share of the i-th party in the k-th district;

• ski be the number of seats of the i-th party in the k-th district; note that
∑n

i=1 s
k
i = mk;

• si :=
∑c

k=1 s
k
i be the total number of seats of the i-th party; note that

∑n
i=1 si = s;

• qki := ski /mk be the seat share of the i-th party in the k-th district;

• qi := si/s be the aggregate seat share of the i-th party.

Notation. Moreover, let:
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• ∆k, k ∈ N+, be a (k − 1)-dimensional unit simplex, i.e.,

∆k :=

{
x ∈ Rk

≥0 :
k∑
i=1

xi = 1

}
; (1.5)

• Glk, k, l ∈ N+, be a (k − 1)-dimensional l-grid simplex, i.e.,

Glk :=
{
x ∈ ∆k : l x ∈ Nk

}
; (1.6)

• ⟨xi⟩bi=a denote the average of xi over i = a, . . . , b, a < b ∈ N, i.e.,

⟨xi⟩bi=a :=
1

b− a+ 1

b∑
i=a

xi; (1.7)

• X↓
i denote the i-th largest element of a sequence (Xj).

2. The Jefferson–D’Hondt Method

2.1. Divisor Methods

Let i = 1, . . . , n. As in this section we focus solely on apportionment as applied to an individual district,
aggregate and district-level variables are indistinguishable, wherefore index k will be omitted.

Definition 1 (Apportionment method). An apportionment method is a partial function that maps
a vote share vector to a seat share vector, q : ∆n → Gmn .

Definition 2 (Rounding function). A rounding function is a non-decreasing function ρ : R → Z
such that |ρ(x)− x| < 1 for every x ∈ R.

Definition 3 (Divisor method of apportionment). An apportionment method q is called a di-
visor method if and only if there exists a rounding function ρ such that for every i = 1, . . . , n the seat
share of the i-th party is given by

qi = ρ(pi/δ)/m, (2.1)

where the divisor δ ∈ R+ is such that
n∑
i=1

ρ(pi/δ) = m. (2.2)

Remark 1. It is often more convenient to use an equivalent form of (2.1):

qi = ρ(piµ)/m, (2.3)

where µ := 1/δ is called the multiplier.

Proposition 1. If the rounding function ρ is right-continuous, the solution set of (2.2) is either a half-
open interval (δinf , δsup] or an empty set. Furthermore, qi does not depend on the choice of δ ∈ (δinf , δsup].
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Proof. If ρ is right-continuous, δ 7→ ρ(pi/δ) is left-continuous and non-increasing. Thus, the sum of
such functions over i ∈ {1, . . . , n}, i.e., δ 7→

∑n
i=1 ρ(pi/δ), is also left-continuous and non-increasing.

Accordingly, the preimage of every element of its codomain is necessarily either empty or an interval
(due to monotonicity) that is right-half-closed (due to left-continuity). We will denote the set of such
intervals by D. Since D is a partition of R+, each I ∈ D must also be left-half-open, as desired.

Uniqueness of qi for every divisor interval I ∈ D follows from ρ(pi/δ) being non-increasing for every
i = 1, . . . , n and every δ ∈ I , and

∑n
i=1 ρ(pi/δ) being constant over I . A sum of weakly monotonic

functions is constant if and only if all of them are constant. Thus, qi does not depend on the choice of
δ ∈ I for every i = 1, . . . , n. □

Corollary 1. If the rounding function is right-continuous, µ ∈ [µinf , µsup), where µinf := 1/δsup and
µsup := 1/δinf .

Definition 4 (Rounding thresholds). Let ρ : R → Z be a right-continuous rounding function.
For every k ∈ Z, the preimage of k under ρ is a left-half-closed interval. The sequence of rounding
thresholds of ρ is a sequence (ρk)k∈Z whose elements are given by ρk := min ρ−1(k).

Definition 5 (Electoral quotients). Let ρ be a right-continuous rounding function, and let (ρk)k∈Z
be the sequence of its rounding thresholds. The j-th electoral quotient of the i-th party, where j ∈ N+

and i = 1, . . . , n, is given by πi,j := pi/ρj .

Note that for every i = 1, . . . , n the electoral quotients form a decreasing sequence (πi,j)j∈N+ such
that for every x ∈ R+ there exist only finitely many terms satisfying πi,j > x. Let (Qk)k∈N+ be a
“merged” sequence given by Q(j−1)n+i := πi,j for every i = 1, . . . , n and every j ∈ N+. Since the
number of parties is finite, for every x ∈ R+ there exist only finitely many terms of (Qk)k∈N+ satisfying
Qk > x. Accordingly, for every l ∈ N+ there exists a (not necessarily unique) l-th largest element of
(Qk)k∈N+ .

Proposition 2. If ρ is a right-continuous rounding function, then δinf = Q↓
m+1 and δsup = Q↓

m.

Proof. By Proposition 1, it is sufficient to establish that for every k ∈ N+ and every δ ∈ R+ we have∑n
i=1 ρ(pi/δ) < k if and only if δ > Q↓

k.
We begin by showing that for every i = 1, . . . , n and every δ ∈ R+ the following equality holds:

ρ(pi/δ) = |{πi,j : j ∈ N and πi,j ≥ δ}|. (2.4)

Let ki := ρ(pi/δ). Then pi/δ ∈ ρ−1(ki). It follows that pi/δ ≥ min ρ−1(ki) = ρki , wherefore pi/ρki ≥ δ.
By the same reasoning, pi/ρki+1 < δ. Since πi,j is decreasing in j, it follows that πi,j ≥ δ if and only if
j ∈ {1, . . . , ki}.

Then from (2.4) and the definition of (Qk)k∈N+ for every δ ∈ R+ we obtain

n∑
i=1

ρ(pi/δ) =
n∑
i=1

|{πi,j : j ∈ N and πi,j ≥ δ}| = |{l ∈ N+ : Ql ≥ δ}|. (2.5)
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Fix any k ∈ N+ and any δ ∈ R+. If δ > Q↓
k, then from (2.5) it follows that

n∑
i=1

ρ(pi/δ) = |{l ∈ N+ : Ql ≥ δ}| ≤ |{l ∈ N+ : Ql > Q↓
k}| < k. (2.6)

In the other direction, fix any k ∈ N+ and any δ ∈ R+ such that
∑n

i=1 ρ(pi/δ) < k. Assume on the
contrary that δ ≤ Q↓

k. From (2.5) it then follows that

n∑
i=1

ρ(pi/δ) = |{l ∈ N+ : Ql ≤ δ}| ≥ |{l ∈ N+ : Ql ≤ Q↓
k}| ≥ k, (2.7)

contradicting the assumption that
∑n

i=1 ρ(pi/δ) < k, and thereby concluding the proof. □

Remark 2 (Electoral ties). We refer to cases where the set of solutions of (2.2) is empty as electoral
ties, although they do not necessarily involve two parties having the same number of votes.

Example 2.1. Fix n = 2, p1 = 2/3, p2 = 1/3, and m = 2, and let ρ(x) := ⌊x⌋. Then for any
δ ∈ (1/3, 2/3] we have s1 = 1, s2 = 0, wherefore

∑n
i=1 si < m. However, for δ ∈ (2/9, 1/3] we have

s1 = 2, s2 = 1, and thus
∑n

i=1 si > m. Since the left side of (2.2) is weakly decreasing in δ, we need
not check any other intervals to establish that there exists no δ ∈ R+ such that

∑n
i=1 si = m. Thus, the

election is tied.

Corollary 2. It follows from Proposition 2 that a necessary and sufficient condition for an electoral tie
to occur is Q↓

m+1 = Q↓
m. Accordingly, electoral ties are not possible if vote shares are incommensurable.

If m < w and vote counts are coprime, electoral ties are also not possible.

Remark 3 (Probability of an electoral tie – continuous models). Assume that vote shares
are drawn at random from an absolutely continuous probability distribution on ∆n. Then the set of points
for which electoral ties occur is of Lebesgue measure zero. Thus, we can treat such ties are theoretically
negligible.

Remark 4 (Probability of an electoral tie – a discrete toy model). Assume that m < w

and that vote counts are drawn independently from Unif {1, . . . , k}, where k ∈ N+. The probability
of an electoral tie occurring for some value of m is bounded from the above by the probability of vote
counts of all parties being coprime, which approaches 1/ζ(n) as k → ∞, where ζ is the Riemann zeta
function [30].

Remark 5 (Probability of an electoral tie – empirical data). In a set of 61, 416 Polish local,
regional, and national elections held under divisor rules since 1991 (with each electoral district regarded
as an individual election), only 11 electoral ties occurred. For a more general discussion of the frequency
of electoral ties, see [29]. For the reasons stated in this and the above two remarks, we do not concern
ourselves with ties in the present article.

Remark 6 (Alternative formulations). Janson [23] distinguishes three alternative but equivalent
formulations of divisor methods besides (2.1) and (2.3):



Acc
ep

ted
man

us
cri

pt

Seat Allocation and Seat Bias... 7

• iterative formulation: seats are distributed iteratively, with k-th seat being awarded to the party
with the highest comparative vote share, defined for the i-th party as vi/ρzi+1, where zi is the
number of seats already allocated to the i-th party;

• highest-quotients formulation: the number of seats of the i-th party is given by

si = |{πi,j : j ∈ N+} ∩ {Q↓
1, . . . , Q

↓
m}|; (2.8)

• quotient-separation formulation: the number of seats of the i-th party is such that the L1 norm of
the seat count vector, ∥s∥1, equals m and maxi=1,...,n πi,si+1 < mini=1,...,n πi,si .

Definition 6 (Linear divisor methods). A divisor method is linear if and only if it is induced by
a right-continuous rounding function ρ : R → Z such that the rounding thresholds are equidistant, i.e.,
there exists some β ∈ [0, 1) such that ρk = k + β for every k ∈ Z.

2.2. Jefferson–D’Hondt

The Jefferson–D’Hondt method is the most popular linear divisor method in use in political elections.
Accordingly, we will focus on it throughout the remainder of this paper. Nevertheless, the results pre-
sented in the following three sections can be easily generalized to other linear divisor methods.

Definition 7 (Jefferson–D’Hondt method). The Jefferson–D’Hondt method is a divisor method
of apportionment induced by the floor function ⌊·⌋, i.e., a function q : ∆n → Gmn such that

qi = ⌊pi/δ⌋ /m, (2.9)

for every i = 1, . . . , n, where δ ∈ R+ (a Jefferson–D’Hondt divisor) is such that

n∑
i=1

⌊pi/δ⌋ = m. (2.10)

Remark 7. It is easy to see that the Jefferson–D’Hondt method is a linear divisor method, with the k-th
rounding threshold given by ρk = k.

Remark 8. Under the original Jefferson proposal, the divisor has been fixed, while the number of seats
has been allowed to vary [2]. The mathematical properties of the method are otherwise unaltered.

Remark 9. The iterative formulation of the Jefferson–D’Hondt method was first proposed in 1888 by
Hagenbach-Bischoff [15]. It is used in legislative elections in Luxembourg, and it has been used in the
United Kingdom for the European Parliament elections before 2019.

Remark 10. The highest-quotients formulation of the Jefferson–D’Hondt method was first introduced
by D’Hondt himself [10] in 1885, and is by far the most popular among legislators and political scientists.
For instance, all EU countries employing the D’Hondt method for legislative elections – except Luxem-
bourg – employ it in their electoral legislation. Note that this formulation closely resembles an earlier
proposal by Burnitz and Varrentrapp [5], who called for a modified version of the Borda count, with each
elector ranking no more thanm candidates, ranks being translated to scores harmonically, and seats being
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awarded to m candidates with the highest scores. Should the whole electorate be divided into perfectly
disciplined partisan voting blocks, and should each block unanimously vote for the same candidates in
the same order, the Burnitz–Varrentrapp method would be equivalent to the Jefferson–D’Hondt method.

It is well known that the highest quotient formulation and the “standard” formulation (Definition 7) of
the Jefferson–D’Hondt method are equivalent, i.e., they always generate an identical allocation of seats.
For an early proof, see [12]. To check it quickly, assume κi (i = 1, . . . , n) is the number of seats awarded
to the i-th party under the highest quotient method. Clearly,

∑n
i=1 κi = m. Recall that δ ∈ (Q↓

m+1, Q
↓
m].

It follows that pi/κi ≥ Q↓
m ≥ δ > Q↓

m+1 ≥ pi/(κi + 1), and, in consequence, κi = ⌊pi/δ⌋ for every
i = 1, . . . , n, as desired.

Pukelsheim [35] defines a simple algorithm for finding a divisor given some fixed divisor initialization
δ ∈ R+:

Algorithm 1 (Jump-and-step). While
∑n

i=1 ⌊pi/δ⌋ ≠ m do:

• if
∑n

i=1 ⌊pi/δ⌋ < m, set δ ← max{pi/(⌊pi/δ⌋+ 1)};

• if
∑n

i=1 ⌊pi/δ⌋ > m, set δ ← min{pi/ ⌊pi/δ⌋}+ ε, where ε ∈ (0, 1/m).

Remark 11. Popular divisor initializations for the Jefferson–D’Hondt method include:

• the simple quota, δm := 1/m [8];

• the Hagenbach-Bischoff quota, δHBm := (⌊w/(m+ 1)⌋+ 1)/w [15];

• the Gfeller-Joachim-Pukelsheim quota, δGPm := (m+ n/2)−1 [14, 25].

For an in-depth discussion of the origins and attributions of the most popular electoral quotas, see [7].

Remark 12. Happacher and Pukelsheim [17, 18] have established the Gfeller-Joachim-Pukelsheim
quota to have the unique property of being asymptotically unbiased under the Jefferson–D’Hondt method
as the district magnitude approaches infinity.

Remark 13. The highest-quotients formulation of the D’Hondt method is informally equivalent to the
jump-and-step algorithm with divisor initialization δ = ∞. This is always the least optimal choice, as
for every possible vote share vector it requires exactly m iterations to arrive at a correct divisor.

Remark 14. Let λµ :=
∑n

i=1 ⌊piµ⌋ − m be the discrepancy of the seat allocation under multiplier
µ. The distribution of the discrepancies for the Jefferson–D’Hondt method has attracted much scholarly
interest. Happacher [16] has provided an analytical formula for the probability distribution of the discrep-
ancy under the assumption that vote shares are drawn from a uniform distribution on the unit simplex.
Janson [22, Thm. 7.5] has established that as the number of seats approaches infinity, the discrepancy
distribution approaches the Euler-Frobenius distribution. Finally, Heinrich et al. [19] have found that
the discrepancy distribution can be approximated by applying standard rounding to a sum of uniformly
distributed random variables. By the way of illustration, we plot the discrepancy distribution on the
2-dimensional standard unit simplex in Fig. 1.
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Figure 1. Disrepancy values on the unit simplex ∆n for n = 3, m = 8, and µ = m+ n/2 = 9.5. Blue, green, and red
regions represent, respectively, λµ = 0, λµ = 1, and λµ = −1.

Definition 8. The rounding residual of the i-th party under multiplier µ ∈ [µinf , µsup) is

ri(µ) := {piµ} = piµ− ⌊piµ⌋ . (2.11)

We can extend this definition for µsup:

ri(µsup) := lim
µ↗µsup

ri(µ). (2.12)

Lemma 1. For every µ ∈ [µinf , µsup) and every k = 1, . . . , n the following equality holds:

µ
k∑
i=1

pi =
k∑
i=1

si +
k∑
i=1

ri(µ). (2.13)

Proof. Recall that by (2.3) for every µ ∈ [µinf , µsup) we have si = ⌊piµ⌋. Thus, summing (2.11) over
i = 1, . . . , k we obtain

∑k
i=1 ri(µ) = µ

∑k
i=1 pi −

∑k
i=1 si, as desired. □

Corollary 3. For every µ ∈ [µinf , µsup) the following equality holds:

µ = m+
n∑
i=1

ri(µ). (2.14)
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Lemma 2. For every party i = 1, . . . , n, every k = 1, . . . , n, and every µ ∈ [µinf , µsup) the following
equality holds:

si =
pi∑k
j=1 pj

(
k∑
j=1

sj +
k∑
j=1

rj(µ)

)
− ri(µ). (2.15)

Proof. Note that for every x ∈ R+, seat allocations and rounding residuals are invariant under simul-
taneous multiplication of the vote shares by x and division of the multiplier by x. Then, (2.15) follows
immediately from Lemma 1 and (2.11). □

Recall that in (1.2) we have introduced the concept of relevant parties. Note that if the sum of seats
over relevant parties,

∑n̂
i=1 si, equals m, we can express the preceding results in terms of renormalized

vote shares, renormalized multipliers, and renormalized rounding residuals:

Definition 9 (Renormalized multipliers). For every multiplier µ ∈ R+ the corresponding renor-
malized multiplier is given by

µ̂ := µ

n̂∑
i=1

pi. (2.16)

In particular,

µ̂inf := µinf

n̂∑
i=1

pi and µ̂sup := µsup

n̂∑
i=1

pi. (2.17)

Definition 10 (Renormalized rounding residuals). For every party i = 1, . . . , n̂ its renormal-
ized rounding residual under renormalized multiplier µ̂ is given by

r̂i(µ̂) := {p̂iµ̂}. (2.18)

Observation 1. Note that for every i = 1, . . . , n̂ the following equality holds:

p̂i =
vi
ŵ

=
wpi∑n̂
j=1wpj

=
pi∑n̂
j=1 pj

. (2.19)

Observation 2. Note that for every party i = 1, . . . , n̂ we have

⌊p̂iµ̂⌋ = ⌊piµ⌋ = si (2.20)

and
r̂i(µ̂) = {p̂iµ̂} = {piµ} = ri(µ). (2.21)

Proposition 3. If
∑n̂

j=1 sj = m, (2.15) simplifies to:

si = p̂i

(
m+

n̂∑
j=1

r̂j(µ̂)

)
− r̂i(µ̂). (2.22)
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3. Prior Research on Seat Bias

It is well known that the Jefferson–D’Hondt method is biased in favor of larger parties [see, e.g., 3,
20, 27, 31, 35, 39]. Sainte-Laguë [37] was the first to quantify this effect, finding that the expected
seat bias equals log 2 − 1/2 under the assumptions that n = 2 and p2/p1 is uniformly distributed over
(0, 1). Pólya [33, 34] has employed geometric approach to calculate expected seat biases for three-party
elections, assuming instead a uniform distribution of the vector of party vote shares over the probability
simplex. This line of research has been continued by Schuster et al. [38] and Drton and Schwingen-
schlögl [11] who have obtained analytical expression for the expected seat bias of the k-th largest party
in an n-party election under the uniform distribution of the vote share vector4. However, one is frequently
interested in estimating the expected seat bias of a specific party (characterized by a given vote share)
rather than for an average k-th largest party. Moreover, the assumption about the uniform distribution is
of uncertain empirical validity.

Analytical formulae for the expected seat bias of the i-th party in single-district elections conditioned
on that party’s vote share have been proposed by Bochsler [4], Janson [23], and Pukelsheim [35]. Prima
facie, they appear identical to each other and very similar to our seat bias formula. However, despite those
similarities, they address different problems and employ different assumptions. Under the assumption
that the vote shares follow an arbitrary absolutely continuous distribution over the probability simplex,
Pukelsheim [35, Sec. 6.10] has proven that the rounding residuals converge in distribution to a vector of n
variables drawn from a uniform distribution and stochastically independent of each other and of the party
vote shares as the district magnitude approaches infinity5. Hence he has deduced [35, Sec. 7.3] that the
seat biases approach those given by (4.2) in this case. Janson [23, Thm. 3.4] has shown that for any choice
of vote shares (under the mild assumption that they are linearly independent over rationals), the expected
seat biases for the district magnitude randomly drawn from the uniform distribution on {1, . . . , η}, where
η ∈ N+, also converge to those given by (4.2) as η approaches infinity. Bochsler [4, p. 621] has obtained
the single-district expected seat bias formula by assuming that the rounding residuals are independent of
each party’s vote share and always have an expected value of 1/2.

While all three works discussed in the preceding paragraph significantly advanced our knowledge of
seat biases, they share some common limitations. The single-district formulae described by the foregoing
authors are only correct in the asymptotic sense – as the district magnitude approaches infinity6, and little
is known regarding their respective rates of convergence. Moreover, numerical simulations demonstrate
that under realistic distributional assumptions, said rates are slow enough as to render them of limited
usefulness if the district magnitude is of the order of 3 to 20, as is usually the case in real-life elections.
It is primarily in this area that we seek to advance prior knowledge by demonstrating that when seat
allocations and seat biases are summed over multiple districts, restrictive assumptions about the round-

4It should be noted that their results for the expected seat bias of the k-th largest party match exactly the results produced
by our seat bias formula when p̂i equals the expected vote share of the k-th largest party.

5The proof is a more general case of an earlier proof by Tukey [40], who has established that the rounding residuals of a
scalar variable converge in distribution to a uniform distribution on (0, 1).

6Technically, Janson treats the district magnitude as randomly drawn from a discrete uniform distribution on (0, η), with
η approaching infinity. But in such case the expected district magnitude also approaches infinity, while the value of its
cumulative distribution function at x approaches 0 for every x ∈ R+.
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ing residuals on which Bochsler, Janson, and Pukelsheim rely can be exchanged for more liberal ones,
dealing only with interdistrict averages of residuals (which converge to 1/2 far more rapidly).

While Theorem 1 is superficially similar to the the results obtained by Janson, Pukelsheim, and
Bochsler, it is not merely a generalization of the latter three to the multi-district case. Indeed, the differ-
ence is one of kind. First, under assumptions A1 to A3 formulae (4.1) and (4.2) are deterministic rather
than probabilistic. Second, if we relax assumption A1a and switch to the probabilistic model described
in Sec. 5, we still avoid the problematic assumption that m → ∞, instead providing an error bound for
arbitrarily small values of m ≥ 1.

4. The Seat Allocation Theorem

We have introduced all concepts necessary to state our main result regarding the relationship between
the seat share and the renormalized vote share for each relevant party under three assumptions: that there
exists such a selection of renormalized multipliers, one for every district, that for every relevant party
the rounding residuals average to 1/2 over all districts (A1a) and the renormalized district vote shares of
that party are not correlated with the multipliers (A1b); that all seats are distributed only among relevant
parties (A2); and that for every relevant party renormalized district vote shares are not correlated with
the numbers of votes for relevant parties (A3). Note that even if these assumptions are not satisfied, the
assertion of the theorem still holds approximately, as further discussed in the Appendix.

Throughout this section, we only deal with renormalized vote shares, renormalized multipliers, and
renormalized rounding residuals. Since there is no risk of confusion, we omit the term “renormalized.”

Theorem 1. Assume that n̂ is the number of relevant parties given by (1.2). If:

(A1) there exists a sequence (µ̂k)
c
k=1 ∈

c∏
k=1

[
µ̂kinf , µ̂

k
sup

)
such that for every party i = 1, . . . , n̂

(A1a)
〈
r̂ki (µ̂k)

〉c
k=1

= 1
2
;

(A1b) Cov (p̂i, µ̂) = 0, where p̂i := (p̂1i , . . . , p̂
c
i) and µ̂ := (µ̂1, . . . , µ̂c);

(A2)
∑n̂

i=1 s
k
i = mk for every district k = 1, . . . , c; and

(A3) Cov (p̂i, ŵ) = 0, where p̂i = (p̂1i , . . . , p̂
c
i) and ŵ := (ŵ1, . . . , ŵc), for every party i = 1, . . . , n̂;

then
qi = p̂i + p̂i

n̂

2m
− 1

2m
, (4.1)

for every i = 1, . . . , n̂, where p̂i is the renormalized vote share of the i-th party given by (1.3).

Corollary 4. Under assumptions A1-A3 the seat bias of the i-th party, σ̂i := qi− p̂i, i.e., the difference
between its seat share and its vote share, is given by7

σ̂i =
n̂

2m

(
p̂i −

1

n̂

)
. (4.2)

For the proof of Theorem 1, we need the following lemma:

7For an alternative form of (4.2), see (6.8).
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Lemma 3. Under assumptions A1-A3 the mean multiplier ⟨µ̂k⟩ck=1 = m + n̂/2, i.e., the inverse of the
Gfeller-Joachim-Pukelsheim quota (Remark 11) with non-relevant parties excluded.

Proof. By A2,
∑n̂

i=1 s
k
i = mk. Hence, from Lemma 1 and (2.21) we obtain

∑n̂
i=1 r̂

k
i (µ̂k) = µ̂k −mk.

Summing this over all districts, we arrive at

c∑
k=1

n̂∑
i=1

r̂ki (µ̂k) =
c∑

k=1

(µ̂k −mk) = c⟨µ̂k⟩ck=1 − s. (4.3)

On the other hand, from A1a it follows that
∑c

k=1 r̂
k
i (µ̂k) = c/2 for every i = 1, . . . , n̂. Therefore,

n̂∑
i=1

c∑
k=1

r̂ki (µ̂k) =
n̂∑
i=1

c

2
=
cn̂

2
. (4.4)

Accordingly,

⟨µ̂k⟩ck=1 = m+
n̂

2
, (4.5)

as desired. □

We can now proceed to the proof of Theorem 1.

Proof. Fix any i = 1, . . . , n̂. Note that by (2.18) and (2.20),

ski = p̂ki µ̂k − r̂ki (µ̂k). (4.6)

Taking a sum over all districts, we obtain

si =
c∑

k=1

(
p̂ki µ̂k − r̂ki (µ̂k)

)
=

c∑
k=1

p̂ki µ̂k −
c∑

k=1

r̂ki (µ̂k). (4.7)

From A1b and Lemma 3 it follows that
c∑

k=1

p̂ki µ̂k = c⟨p̂ki ⟩ck=1⟨µ̂k⟩ck=1 = ⟨p̂ki ⟩ck=1

(
s+

cn̂

2

)
. (4.8)

However, by A3,

⟨p̂ki ⟩ck=1 =

∑c
k=1 v

k
i∑c

k=1 ŵk
=
vi
v̂

= p̂i. (4.9)

Thus,

si = p̂i

(
s+

cn̂

2

)
−

c∑
k=1

r̂ki (µ̂k). (4.10)

Finally, by A1a, we have
∑c

k=1 r̂
k
i (µ̂k) = c/2. Substituting this into (4.10) and dividing both sides by s,

we thus arrive at the seat allocation formula (4.1):

qi = p̂i

(
1 +

n̂

2m

)
− 1

2m
= p̂i + p̂i

n̂

2m
− 1

2m
. (4.11)
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□

Observation 3. As an immediate consequence of A2, if n̂ < n, then

qi = 0 (4.12)

for every non-relevant party i = n̂+ 1, . . . , n.

5. Discussion of Assumption A1

Assumptions A2 and A3 are essentially only for the convenience of application of Theorem 1, as it can
be expressed in terms of the average renormalized district-level vote share of the i-th party,

〈
p̂ki
〉c
k=1

, and
the sum of seat shares of the non-relevant parties,

∑n
j=n̂+1 qj . Assumptions A2 and A3 would then be

superfluous, as we would obtain the following corollary:

Corollary 5. If A1, then

qi =
〈
p̂ki
〉c
k=1

(
1−

n∑
j=n̂+1

qj +
n̂

2m

)
− 1

2m
, (5.1)

for every i = 1, . . . , n̂.

The principal advantage of Theorem 1 over Corollary 5 is purely practical: in the context of most
expected applications, p̂i is known, while

〈
p̂ki
〉c
k=1

and
∑n

j=n̂+1 qj are not. However, the above makes it
clear that A2 and A3 do not give significant insight into the workings of the Jefferson–D’Hondt method.

On the other hand, assumption A1 is of fundamental importance to Theorem 1 and cannot be avoided
in a manner similar to the other ones. At the same time, it does not easily correspond to normative
intuitions about electoral systems, instead requiring some additional justification. In this section, we seek
to partially provide such a justification by demonstrating that, under a probabilistic model of elections
involving certain reasonable distributional assumptions, we can expect at least A1a to be approximately
satisfied if the number of districts is sufficiently large.

As a consequence of Lemma 2 and A2, non-relevant parties have no effect on seat allocation among
relevant parties under Theorem 1. It follows that they can be disregarded at will. Accordingly, a proba-
bilistic model of relevant parties only is sufficient for our present purposes. It follows that in this section
we need not distinguish between renormalized and non-renormalized variables.
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Let us assume that an election conforms to the following probabilistic model:

• let c ∈ N+ be the number of districts;

• let district magnitudes M1, . . . ,Mc be independent random variables identically distributed accord-
ing to some discrete probability distributionM on N+ with an expectation m ∈ [mmin,∞), where
mmin ≥ 1;

• let p := (p1, . . . , pn) ∈ ∆n be a vector of aggregate vote shares such that pi > (2m+ n)−1 for
every i = 1, . . . , n, i.e., that all parties are relevant;

• let V be an absolutely continuous probability distribution on ∆n with an expectation p and a con-
tinuously differentiable density fV vanishing at the faces of ∆n;

• let district-level vote share vectors P1, . . . ,Pc be independent random variables identically dis-
tributed according to V .

Assume further that Mk and Pk are independent for every k = 1, . . . , c.

Among the assumptions of this model, the one regarding the density of V appears most in need of an
additional justification. It comes from an empirical observation that in most elections, a relevant party
almost never comes close to winning all (or no) votes in any district. Hence, the assumption that fV
vanishes at the faces of ∆n is consistent with real-life voting patterns.

Note that by the strong law of large numbers, the average district magnitude ⟨Mk⟩ck=1

a.s.→ m, and the
average vote share vector ⟨Pk⟩ck=1

a.s.→ p as c→∞.
Let Θ be an interval-valued function of (a,b) ∈ N+ × ∆n, mapping a district magnitude a and a

vote share vector b := (b1, . . . , bn) to a multiplier interval [1/Q↓
a, 1/Q

↓
a+1), where (Qn)n∈N+ is given

by Q(j−1)n+i := bi/j for every i = 1, . . . , n and j ∈ N+. Let θ be a selection of Θ, i.e., a function
N+ ×∆n → R+ such that θ(a,b) ∈ Θ(a,b) for every (a,b) ∈ N+ ×∆n. Finally, within each district
k = 1, . . . , c, let Uk be a random variable given by Uk := θ(Mk,Pk). For A1 to hold, we need to
demonstrate that there exists such θ that E{P k

i Uk} = 1/2 and Cov(P k
i , Uk) = 0 for every i = 1, . . . , n

and every k = 1, . . . , c. This we are unable to do without further assumptions as to V . However,
using Theorem 2 below we demonstrate that regardless of the choice of θ, assumption A1a is satisfied
approximately in the limit of c → ∞. We leave the question of demonstrating that A1b is also satisfied
approximately for future work, although we note that the chequered pattern of the discrepancies on the
probability simplex (as illustrated for n = 3 by Fig. 1 above) reveals one promising avenue of approach.

Theorem 2. If:

(B1) P is a random variable with an absolutely continuous distribution supported on a subset of [0, 1]
with a continuously differentiable density fP ;

(B2) U is a random variable with a mixed discrete-continuous distribution supported on a subset of
[u,∞), where u ∈ R+, with a cumulative distribution function Ψ, density ψ, and a finite set of
probability atoms A, such that ψ(a) = 0 for every a ∈ A; and

(B3) fP (0) = 0 and fP (1) = 0;
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then ∣∣∣∣E({PU})− 1

2

∣∣∣∣ ≤ 1

12u
V (P ), (5.2)

where V (P ) :=
∫ 1

0
|f ′
P (x)| dx is the total variation of fP .

Proof. Let fP |U be the conditional density of P with respect to U and let FP |U be the conditional
cumulative distribution function of P with respect to U . Let R := {PU} and consider its conditional
distribution with respect to U . Clearly,

Pr(R ≤ x|U = y) =

⌊y⌋∑
l=0

Pr(PU ∈ [l, l + x] |U = y). (5.3)

Thus, the conditional density of R with respect to U , φR|U : [0, 1)→ R≥0, is given by

φR|U(x|y) :=
1

y

⌊y⌋∑
l=0

fP |U

(
l + x

y

∣∣∣∣ y). (5.4)

Accordingly, the unconditional density of R is given by φ : [0, 1)→ R≥0 defined as

φR(x) :=

∫ ∞

u

1

y

⌊y⌋∑
l=0

fP |U

(
l + x

y

∣∣∣∣ y) dΨ(y) . (5.5)

In consequence, the expected value of R equals

E (R) =

∫ 1

0

∫ ∞

u

x

y

⌊y⌋∑
l=0

fP |U

(
l + x

y

∣∣∣∣ y) dΨ(y) dx. (5.6)

Let us substitute z := (l + x)/y and change the order of integration and summation in (5.6) to obtain

E(R) =
∫ ∞

u

⌊y⌋∑
l=0

∫ l+1
y

l
y

yz − l
y

fP |U(z|y) y dz dΨ(y)

=

∫ ∞

u

∫ ⌊y⌋+1
y

0

yz fP |U(z|y) dz dΨ(y)−
∫ ∞

u

⌊y⌋∑
l=0

∫ l+1
y

l
y

l fP |U(z|y) dz dΨ(y)

= E(PU)−
∫ ∞

u

⌊y⌋∑
l=0

l

(
FP |U

( l + 1

y

∣∣∣ y)− FP |U

( l
y

∣∣∣ y)) dΨ(y)

= E(PU)−
∫ ∞

u

(
⌊y⌋FP |U

(⌊y⌋+ 1

y

∣∣∣ y)− ⌊y⌋∑
l=0

FP |U

( l
y

∣∣∣ y)) dΨ(y)

= E(PU)− E(⌊U⌋) +
∫ ∞

u

⌊y⌋∑
l=0

FP |U

(
l

y

∣∣∣∣ y) dΨ(y)

= E(PU)− E(⌊U⌋)− 1 +

∫ ∞

u

⌊y⌋+1∑
l=0

FP |U

(
l

y

∣∣∣∣ y) dΨ(y). (5.7)
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Let ΦP |U(l|y) := FP |U(l/y|y) for every 0 ≤ l ≤ ⌊y⌋ + 1. If ΦP |U is smooth of class C2h, h ∈ N+, from
the Euler-Maclaurin summation formula we obtain

⌊y⌋+1∑
l=0

ΦP |U(l|y) =
∫ ⌊y⌋+1

0

ΦP |U(x|y) dx+
ΦP |U(⌊y⌋+ 1| y)− ΦP |U(0|y)

2

+
h∑
j=1

B2j

(2j)!

(
Φ

(2j−1)
P |U (⌊y⌋+ 1| y)− Φ

(2j−1)
P |U (0|y)

)
+ ω2h

y , (5.8)

where, for every k = 2, . . . , h, Bk is the k-th Bernoulli number, Bk(x) is the k-th Bernoulli polynomial,
Φ

(k)
P |U is the k-th derivative of ΦP |U , and ω2h

y is an error term given by

ω2h
y := − 1

(2h)!

∫ ⌊y⌋+1

0

Φ
(2h)
P |U (x|y)B2h ({x}) dx (5.9)

[6, Corollary 9.2.3 (2)]. Note that

∣∣ω2h
y

∣∣ ≤ 1

(2h)!

∣∣∣∣ max
x∈(0,1)

B2h({x})
∣∣∣∣ ∫ ⌊y⌋+1

0

∣∣∣Φ(2h)
P |U (x|y)

∣∣∣ dx. (5.10)

Lehmer [26, Thm. 1] has shown that∣∣∣∣ max
x∈(0,1)

B2h({x})
∣∣∣∣ ≤ |B2h| =

(2h)!

(2π)2h
2ζ(2h), (5.11)

where ζ is the Riemann zeta function. Accordingly,

∣∣ω2h
y

∣∣ ≤ 2ζ(2h)

(2π)2h

∫ ⌊y⌋+1

0

∣∣∣Φ(2h)
P |U (x|y)

∣∣∣ dx. (5.12)

Substituting FP |U(l/y|y) for ΦP |U(l|y) in successive terms of (5.8) and in (5.12), we get:∫ ⌊y⌋+1

0

ΦP |U(x|y) dx =

∫ ⌊y⌋+1

0

FP |U

(x
y

∣∣∣ y) dx = y

∫ ⌊y⌋+1
y

0

FP |U(z|y) dz

= y

∫ 1

0

FP |U(z|y) dz + y

∫ ⌊y⌋+1
y

1

FP |U(z|y) dz

= y
(
1− E(P |U = y)

)
+ (⌊y⌋+ 1− y), (5.13)

ΦP |U(⌊y⌋+ 1| y)− ΦP |U(0|y)
2

=
1

2
FP |U

(
⌊y⌋+ 1

y

∣∣∣∣ y) =
1

2
, (5.14)

Φ
(j)
P |U(x|y) = y−jF

(j)
P |U

(x
y

∣∣∣ y) for every j = 1, . . . , 2h. (5.15)
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Therefore,

⌊y⌋+1∑
l=0

FP |U

(
l

y

∣∣∣∣ y) = ⌊y⌋ − yE(P |U = y) +
3

2

+
h∑
j=1

B2jy
−(2j−1)

(2j)!

(
F

(2j−1)
P |U

(
⌊y⌋+ 1

y

∣∣∣∣ y)− F (2j−1)
P |U (0|y)

)
+ ω2h

y , (5.16)

where ∣∣ω2h
y

∣∣ ≤ 2yζ(2h)

(2πy)2h

∫ ⌊y⌋+1
y

0

∣∣∣F (2h)
P |U (z|y)

∣∣∣ dz. (5.17)

By B3 for h = 1 we obtain

h∑
j=1

B2jy
−(2j−1)

(2j)!

(
F

(2j−1)
P |U

(
⌊y⌋+ 1

y

∣∣∣∣ y)− F (2j−1)
P |U (0|y)

)∣∣∣∣∣
h=1

=
B2

2y

(
fP |U

(
⌊y⌋+ 1

y

∣∣∣∣ y)− fP |U(0|y)
)

= 0. (5.18)

Therefore,
⌊y⌋+1∑
l=0

FP |U

(
l

y

∣∣∣∣ y)
∣∣∣∣∣∣
h=1

= ⌊y⌋ − yE(P |U = y) +
3

2
+ ω2

y, (5.19)

where ∣∣ω2
y

∣∣ ≤ 2yζ(2)

(2πy)2

∫ ⌊y⌋+1
y

0

∣∣∣F (2)
P |U(z|y)

∣∣∣ dz = 1

12y

∫ 1

0

∣∣f ′
P |U(z|y)

∣∣ dz. (5.20)

By incorporating the foregoing result into (5.7) we obtain

E(R) = E(PU)− E(⌊U⌋)− 1 +

∫ ∞

u

(
⌊y⌋ − yE(P |U = y) +

3

2
+ ω2

y

)
dΨ(y)

= E(PU)− E(⌊U⌋)− 1 + E(⌊U⌋)− E(PU) +
3

2
+ E(ω2

U) =
1

2
+ E(ω2

U). (5.21)

Thus we arrive at ∣∣∣∣E(R)− 1

2

∣∣∣∣ ≤ E
(

1

12U

∫ 1

0

∣∣f ′
P |U(z|U)

∣∣ dz), (5.22)

where
∫ 1

0
|f ′
P |U(z|U)| dz is the total variation of fP |U . Since U ≥ u, it follows that∣∣∣∣E (R)− 1

2

∣∣∣∣ ≤ 1

12u
E
(∫ 1

0

∣∣f ′
P |U(z|U)

∣∣ dz). (5.23)

For y ∈ suppψ, we have

f ′
P |U(z|y) =

∂

∂z

fP,U(z, y)

ψ(y)
=

1

ψ(y)

∂

∂z
fP,U(z, y), (5.24)



Acc
ep

ted
man

us
cri

pt

Seat Allocation and Seat Bias... 19

where fP,U is the joint density of P and U , and∫
suppψ

∫ 1

0

∣∣f ′
P |U(z|y)

∣∣ dz dΨ(y) =

∫ ∞

u

ψ(y)

ψ(y)

∫ 1

0

∣∣∣∣ ∂∂zfP,U(z, y)
∣∣∣∣ dz dy

=

∫ 1

0

∫ ∞

u

∣∣∣∣ ∂∂zfP,U(z, y)
∣∣∣∣ dy dz

=

∫ 1

0

|f ′
P (z)| dz = V (P ). (5.25)

On the other hand, for y ∈ A, we have

f ′
P |U(z|y) =

∂

∂z

fP,U(z, y)

Pr(U = y)
=

1

Pr(U = y)

∂

∂z
fP,U(z, y), (5.26)

and ∫
A

∫ 1

0

∣∣f ′
P |U(z|y)

∣∣ dz dΨ(y) =
∑
y∈A

Pr (U = y)

Pr (U = y)

∫ 1

0

∣∣∣∣ ∂∂zfP,U(z, y)
∣∣∣∣ dz

=

∫ 1

0

∑
y∈A

∣∣∣∣ ∂∂zfP,U(z, y)
∣∣∣∣ dz

=

∫ 1

0

|f ′
P (z)| dz = V (P ). (5.27)

Accordingly,

E
(∫ 1

0

∣∣f ′
P |U(z|U)

∣∣ dz) = V (P ), (5.28)

and thus ∣∣∣∣E(R)− 1

2

∣∣∣∣ ≤ 1

12u
V (P ), (5.29)

as desired. □

Under the probabilistic model of elections described above, let P k
i , k = 1, . . . , c, be the i-th barycen-

tric coordinate of Pk (i.e., the vote share of the i-th party). Since Pk has a continuously differentiable
density vanishing at the faces of ∆n, it follows that for every i = 1, . . . , n the density of P k

i is also
continuously differentiable and vanishes at 0 and 1. Thus, we can equate P k

i with P in Theorem 2, as it
satisfies B1 and B3. To satisfy B2, fix an arbitrarily small ε > 0 and a selection θ given by:

θ(a,b) :=


a+ n/2 for a+ n/2 ∈ Θ(a,b),

inf Θ(a,b) for a+ n/2 < inf Θ(a,b),

supΘ(a,b)− ε for supΘ(a,b) ≤ a+ n/2.

(5.30)

Note that Uk defined as θ(Mk,Pk) is absolutely continuous over [Mk,∞)\{Mk+n/2}, and has a single
probability atom at Mk + n/2, thus satisfying B2.

It follows from Theorem 2 that
∣∣E({P k

i Uk})− 1
2

∣∣ is bounded from the above by 1
12
M−1

k V (P k
i ). Since

P1, . . . ,Pc are identically distributed, and so are M1, . . . ,Mc, from the strong law of large numbers it
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then follows that 〈∣∣∣∣{P k
i Uk} −

1

2

∣∣∣∣〉c
k=1

a.s.→
∣∣∣∣E({P l

iUl})−
1

2

∣∣∣∣ ≤ 1

12
E(M−1

l )V (P l
i ) (5.31)

for every l = 1, . . . , c.

Remark 15. If the distribution of Pl is unimodal, the total variation of P l
i equals twice the value of its

marginal density, fP l
i
(x), at its mode, i.e., V (P l

i ) = 2fP l
i
(maxx∈(0,1) fP l

i
(x)) for every i = 1, . . . , n.

For vote distributions encountered in real-life elections, V (P l
i ) rarely exceeds 3. Meanwhile, for

typical district magnitudes, E(M−1
l ) ≤ 1/5. Thus, 1

12
E(M−1

l )V (P l
i ) ≤ 1/20, ensuring that A1a is

satisfied approximately in the limit of c→∞.

6. Relevant Parties and Natural Thresholds

Note that formulae (4.1) and (4.2) can only be applied to relevant parties. This restriction is connected to
another important consequence of the Jefferson–D’Hondt method, namely the existence of a threshold of
representation, i.e., such τ ∈ (0, 1) that pi < τ implies qi = 0. To distinguish it from statutory thresholds
which are present in some electoral systems, and which operate independently of the Jefferson–D’Hondt
method, threshold τ is frequently referred to as the natural threshold.

At a district level, the natural threshold follows from Definition 7. To see how, recall that by (2.9),
ski =

⌊
pki µk

⌋
. Hence, it is evident that if pki ≤ 1/µksup, then ski , and thus also qki , must necessarily be

0. But 1/µksup = (Qk)↓m+1 depends on the vector of vote shares. It would be useful to have an estimate
of the natural threshold that depends only on n and mk. Several authors [see, e.g., 9, 32, 36] have
provided estimates of the lower and upper bounds of the interval in which the natural threshold must fall,
known respectively as the threshold of inclusion τ−k := (n +mk − 1)−1 and the threshold of exclusion
τ+k := (mk + 1)−1. Those can be used to estimate the aggregate thresholds of exclusion / inclusion, viz.

τ+ :=
c∑

k=1

1

mk + 1

vk
v
, (6.1)

and
τ− :=

1

n+mmin − 1

vmin

v
, (6.2)

where mmin and vmin are, respectively, the number of seats and the number of votes cast for all parties in
the district with the fewest seats, and, if there are multiple such districts, in the one with the fewest votes.

Once we posit that the relation between renormalized vote shares and seat shares is to satisfy (1.1), it
is clear that the renormalized vote shares cannot be arbitrarily small. In particular, as qi is by definition
non-negative, it is necessary that

p̂i

(
1 +

n̂

2m

)
≥ 1

2m
. (6.3)

By transforming it, we arrive at the following condition:
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Condition 1. If we require that qi > 0, it is necessary that

p̂i >
1

2m+ n̂
, (6.4)

where 1/(2m+ n̂) is the threshold of relevance, denoted by t.

Note that Condition 1 is equivalent to the condition for relevance in (1.2), i.e., the i-th party is relevant if
and only if it satisfies (6.4). It can also be demonstrated that even if we were to modify the definition of
n̂, parties which do not satisfy (6.4) would not obtain positive seat shares:

Observation 4. Fix any τ ∗ ∈ [0, 1), and let Π∗ := {i = 1, . . . , n : pi > τ ∗}. Note that

q∗i :=
vi∑
j∈Π∗ vj

(
1 +
|Π∗|
2m

)
− 1

2m
(6.5)

is positive for every i ∈ Π∗ and every p := (p1, . . . , pn) ∈ ∆n if and only if Π∗ \ {1, . . . , n̂} = ∅.

Remark 16. Condition 1 can also be expressed in equivalent terms of potential interest to some readers:

n̂ >

∑n̂
j=1 vj

vi
− 2m, (6.6)

2m >
n̂∑
j=1

vj − vi
vi

. (6.7)

Remark 17. The threshold of relevance can be used to express (4.1) in yet another form:

qi =
1

2mt
(p̂i − t), (6.8)

which demonstrates that the seat shares are proportional not to the renormalized vote shares, but only to
their excess over the threshold of relevance.

Remark 18. Note that for the single-district case (m = s), our definition of the threshold of relevance
is in accord with the earlier findings about the thresholds of exclusion and inclusion. It is easy to show
that (4.1) gives at least 1/2 seat for a party fulfilling pi > (m + 1)−1 ≥ (2m + n)−1, and at most
1
2
(m + 1)/(n + m − 1) ≤ 1/2 for a party satisfying p̂i < (n + m − 1)−1, though the latter is not

necessarily non-relevant, as it cannot be ruled out that t(
∑n̂

j=1 p̂j) < (n + m − 1)−1. Given that seats
are integer, a party exceeding the threshold of exclusion is guaranteed to obtain at least one, and a party
below the threshold of inclusion is guaranteed to obtain none.

Remark 19. Note that τ− is approximately of the order of s−1. However, from (1.1) we obtain:

qi|p̂i=1/s > 0 if and only if
n̂

2m
≥ s− 1, (6.9)

which is a rather unrealistic condition, as even for m = 1 that would require the number of relevant
parties to be at least twice the number of districts minus 2. Thus, the aggregate threshold of inclusion is
usually lower than the threshold of relevance, demonstrating that A2 is not redundant.
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Remark 20. To the extent (1.1) is an approximation of the seat allocation under the Jefferson–D’Hondt
method, the threshold of relevance is an estimate of the aggregate natural threshold.

6.1. Continuity of threshold effects

Given the discreteness of the number of relevant parties, one could prima facie expect that if p changes
so that a previously non-relevant party’s vote share exceeds the threshold of relevance or a previously
relevant party’s vote share no longer does, the number of seats for every other party would change dis-
continuously. This would obviously constitute a significant obstacle to applying Theorem 1 to estimate
seat allocations under circumstances where p1, . . . , pn are known only approximately (for instance, ob-
tained from opinion polls) and some parties are in the vicinity of the natural threshold. Fortunately, this
is not the case:

Proposition 4. For every k < n if the first k parties are relevant, then (p1, . . . , pk+1) 7→ (q1, . . . , qk+1)

is continuous in pk+1 throughout [0, pk].

Proof. Let t′ := (2m + k + 1)−1 and p′ := t′

1−t′
∑k

j=1 pj . Note that p′ = t′
(∑k

j=1 pj + p′
)

and that
the (k + 1)-th party is relevant if and only if pk+1 > p′.

Fix p1, . . . , pk and let pk+1 = p ∈ [0, pk] be variable. For p ≤ p′ we have

qi
∣∣
pk+1=p

=


2m+ k

2m

pi∑k
j=1 pj

− 1

2m
for i = 1, . . . , k,

0 for i = k + 1, . . . , n.

(6.10)

On the other hand, for p > p′ and i = 1, . . . , k, k + 1 we obtain

qi
∣∣
pk+1=p

=
2m+ k + 1

2m

pi

p+
∑k

j=1 pj
− 1

2m
. (6.11)

Thus, we only need to consider the case of p↘ p′. For i = 1, . . . , k we have

lim
p↘ p′

qi
∣∣
pk+1=p

=
2m+ k + 1

2m

pi

p′ +
∑k

j=1 pj
− 1

2m
(6.12)

=
pi

2mp′
− 1

2m
=

1− t′

2mt′
pi∑k
j=1 pj

− 1

2m
(6.13)

=
2m+ k

2m

pi∑k
j=1 pj

− 1

2m
, (6.14)

and for i = k + 1 we obtain

lim
p↘ p′

qi
∣∣
pk+1=p

=
p′

2mp′
− 1

2m
= 0, (6.15)

as desired. □
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[10] D’Hondt, V. Exposé Du Système Pratique de Représentation Proportionnelle. Adopté Par Le Comité de l’Association Réformiste
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[28] Mora Giné, X. La regla de Jefferson – d’Hondt i les seves alternatives. Materials matemàtics 2013 (2013), 1–34.
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Appendix. Approximation Errors in the Seat Allocation
Formula

Theorem 1 is very much akin to many theorems appearing in other branches of applied mathematics, like
mathematical statistics, in that most of its assumptions, especially A1 and A3, are idealizations which we
would not expect to be satisfied with empirical data. We can, however, quantify both deviations from the
assumptions, and the relationship between those deviations and errors in (1.1).

Assume that A1 to A3 are not satisfied. In that case, (4.7) still holds, so the error in (1.1) can be
expressed as:

εi := p̂i

(
1 +

n̂

2m

)
− 1

2m
− qi = (6.16)

=

(
p̂i + p̂i

n̂

2m
− 1

2m

)
− 1

s

(
c∑

k=1

p̂ki µ̂k −
c∑

k=1

r̂ki (µ̂k)

)
. (6.17)

To simplify further analysis, we decompose that error into two components: εi = εAi + εBi , where

εAi :=
1

m

(
p̂i

(
m+

n̂

2

)
−
〈
p̂ki µ̂k

〉c
k=1

)
, (6.18)

εBi :=
1

m

(〈
r̂ki (µ̂k)

〉c
k=1
− 1

2

)
. (6.19)

Note that 〈
p̂ki µ̂k

〉c
k=1

=
〈
p̂ki

〉c
k=1

〈
µ̂k

〉c
k=1

+ Cov
(
p̂ki , µ̂k

)
, (6.20)

and that 〈
p̂ki

〉c
k=1

〈
ŵk

〉c
k=1

=
〈
p̂ki ŵk

〉c
k=1
− Cov

(
p̂ki , ŵk

)
, (6.21)

whence 〈
p̂ki

〉c
k=1

= p̂i − Cov

(
p̂ki ,

ŵk
ŵ

)
, (6.22)

where ŵ := ⟨ŵk⟩ck=1 = v̂/c. By incorporating (6.22) and (6.20) into (6.18), from Corollary 3 we obtain

εAi =
1

m

(
p̂i

(
m+

n̂

2
−
〈
µ̂k

〉c
k=1

)
+
〈
µ̂k

〉c
k=1

Cov

(
p̂ki ,

ŵk
ŵ

)
− Cov

(
p̂ki , µ̂k

))
= (6.23)

1

m

(
p̂i

(
n̂

2
− 1

c

c∑
k=1

n̂∑
j=1

r̂kj (µ̂k)

)
+
〈
µ̂k

〉c
k=1

Cov

(
p̂ki ,

ŵk
ŵ

)
− Cov

(
p̂ki , µ̂k

))
, (6.24)
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which can be again disaggregated into two components, εAi = εCi + εDi , where:

εCi =
p̂i
m

(
n̂

2
− 1

c

c∑
k=1

n̂∑
j=1

r̂kj (µ̂k)

)
, (6.25)

and

εDi =
⟨µ̂k⟩ck=1

m
Cov

(
p̂ki ,

ŵk
ŵ

)
− Cov

(
p̂ki ,

µ̂k
m

)
= (6.26)

=
⟨µ̂k⟩ck=1

m
Cov

(
p̂ki ,

ŵk
ŵ
− µ̂k
⟨µ̂k⟩ck=1

)
. (6.27)

.
The three basic error components thus derived, εBi , εCi , and εDi , each have a natural interpretation in

terms of the assumptions of Theorem 1: εDi depends on deviations from A1b and A3, while the former
two depend on deviations from A1a (per-party in the case of εBi and aggregate in the case of εCi ).

To approximate the magnitude of the approximation errors in seat allocation formula occasioned by
deviations from the assumptions, we will consider two cases. First, we will estimate upper error bounds
for the typical case, which is also the intended use-case for Theorem 1, viz., a system with multi-member
districts, i.e.,m≫ 1. We note that real-life values ofm in countries using the Jefferson–D’Hondt method
for parliamentary elections vary between 6 and 200, with most of the distribution concentrated between
10 and 20.

We can use Theorem 2 to approximate the upper bounds for the absolute values of εBi and εCi . By
(5.31), we have ∣∣∣∣12 − r̂ki (µ̂k)

∣∣∣∣ ≤ 1

12

〈
m−1
k

〉c
k=1

V (P̂i), (6.28)

where V (P̂i) is the total variation of the probability distribution fitted to {p̂1i , . . . , p̂ki }. If, as we can safely
assume from the available empirical data, the distribution of district magnitudes can be approximated by
a Poisson distribution, i.e., we can think ofm1, . . . ,mc as k independent realizations of a random variable
M − 1, where M ∼ Pois(λ) and λ = m− 1. Thus,

E(M−1) =
∞∑
j=0

1

j + 1

λke−λ

j!
=

1− e−λ

λ
< λ−1. (6.29)

As λ = m− 1, we then obtain from (6.19)∣∣εBi ∣∣ ≤ 1

12m(m− 1)
V (P̂i), (6.30)

and by (6.25) ∣∣εCi ∣∣ ≤ n̂

12s(m− 1)
max
i=1,...,n̂

V (P̂i). (6.31)

If, as it is likely in real-life data, m > V (P̂i) and m > n̂, both error terms are on the order of magnitude
of m−2.

On the other hand, the above reasoning fails if m is small. Thus, let us consider the worst case – that
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of single-member districts, i.e., m = 1. Then,∣∣εBi ∣∣ ≤ 1

12
V (P̂i), (6.32)

and ∣∣εCi ∣∣ ≤ n̂

12c
max
i=1,...,n̂

V (P̂i). (6.33)

Since usually c≫ n̂, the first error component, εBi , predominates, and its magnitude depends on the total
variation of the vote share distribution, which tends to decrease with the average vote share. Still, the
error bounds are much less optimistic than in the multi-district case, suggesting that Theorem 1 is likely
to provide a rougher approximation.

The last error component, εDi , cannot be estimated purely mathematically, as it depends on deviations
from A1b and A3. However, as the multipliers, µ1, . . . , µc, tend to be correlated with district magnitudes,
m1, . . . ,mc, and as in real-life electoral systems the latter are in turn highly correlated with the number
of voters, w1, . . . , wc (to preserve the principle of equality for individual voters), the two components of
εDi will in practice tend to cancel each other out. As is the case with εBi and εCi , the error bounds are
smaller for larger values of m.
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