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Abstract

We estimate and compare a deterministic production frontier to a production frontier estimated using stochastic methods. This
comparison is illustrated by estimation of the Lerner index of monopoly power for a public sector producer. The Lerner index
estimates the percentage mark-up of price over marginal cost. For the deterministic method we use bootstrapping methods
to construct confidence intervals for the Lerner index and its price and marginal cost components. Marginal cost estimates
are derived from a translog cost function. Since market prices are usually not observed for public sector producers or are
distorted because of subsidies, we use duality theory and derive price from observed costs and an estimated translog input
distance function. Data from German public theaters’ production of performances to attract spectators using artistic staff,
administrative staff and operating expenditures are used as an example. We find no evidence of monopoly power.
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1. Introduction

Aigner and Chu [1] (hereafter AC) pioneered a deterministic method of estimating a frontier production
technology and in turn, numerous researchers have used AC to estimate production efficiency, produc-
tivity growth, and to recover shadow prices of nonmarket services. Given a set of producers, the AC
minimizes the summed log distances of observed input/output vectors for all producers to a best-practice
production frontier. The AC uses linear programming and can easily incorporate production theoretical
constraints such as monotonicity and feasibility. Unlike DEA (Data Envelopment Analysis-[8]) which
constrains the technology to be piecewise linear, the AC allows the researcher to specify a function like
the translog or quadratic which allow a second-order representation of the technology.
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The classic paper by Nishimizu and Page [28] used AC to decompose productivity growth into ef-
ficiency change (catching up to a frontier) and technological change (shifts in the frontier). An early
survey by Coelli [10] on agricultural production identified eleven studies using AC. Other researchers
used AC to evaluate producer efficiency and productivity when undesirable outputs are joint by-products
of desirable goods’ production. Joint production has been applied to the production of pollution and for
risk incurred by banks and other financial service producers in producing a portfolio of financial services.
Färe, Grosskopf, and Weber [18] studied the environmental costs of pesticide use in US agriculture and
estimated that pesticide leaching and runoff into ground and surface water cost about 6% of agricul-
tural revenues. Färe, Grosskopf, and Weber [19] used AC to estimate shadow prices for the desirable
environmental services derived from conservation lands. Bostian and Herlihy [6] examined the effects
of agricultural productivity on wetland conditions and found that higher agricultural productivity re-
duced wetland health through greater channelization, greater runoff of agricultural chemicals, and poorer
drainage. In the US, the New Madrid Floodway helps reduce water levels in the lower Mississippi River
basin during high water events. The Floodway has been a source of conflict between the US Army Corps
of Engineers who proposed a levee to augment agricultural production and environmental interests who
want to maintain wetlands. Weber [37] used AC and estimated a quadratic directional distance function
to examine the trade-off between agricultural production and wetland services and found that the Corps’
proposal to build a levee would have reduced wetland services of 31 thousand acres by a range of $61 to
$106 million. Cross, Färe, Grosskopf, and Weber [11] valued the characteristics of vineyard using AC.

Färe, Grosskopf, Noh and Weber [21] used AC and estimated the efficiency of US electric utilities
using a directional output distance function and derived estimates of the environmental costs of sulfur
dioxide emissions due to fossil fuel usage. In a study of Swedish power plants, Bonilla, Coria, and
Sterner [5] used AC to estimate a directional output distance function to study the trade-offs between
power production and emissions of carbon dioxide and nitrogen oxides. Their findings indicated that
reductions in emissions were primarily driven by Swedish national policies rather than local emission
standards.

Joint production of desirable and undesirable by-products has also been studied for financial services’
producers using the AC method. Fukuyama and Weber [22, 24, 39] estimated directional output distance
functions for Japanese banks and used these estimates to derive the shadow price of nonperforming
loans which are jointly produced along with performing loans and securities investments. Using the
same methods, Fukyuama and Weber [23] estimated shadow prices for nonperforming loans for Japanese
Shinkin banks and other regional banks and found that the relatively low shadow price for nonperforming
loans was driven by the low interest rate environment in Japan during 2001-2004. Färe, Fukuyama,
Grosskopf and Weber [15] used AC to measure efficiency in price space for Japanese securities firms and
found that securities firms could significantly enhance revenues by increasing prices. Devaney, Morillon,
and Weber [12] estimated a directional output distance function for US mutual funds and found that if
mutual funds were to operate on the production frontier they could reduce risk and increase returns by
about 3.2%. Furthermore, after projecting mutual fund risk and return to the frontier, they found that
mutual funds should take less risk to be consistent with the capital market line.

Two other studies used AC measure producer performance in education and knowledge production.
Färe, Grosskopf and Weber [20] estimated a budget constrained output distance function to price the
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non-marketed outputs of community colleges, specifically associates degrees, certificates and full-time
equivalent students. Weber [16, 38] constructed a network model of knowledge production where univer-
sities produced scientific publications, patents, and Ph.D. students in nanobiotechnology disciplines. The
network model included past scientific publications as an intermediate product and a directional output
distance function was used to estimate producer efficiency and the shadow prices of the scientific outputs.

Although AC has widely used, the estimates attribute all producer deviation from the frontier technol-
ogy as inefficiency, when some of this deviation might be due to randomness or mis-measured outputs
and inputs. Thus, much of the research has either not investigated the statistical properties of the estima-
tors or has generally performed only nonparametric tests of hypotheses. Here we use the AC to estimate
the Lerner index for a group of German public theaters. Two bootstraps are employed to recover 95%
confidence intervals of the test statistic using the mean output/input vector as the point of approximation.
Estimates of the Lerner index using AC are also compared to estimates from Stochastic Frontier Analysis
[32] which allows for random error, shocks, or measurement error.

The Lerner index of monopoly power equals the markup of price over marginal cost as a proportion
of price [27]. When firms produce multiple outputs, a theoretically consistent aggregate Lerner index
can be derived from the individual output Lerner indexes ([17]. When resources are allocated efficiently,
such as would occur in a competitive market, price equals marginal cost and the Lerner index equals zero.
Higher values of the index indicate greater monopoly power.

Much research has been devoted to examining the efficiency of public sector producers. Tiebout’s [35]
pioneering work showed that local public goods’ producers are constrained by citizen voters who “vote
with their feet” if the allocation of public resources is too far from their most preferred level. In contrast,
Caplan [7] argued that even if citizen voters can move freely, bureaucrats in municipalities can still earn
monopoly rents when local property taxes are capitalized in land, so that movers pay for monopoly power
through lower sales prices of their land. Niskanen [29] showed that the lack of a profit motive can cause
bureaucrats to pursue their own perquisites, one of which might be the largest possible budget. Wagner
and Weber [36] examined the effects of government consolidation of overlapping services on market
power. Overlapping occurs when separate services are provided by different governments, such as when
education is provided by an independent school district and police and fire protection are provided by
a municipality. Their empirical findings suggested that although consolidation can reduce costs, it also
lessens the choices available to citizens as it allows the consolidated government to compel citizens
to purchase the full line of government services, which increases the monopoly power of government
bureaucrats.

When studying private producers, researchers can compare observed market prices with marginal
costs estimates derived from a cost function. However, market prices are often unavailable or biased for
public sector producers who give away their products or offer subsidies. In this case Färe, Grosskopf and
Margaritis [17], exploited the duality theory of Färe and Primont [13] and showed that price(s) can be
recovered from an underlying production technology represented by an input distance function.

We estimate price and marginal cost from a translog input distance function and a translog cost func-
tion using AC and stochastic frontier analysis (SFA). The translog form allows for second order effects
of inputs and outputs on the technology rather than the piecewise linear representation of the technology
as in DEA. The non-convex free disposal hull representation of the technology was shown to be a con-
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sistent maximum likelihood estimator by Korostelev, Simar and Tsybakov [25] and these results were
extended to the DEA estimator by Korostelev, Simar and Tsybakov [26]. One problem with the original
formulation of AC is that the estimators have no statistical properties. Schmidt [31] showed that the AC
linear programming estimator is a maximum likelihood estimator when the distribution of inefficiency
is exponential and that Ordinary Least Squares could be used to recover unbiased estimates of the slope
coefficients of a production function, but not the intercept. However, in conclusion he claimed that the
“statistical properties of the estimators remain uncertain[31](p. 239).”

Since the original AC estimator is deterministic, we apply two different bootstraps to construct con-
fidence intervals for the Lerner index: the Simar and Wilson [33] bootstrap and the Simar and Wilson
[34] m out of n bootstrap suggested by Amsler et al. [2] in their study of the AC method. Our empirical
example uses production and cost data for German public theaters to recover spectator prices to perfor-
mances, the marginal cost of an additional spectator, and the resulting Lerner index for each estimation
method. The findings from the two bootstraps using AC and from SFA are consistent and indicate that
German theaters exert no monopoly power.

2. Theory

We follow Färe, Grosskopf and Margaritis [17] and extend the example of Bishop, Färe, Grosskopf,
Hayes, Weber and Wetzel [4] for German public theaters. Let y ∈ R+ represent a single output1 which
is produced from x ∈ RN

+ variable inputs and z ∈ RJ
+ fixed inputs. The prices of the variable inputs are

w ∈ RN
+ .

Given fixed inputs, z, the input requirement set is

L(y, z) = {x : (x, z) can produce y}. (1)

This set consists of the variable inputs that, when combined with the fixed inputs z can produce the
outputs y.2 Given L(y, z) and w, the cost function is defined as

C(y, w, z) = min
x

{wx : x ∈ L(y, z)}. (2)

The cost function is non-negative, linearly homogeneous in input prices, w, and nondecreasing in w and
y. These conditions are

(i) C(y, γw, z) = γC(y, w, z),

(ii) C(y, w′, z) ≥ C(y, w, z) for w′ ≥ w,

(iii) (C(y′, w, z) ≥ C(y, w, z) for y′ ≥ y. (3)

1The single output case can be easily extended to multiple outputs as in Bishop et al. [4].
2For an axiomatic representation of L(y) see eg., Färe and Primont [13], p. 129.
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The Lerner index of monopoly power is

L =
p− dC(y, w, z)/dy

p

L =
p−MC

p
, (4)

where p is the output price and dC(y, w, z)/dy =MC is the marginal cost of producing y. Under perfect
competition p =MC and L = 0.

Next, we seek a means to recover price when it is unavailable or biased due to subsidies, as is the case
with many public sector outputs, including public theaters. Here we rely on the input distance function
which is

Di(y, x, z) = max
λ

{λ : (x/λ) ∈ L(y, z)}. (5)

The distance function Di(y, x, z) measures the maximum proportional contraction of variable inputs x
such that those inputs can still produce output y given fixed inputs z. This distance function and the input
requirement set are related in that

x ∈ L(y, z) if and only if Di(y, x, z) ≥ 1. (6)

When production occurs on the frontier of L(y, z), the distance function takes its minimum,Di(y, x, z) =

1. The distance function is linearly homogeneous in x,

Di(y, γx, z) = γDi(y, x, z) (7)

and has monotonicity conditions for x and y such that

Di(y, x
′, z) ≥ Di(y, x, z), x

′ ≥ x,

Di(y
′, x, z) ≤ Di(y, x, z), y

′ ≥ y. (8)

Following Färe and Primont [13] and recent work by Färe, Grosskopf and Margaritis [17], the profit
function can be written as

π(w, p, z) = max
x,y

py − wx

Di(y, x, z)
. (9)

The first-order condition associated with (9) is

∂π(w, p, z)

∂y
= p+

wx

Di(y, x, z)2
∂Di(y, x, z)

∂y
= 0. (10)

Rearranging (10) yields the pricing formula:

p = − wx

Di(y, x, z)2
∂Di(y, x, z)

∂y
. (11)
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2.1. Translog Functional Form

Our data comprise an unbalanced panel of public theaters offering performances during 14 theatrical
seasons. Our model includes N = 3 variable inputs, M = 1 output, J = 2 fixed inputs, and indicator
variables DTt for each theatrical season. The cost function is homogeneous of degree +1 in input prices
and the input distance function is homogeneous of degree +1 in inputs. Färe and Sung [14] showed that a
homogeneous function that is also a flexible functional form (or generalized quadratic) can only take two
forms: (1) the mean of order ρ and (2) the translog. The translog function was developed by Christenson,
Jorgenson, and Lau [9]. We use the translog form because it includes both first and second order param-
eters and can be parameterized to satisfy homogeneity. Furthermore, the monotonicity conditions for the
input distance function and cost function can be imposed for the translog form using the AC method (see
[21] an example).

For our model the translog input distance function is

lnDi(y, x, z) = α0 + α1lny +
3∑

n=1

βnlnxn +
2∑

j=1

ψjlnzj

+ 0.5

(
α11lny2 +

3∑
n=1

3∑
n′=1

βnn′lnxnlnxn′ +
2∑

j=1

2∑
j′=1

ψjj′lnzjlnzj′

)

+
3∑

n=1

δnlnxnlny +
2∑

j=1

γjlnzjlny +
2∑

j=1

3∑
n=1

ϕjnlnzjlnxn

+
14∑
t=2

τtDTt. (12)

In (12), the first row gives the first order effects of changes in x, y, and z; the second row gives the second
order effects; the third row gives the cross-product effects; and the last row allows for parallel shifts in
the frontier from year to year. Parameter restrictions corresponding to feasibility (6), homogeneity (7),
and monotonicity (8) impose constraints on the translog distance function as:

(i) lnDi(y, x, z) ≥ 0,

(ii)
3∑

n=1

βn = 1,
3∑

n=1

δn = 0,
3∑

n′=1

βnn′ = 0,
2∑

j=1

ϕjn = 0, n = 1, 2, 3,

(iii)
∂lnDi(y, x, z)

∂y
= α1 + α11lny +

3∑
n=1

δnlnxn +
2∑

j=1

γjlnzj ≤ 0,

(iv)
∂lnDi(y, x, z)

∂xn
= βn +

3∑
n′=1

βnn′lnx′n + δnlny +
2∑

j=1

ϕjnlnzj ≥ 0, n = 1, 2, 3. (13)
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The translog cost function takes the form

lnC(y, w, z) = a0 + a1lny +
3∑

n=1

bnlnwn +
2∑

j=1

cjlnzj

+ 0.5

(
a11lny2 +

3∑
n=1

3∑
n′=1

bnn′lnwnlnwn′ +
2∑

j=1

2∑
j′=1

cjj′lnzjlnzj′

)

+
3∑

n=1

dnlnwnlny +
2∑

j=1

ejlnzjlny +
3∑

n=1

2∑
j=1

fnjlnzjlnwn

+
14∑
t=2

htDTt. (14)

Like the distance function, translog costs depend on first order effects of output y, input prices, w, and
fixed inputs z in the first row of (14); second order and cross-product effects in rows two and three; and
shifts in the cost function from year to year in row four. For the translog cost function (14) the cost
function restrictions in (3) can be written as

(i)
3∑

n=1

bn = 1,
3∑

n′=1

bnn′ = 0,
3∑

n=1

dn = 0,
2∑

j=1

fnj = 0, n = 1, 2, 3,

(ii)
∂lnC(y, w, z)

∂lnwn

= bn +
3∑

n′=1

bnn′lnwn′ + dnlny +
2∑

j=1

fnjlnzj ≥ 0, n = 1, 2, 3,

(iii)
∂lnC(y, w, z)

∂lny
= a1 + a11lny +

3∑
n=1

dnlnwn +
2∑

j=1

ejlnzj ≥ 0. (15)

3. Estimation Methods

We estimate the translog cost and input distance functions using four different methods. Three of the
methods use the AC deterministic method and the fourth estimates the two functions using stochastic
frontier analysis (SFA).

3.1. Stochastic Frontier Analysis

Homogeneity of the input distance function impliesDi(y, γx, z) = γDi(y, x, z). Our estimation imposes
homogeneity by transforming the data using γ = 1

x1
. That is,

Di(y,
x

x1
, z) =

1

x1
Di(y, x, z). (16)

Taking the natural logarithm yields

lnDi(y,
x

x1
, z) = −lnx1 + lnDi(y, x, z). (17)

Rearranging and adding a residual, yields our estimating equation
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−lnx1 =lnDi(y,
x

x1
, z)− lnDi(y, x, z) + v

−lnx1 =lnDi(y,
x

x1
, z) + ϵ, (18)

where ϵ = v − µ is the two part error term where v has a symmetric distribution with E(v) = 0 and µ is
a non-negative variable associated with technical inefficiency and lnDi(y,

x
x1
, z) has the translog form.

Add subscripts, k = 1, ..., K for DMUs (Decision-Making Units) and t = 1, . . . , T for time. Input
technical efficiency (TEkt) equals the reciprocal of the input distance function with 0 ≤ TEkt ≤ 1.
Estimates of technical efficiency are recovered as

T̂Ekt =
1

D̂i(ykt, xkt, zkt)
= exp(−µ̂kt), k = 1, ..., K, t = 1, . . . , T. (19)

To estimate the cost function using SFA we append a residual, ξkt to the translog cost function given in
(14). This residual is decomposed into the sum of two parts, ξkt = ψkt+ωkt, where ψkt is a random error
term that has a symmetric distribution with E(ψ) = 0 and ωkt is a nonnegative variable that determines
cost inefficiency as cikt = 1−exp(−ωkt). We impose homogeneity by normalizing input prices and costs
by w1.

3.2. Aigner-Chu Deterministic Method

We also estimate lnDi(y, x, z) and lnC(y, w, z) using the Aigner and Chu [1] deterministic method (AC).
For the translog distance function, the AC chooses the parameters by minimizing the sum of the log
distances between each DMU’s observed output/input vector and the frontier isoquant. Parameters of the
translog cost function are chosen similarly, by minimizing the summed log distances between observed
costs and minimum costs for each DMU. Then, we use two different bootstraps to obtain distributions of
the parameter estimates and confidence intervals for the Lerner index. First, we implement the bootstrap
of Simar and Wilson [33] that was originally used to obtain confidence intervals of technical efficiency
for each DMU in a sample. Second, we implement the m out of n bootstrap of Simar and Wilson
[34]. This bootstrap takes a large number of samples of m observations from the original sample of n
observations. For each sample we estimate the distance function, cost function, and the Lerner index.
The two bootstraps give a distribution of the parameter estimates so that confidence intervals for price,
marginal cost, and the Lerner index can be obtained.

For the input distance function in (12) the AC chooses parameters (α0, α1, βn, ψj , α11, βnn′ , ψjj′ , δn,
γj , ϕjn, τt) to minimize the sum of the log radial distances of the observed inputs for each producer to
the isoquant frontier. Feasibility requires that Di(y, x, z) ≥ 1 for each DMU’s observed (y, x, z). For
the translog form feasibility requires lnDi(y, x, z) ≥ 0, with frontier firms having lnDi(y, x, z) = 0.
Thus, lnDi(y, x, z) is the log distance to the frontier. The objective function minimizes the sum of these
log distances over all observations. In addition, we impose homogeneity, monotonicity and symmetry
conditions on the parameter estimates. Appending subscripts k and t to the inputs and outputs in (12) the
linear programming problem we solve is
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minimize
T∑
t=1

K∑
k=1

lnDi(ykt, xkt, zkt) subject to

(i) lnDi(ykt, xkt, zkt) ≥ 0, k = 1, . . . , K, t = 1, . . . , T,

(ii)
3∑

n=1

βn = 1,
3∑

n=1

δn = 0,
3∑

n′=1

βnn′ = 0,
2∑

j=1

ϕjn = 0, n = 1, 2, 3,

(iii)
∂lnDi(ykt, xkt, zkt)

∂lnxnkt
= βn +

3∑
n′=1

βnn′lnxn′kt + δnlnykt +
2∑

j=1

ϕjnlnzjkt ≥ 0,

n = 1, 2, 3, k = 1, . . . , K, t = 1, . . . , T,

(iv)
∂lnDi(ykt, xkt, zkt)

∂lnykt
= α1 + α11lnykt +

3∑
n=1

δnlnxnkt +
2∑

j=1

γjlnzjkt ≤ 0,

k = 1, . . . , K, t = 1, . . . , T,

(v) βnn′ = βn′n, ψjj′ = ψj′j. (20)

Following Simar and Wilson [33] we obtain a bootstrap sample of parameter estimates of the input
distance function. Let kt = 1, . . . , KT represent the number of observations in the unbalanced panel.
The steps we implement are as follows:

1. Estimate (20) and obtain the estimates of input technical efficiency for each observation: θ̂kt =
1

D̂i(ykt,xkt,zkt)
, kt = 1, . . . , KT .

2. Generate a random sample of size KT from the distribution of θ̂kt, giving θ̂∗kt, kt = 1, . . . , KT ,
i.e., θ̂∗1, θ̂

∗
2, . . . , θ̂

∗
KT .

3. Use equations (4.20), (4.24), (4.25) and (4.27) of Simar and Wilson to obtain the smoothed bootstrap
distribution of θ̂∗kt.

4. Compute pseudo inputs x∗kt =
θ̂kt
θ̂∗kt
xkt.

5. Use AC to estimate the translog input distance function using outputs ykt and pseudo inputs, x∗kt,
to get bootstrap estimates of pseudo efficiency, θ∗kt, kt = 1, . . . , KT and parameter estimates
α∗
o, α

∗
1, β

∗
n, α

∗
11, β

∗
nn′ , ψ∗

jj′ , δ
∗
n, γ

∗
j , ϕ

∗
jn, τ

∗
t .

6. Repeat steps 2-5 a large number of times, B, to obtain the bootstrap of technical efficiency for each
observation and the bootstrap parameter estimates, α∗b

o , α
∗b
1 , β

∗b
n , α

∗b
11, β

∗b
nn′ , ψ∗b

jj′ , δ
∗b
n , γ

∗b
j , ϕ

∗
jn, τ

∗b
t , b =

1, . . . , B.

The translog cost function (14) is also estimated using AC by choosing parameters (a0, a1, bn, cj, a11, bnn′ , cjj′ , dn, ej, fnj, ht)

to minimize the sum of the deviations between log actual costs (lnckt) and log minimum costs (lnC(ykt, wkt, zkt))
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of production over all producer observations. This LP problem estimates the cost function parameters:

minimize
a0,a1,a11,bn,bnn′ ,cjj′ ,dn,ej ,fnj ,ht

T∑
t=1

K∑
k=1

(lnckt − lnC(ykt, wkt, zkt)) subject to

(i) lnC(ykt, wkt, , zkt) ≤ lnckt, k = 1, . . . , K, t = 1, . . . , T,

(ii)
3∑

n=1

bn = 1,
3∑

n′=1

bnn′ = 0,
3∑

n=1

dn = 0,
2∑

j=1

fnj = 0, n = 1, 2, 3,

(iii)
∂lnC(ykt, wkt, , zkt)

∂lnwnkt

= bn +
3∑

n′=1

bnn′lnwn′kt + dnlnykt +
2∑

j=1

fnjlnzjkt ≥ 0,

n = 1, 2, 3, k = 1, . . . , K, t = 1, . . . , T

(iv)
∂lnC(ykt, wkt, zkt)

∂lnykt
= a1 + a11lnykt +

3∑
n=1

dnlnwnkt +
2∑

j=1

ejlnzkjt ≥ 0,

k = 1, . . . , K, t = 1, . . . , T

(v) bnn′ = bn′n, cjj′ = cj′j, . (21)

For the translog cost function (14) the restrictions in (21) impose feasibility (i), homogeneity (ii), mono-
tonicity (iii and iv) and symmetry (v).

Cost efficiency equals the ratio of minimum costs to actual costs. After solving (21), estimates of cost
efficiency are found as

σkt =
C(wkt, ykt, zkt)

ckt
, k = 1, . . . , K, t = 1, . . . , T. (22)

We again follow Simar and Wilson [33] and obtain a bootstrap sample of the parameter estimates of the
translog cost function. For the kt = 1, . . . , KT observations the steps we implement are as follows:

1. Estimate (21) and obtain estimates of cost efficiency for each observation: σ̂kt, kt = 1, . . . , KT .

2. Generate a random sample of size KT from the distribution of σ̂kt, giving σ̂∗
kt, kt = 1, . . . , KT ,

i.e., σ̂∗
1, σ̂

∗
2, . . . , σ̂

∗
KT .

3. Use equations (4.20), (4.24), (4.25) and (4.27) of Simar and Wilson to obtain the smoothed bootstrap
distribution of σ̂∗

kt.

4. Compute pseudo input prices w∗
kt =

σ̂∗
kt

σ̂kt
wkt.

5. Use AC to estimate the translog cost function using output ykt and pseudo input prices, w∗
kt, and ob-

tain the parameter estimates, (a∗0, a
∗
1, b

∗
n, c

∗
j , a

∗
11, b

∗
nn′ , c∗jj′ , d

∗
n, e

∗
j , f

∗
nj, h

∗
t ), and marginal cost, MC∗.

6. Repeat (2)-(5) above a large number of times, B, to obtain the bootstrap distribution of parameter
estimates, (a∗b0 , a

∗b
1 , b

∗b
n , c

∗b
j , a

∗b
11, b

∗b
nn′ , c∗bjj′ , d

∗b
n , e

∗b
j , f ∗b

nj , h
∗b
t ), and estimates of marginal cost, MC∗b.

b = 1, . . . , B.

Our final set of estimates are derived using the m out of n bootstrap which was developed by Politis,
Romano, and Wolf [30], extended by Bickel and Sakov [3], adapted for nonparametric efficiency models
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by Simar and Wilson [34], and used by Amsler, Leonard, and Schmidt [2] in their study of the properties
of the AC. This bootstrap samples with replacementm observations from an original set of n observations
(in our notation KT is used instead of n, but we follow convention and refer to it as m out of n). We
choose the sample size m following Simar and Wilson [34] who used Algorithm 6.1 of Politis, Romano
and Wolf [30]. Our parameter of interest is the Lerner index, L. We use AC to estimate the distance
and cost functions for different sample sizes: m100,m125, . . . ,m725, where the sample size increases in
increments of 25. For each sample size mj , we draw B = 1000 bootstrap samples and obtain the 2.5 and
97.5 percentile estimates of L. Next, we obtain the standard deviation of the percentile estimates from the
sample sizesmj−k, . . . ,mj, . . . ,mj+k, where k is a small number. Finally, we add the standard deviations
for the 2.5 and 97.5 percentile estimates and choose the j that minimizes the summed standard deviations.
For k = 1 and k = 2 the sample size that minimizes the summed standard deviations is m = 450. (See
Appendix B Table 5.)

4. An Example-German Public Theaters

As an empirical example of the four methods described above we use an unbalanced panel of KT=1791
observations of German public theaters where one observation corresponds to a theatrical season for a
particular theater during the fourteen theatrical seasons from 2004–05 to 2017–18. During a theatrical
season a theater produces a final output of spectators (y), using variable inputs of artistic staff (x1),
administrative staff (x2), and real operating expenditures (x3). In addition, the number of spectators is
conditional on two exogenous quasi-fixed variables: the number of performances offered in a season (z1)
and the number of venues the theater has (z2). We include time indicators, DTt to allow shifts in the
frontier from season to season. We drop the indicator, DT1, corresponding to the 2004–05 season to
avoid exact linear dependence. Descriptive statistics are reported in Table 1.3

Although we use the same data as found in Bishop et al. [4] our model and method differs in several
ways from that previous research. First, all inputs, outputs, and quasi-fixed variables are in log form and
all variables have first order, second order, and interaction effects unlike Bishop et al. (2024). Second,
Bishop et al. estimated price and marginal cost of an additional spectator for each theater’s inputs, outputs
and quasi-fixed variables. Here we estimate price and marginal cost at the mean values of inputs, outputs,
and quasi-fixed inputs. Third, Bishop et al. assumed that theater performances, along with spectators,
were a final output. In this paper, we do not constrain the effects of an increase in performances to have a
negative effect on the input distance function. Relaxing this constraint allows an increase in performances
to either increase the input distance function similar to other inputs or decrease the input distance function
if performances have an effect similar to the final output of spectators. Fourth, the present paper estimates
the model using two bootstraps applied to the AC deterministic method and compares those estimates to
estimates derived from SFA.

Applying the pricing formula (11) to the translog input distance function gives the output price for

3The nominal price of operating expenditures is 1 and its real price is 1 deflated by the Consumer Price Index for Germany
(Statisches Bundersamt D Federal Statistical Office) with a base year of 2015. All money values have also been deflated.
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Table 1. Descriptive Statistics

Variable Mean Std. Dev. Minimum Maximum

spectators y1 140807 105752 423 636187
artistic staff x1 134 104 1 679
admin/technical staff x2 152 132 2 877
operating expenditures x3 5319999 5522925 97439 43101784
wage of artistic staff w1 54463 43217 3959 966011
wage of admin/tech

staff w2 42078 10275 7501 80975
price of oper. exp. w3 1 0 1 1
performances z1 486 249 5 1618
venues z2 6 3 1 25
Cost=wx 20010659 18097976 444564 125938746

spectators as

p =− wx

Di(y, x, z)2

(
∂Di(y, x, z)

∂y

)
,

p =− wx

Di(y, x, z)

(
α1 + α11lny +

∑3
n=1 δnlnxn +

∑2
j=1 γjlnzj

y

)
. (23)

The marginal cost of an additional spectator is estimated as

MC =
∂lnC(y, w, z)

∂lny
C

y

=

(
a1 + a11lny +

3∑
n=1

dnlnwn +
2∑

j=1

ejlnzj

)
C

y
. (24)

For each method we estimate the price of spectators and its marginal cost at the means ȳ, x̄, w̄, and z̄
given in Table 1. The SFA parameter estimates for the translog cost and distance functions are provided
in Appendix A and the Aigner-Chu parameter estimates are reported in Appendix B.

4.1. Estimates

Table 2 reports the Lerner index and its components. The stochastic estimates are from Stata. The 2.5
and 97.5 percentile values for price, marginal cost, and the Lerner index are estimated using the delta
method. Evaluated at the means from Table 1 the price is p̄ = 139.5 and marginal cost is M̄C = 141.6.
Given that we estimated two equations, the Lerner index for spectators is estimated two ways. First, we
hold price constant at p=139.5 and estimate L accounting for variation in marginal cost. Second, we
hold marginal cost constant at MC=141.6 and estimate L accounting for price variation derived from
variation in the parameter estimates of lnDi(y, x, z). Both L indexes give a similar result: the 2.5 to 97.5
percentile range contains 0. Therefore, the stochastic estimates indicate that German theaters are not
exercising monopoly power.

The translog distance and cost functions are estimated three ways using AC. First, are the no bootstrap
estimates. Second, are the smoothed bootstrap estimates of Simar and Wilson [33]. Third, are m out of n
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Table 2. Lerner Index Estimates evaluated at ȳ, x̄, w̄, z̄

Variable Method Mean 2.5 pctl. 97.5 pctl.

p Stochastic 139.5 134.8 144.2
MC Stochastic 141.6 135.8 147.4
L Stochastic, p = 139.5 -0.02 -0.57 0.27
L Stochastic, MC=141.6 0.02 -0.05 0.10

p AC-no bootstrap 102.5 · ·
MC AC-no bootstrap 168.6 · ·
L AC-no bootstrap -0.65 · ·
p AC-SW bootstrap 67.5 52.6 83.7
MC AC-SW bootstrap 80.3 74.7 86.6
L AC-SW bootstrap -0.21 -0.54 0.04

p AC-m of n bootstrap 112.7 70.3 146.8
MC AC-m of n bootstrap 91.15 63.9 125.2
L AC-m of n bootstrap 0.18 -0.11 0.38

bootstrap estimates.4 The two functions are estimated B = 1000 times for both the smoothed bootstrap
and the m out of n bootstrap. In the m out of n bootstrap the sample size that minimizes the standard
deviation of the 2.5–97.5 percentile values is m = 450 (See Appendix B.) The smoothed bootstrap uses
all 1791 observations while them out of n bootstrap drawsm = 450 observations with replacement from
the original 1791 observations. Table 2 reports the results.

4.2. Discussion

The stochastic frontier method and AC bootstraps both impose homogeneity on the translog cost and
input distance functions. The price of spectators derived from Di(y, x, z) and marginal cost derived from
C(y, w, z) are estimated at the mean values of inputs (x), output (y), and fixed inputs (z) for all estimation
methods. The monotonicity conditions for Di(y, x, z) stated in (8) and monotonicity conditions for
C(y, w, z) stated in (3) hold at the point of approximation for both the stochastic and AC estimates.
While the AC method imposes monotonicity restrictions on the parameter estimates for all observations,
the stochastic estimates are derived without these monotonicity restrictions. In fact, for the stochastic
estimates, the monotonicity restriction, ∂Di(y,x,z)

∂x2
did not hold for approximately 5% of the observations,

although the estimated price of spectators was positive for all observation. For the cost function, the
monotonicity restriction, ∂C(y,w,z)

∂w3
, was violated for more than 50% of the observations, although 99% of

the observations had positive marginal cost consistent with production theory.
The time indicator variables in the translog distance function (12) and translog cost function (14) allow

for shifts in the technological and cost frontiers. The time indicator for the first year of the study (theatri-
cal season 2004–05) is dropped to avoid exact linear dependence. For lnDi(y, x, z), positive coefficients
for the time indicators in the subsequent years indicate a greater distance from observed inputs, x, to the
technological frontier represented by L(y, z) and indicate technological progress, i.e., the same output
can be produced with even less input relative to 2004–05. For lnC(y, w, z), negative coefficients for the
time indicators indicate lower costs of production due to technological progress relative to 2004–05. The

4The m out of n bootstrap would be m out of KT in our notation.
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three AC methods yield positive coefficients for the time indicators in the translog distance function in all
years. The time coefficients estimated from the stochastic method are positive in all but the last theatrical
season, 2017–2018. In the cost function, negative coefficients occur eight or nine of the years. Similar
results are found for estimates from the stochastic method.

Turning to the components of the Lerner index, the stochastic method yielded a higher price for
spectators and a higher marginal cost than the estimates from the AC method. One possible reason for the
difference in prices for the two estimates can be seen in the pricing formula (11) which shows that price
is inversely related to Di(y, z, x). Technical efficiency equals the reciprocal of the distance function, i.e.,
TE = 1

Di(y,x,z)
. At the point of approximation technical efficiency derived using the stochastic method

is 0.89, while technical efficiency for the various AC methods ranged from a low of 0.36 for the Simar-
Wilson bootstrap to 0.61 for the m out of n bootstrap. Thus, the lower estimated levels of technical
efficiency for the AC method yield lower prices relative to the stochastic method.

The estimates of the price of spectators varies from 67.5 for the SW smoothed bootstrap, to 102.5
for the no bootstrap method, to 112.7 for the m out of n bootstrap. The 2.5 to 97.5 percentile range for
price from the m out of n bootstrap is 70.3 to 146.8. This range includes the stochastic price estimate of
139.5 and the AC-no bootstrap estimate of 102.5. Marginal cost ranges from 80.3 for the SW smoothed
bootstrap to 91.2 for them out of n bootstrap, to 102.5 for the AC-no bootstrap. The 2.5 to 97.5 percentile
range for MC from the m out of n bootstrap includes the MC estimate for the SW bootstrap. Similar to
price, the marginal cost estimates are higher for the stochastic method than for the AC methods.

Estimates of the Lerner index range from −0.65 for the AC-no bootstrap to −0.21 for the SW
smoothed bootstrap to 0.18 for the m out of n bootstrap. However, the two bootstrap estimates of the
Lerner index have 2.5 to 97.5 percentile ranges that include 0. The stochastic estimates also indicate no
presence of monopoly power for German theaters.

In Bishop et al. [4], two final outputs—spectators and performances—are assumed. Here we assumed
only a single final output of theater spectators. Instead, we impose no constraint on how performances
affect the input requirement set. If performances (z1) are a final output then ∂lnDi(y,x,z)

∂lnz1
≤ 0. If instead,

performances are an intermediate product that helps attract spectators to the theater then we would expect
∂lnDi(y,x,z)

∂lnz1
≥ 0. We calculated this derivative using the AC distance function estimates found in Table

6 for the mean values of inputs and outputs and found it to be positive for all three sets of estimates.
This result indicates that an increase in performances increases the size of the input requirement set as
expected from an intermediate product. The Bishop results found that spectators were under-produced
indicated by a price ranging from 76 to 80 with marginal costs ranging from 63 to 68 and a Lerner index
of 0.15. Using the two bootstraps we found no evidence of monopoly power.

5. Conclusion

Public sector producers often produce outputs where prices are non-existent or biased because of subsi-
dies. We derive a pricing formula for the output of public sector producers that is consistent with profit
maximization. Here, price(s) is(are) derived from an input distance function and observed costs of pro-
duction. Since public producers might have monopoly power, the pricing formula allows us to derive the
Lerner index (L) of monopoly power. The L index measures the markup of price over marginal cost as
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a proportion of price and equals zero when price equals marginal cost as would occur in a competitive
market or if the public sector agents have allocated resources efficiently.

As an empirical example we examine the production of theatrical performances that yield spectators
for German public theaters. We specify a translog input distance function and translog cost function
and estimate these functions using stochastic frontier analysis and the Aigner-Chu deterministic method
(AC) in order to estimate price, marginal cost, and the Lerner index. Using AC, the two functions are
estimated without a bootstrap, with the smoothed bootstrap of Simar and Wilson [33], and with them out
of n bootstrap of Simar and Wilson [34]. Although the AC without a bootstrap indicates over-production
of spectators (L < 0), the stochastic estimates and the two bootstrap estimates have 2.5 to 97.5 percentile
ranges for L that includes 0. These results indicate that German public theaters are acting competitively
and allocating resources efficiently, evidence in favor of the Tiebout’s (1956) theory of local expenditures.

Using the AC along with a bootstrap allows researchers to construct percentile ranges for a statistic of
interest. In addition, unlike DEA, the AC allows a second order approximation to the true, but unknown
technology. Furthermore, production theoretic constraints, such as monotonicity conditions, can be easily
incorporated in the estimation process. However, with AC, the researcher must specify a functional form
whereas DEA imposes no functional form to represent the technology. In addition, the chosen functional
form determines the number of parameters to estimate and some flexible functional forms, such as the
generalized Leontief, are not linear in the parameters when homogeneity is imposed [13]. Investigating
how the AC performs with respect to functional forms other than the translog would be a fruitful direction
for future research.

A. Appendix-Stochastic Parameter Estimates

B. Appendix-Aigner and Chu Parameter Estimates

The distance and cost function estimates using the Aigner-Chu deterministic method are presented in
Tables 6 and 7.

Table 5 reports the 2.5 and 97.5 percentile values of the Lerner index for different size m. We run
B=1000 bootstraps and calculate the Lerner index for each bootstrap given a specific value of m. Then,
we report the 2.5 percentile (L2.5 and 97.5 percentile value (L97.5 of the Lerner index from the B=1000
bootstraps for each sample size, mj . The standard deviation of the two percentiles are reported in the
column s2.5 and s97.5 for k = 1. Following Politis, Romanov and Wolf [30] we sum the two standard
deviations and choose the value ofm that minimizes s = s2.5+s97.5. The last column reports the summed
standard deviations (s) when k = 2. A sample size of m = 450 (m450) minimizes s for both k = 1 and
k = 2.

Tables 6 and 7 report the estimates and standard deviations of the parameters of the translog cost and
distance functions for the three Aigner-Chu estimation methods. The m of n estimates are reported for
m = 450.
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Table 3. Translog Distance Function Estimates

Coefficient Variable Estimate Std. Err. z-value

α0 cons -10.862 3.742 -2.90
α1 lny 0.425 0.334 1.27
β2 lnx2 2.431 0.676 3.60
β3 lnx3 -0.279 0.556 -0.50
ψ1 lnz1 3.630 0.507 7.16
ψ2 lnz2 -2.113 0.406 -5.21
α11 lnylny -0.087 0.036 -2.45
β22 lnx2lnx2 0.520 0.079 6.59
β23 lnx2lnx3 -0.251 0.055 -4.57
β33 lnx3lnx3 0.152 0.049 3.12
ψ11 lnz1lnz1 -0.243 0.089 -2.74
ψ12 lnz1lnz2 0.090 0.049 1.84
ψ22 lnz2lnz2 0.047 0.026 1.81
δ2 lnylnx2 0.087 0.037 2.35
δ3 lnylnx3 -0.022 0.030 -0.72
γ1 lnylnz1 -0.057 0.050 -1.14
γ2 lnylnz2 0.023 0.024 0.95
ϕ12 lnz1lnx2 -0.036 0.048 -0.74
ϕ13 lnz1lnx3 -0.137 0.040 -3.42
ϕ22 lnz2lnx2 -0.162 0.043 -3.76
ϕ23 lnz2lnx3 0.094 0.034 2.75
τ2 DT2 0.113 0.044 2.56
τ3 DT3 0.100 0.043 2.31
τ4 DT4 0.108 0.043 2.50
τ5 DT5 0.111 0.043 2.58
τ6 DT6 0.083 0.043 1.92
τ7 DT7 0.081 0.043 1.90
τ8 DT8 0.042 0.043 0.98
τ9 DT9 0.054 0.042 1.26
τ10 DT10 0.070 0.042 1.64
τ11 DT11 0.082 0.042 1.93
τ12 DT12 0.088 0.042 2.08
τ13 DT13 0.061 0.042 1.45
τ14 DT14 -0.001 0.042 -0.03
σv 0.329 0.016
σu 0.149 0.089
σ2 0.130 0.018
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Table 4. Translog Cost Function Estimates

Coefficient Variable Estimate Std. Err. z-value

a0 constant 0.134 6.408 0.02
a1 lny 3.495 0.594 5.88
b2 lnw2 1.225 0.872 1.40
b3 lnw3 1.006 1.102 0.91
c1 lnz1 -6.066 0.937 -6.48
c2 lnz2 4.697 0.671 7.00
a11 lnylny 0.219 0.039 5.63
b22 lnw2lnw2 -0.381 0.106 -3.58
b23 lnw2lnw3 -0.142 0.191 -0.74
b33 lnw3lnw3 0.410 0.112 3.66
c11 lnz1lnz1 -0.027 0.082 -0.32
c12 lnz1lnz2 0.019 0.040 0.47
c22 lnz2lnz2 -0.029 0.021 -1.40
d2 lnylnw2 -0.267 0.050 -5.35
d3 lnylnw3 0.496 0.064 7.81
e1 lnylnz1 0.049 0.052 0.95
e2 lnylnz2 -0.034 0.026 -1.33
f21 lnz1lnw2 0.395 0.087 4.54
f31 lnz1lnw3 -0.507 0.093 -5.47
f22 lnz2lnw2 -0.590 0.060 -9.80
f32 lnz2lnw3 0.394 0.069 5.71
h2 DT2 -0.055 0.042 -1.32
h3 DT3 0.001 0.041 0.03
h4 DT4 -0.015 0.041 -0.36
h5 DT5 -0.045 0.041 -1.10
h6 DT6 -0.017 0.041 -0.41
h7 DT7 -0.031 0.040 -0.78
h8 DT8 0.016 0.040 0.39
h9 DT9 0.003 0.040 0.06
h10 DT10 -0.029 0.040 -0.74
h11 DT11 -0.058 0.040 -1.45
h12 DT12 -0.057 0.040 -1.44
h13 DT13 -0.048 0.039 -1.21
h14 DT14 0.001 0.039 0.04
σψ 0.231 0.014
σω 0.395 0.027
σ2 0.209 0.016
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Table 5. 2.5 and 97.5 percentile values of L index and standard deviations (s) for different sample sizes, m, and k=1,2

k = 1 k = 2

m L2.5 L97.5 s2.5 s97.5 s = s2.5 + s97.5 s

100 -3.15 0.89
125 -2.30 0.86 0.621 0.030 0.651
150 -1.94 0.83 0.307 0.040 0.347 0.644
175 -1.69 0.78 0.131 0.025 0.156 0.321
200 -1.75 0.8 0.075 0.025 0.101 0.229
225 -1.60 0.75 0.170 0.029 0.199 0.224
250 -1.41 0.75 0.152 0.023 0.175 0.277
275 -1.30 0.71 0.120 0.035 0.155 0.230
300 -1.17 0.68 0.081 0.030 0.111 0.165
325 -1.15 0.65 0.025 0.017 0.042 0.164
350 -1.12 0.65 0.119 0.012 0.131 0.181
375 -0.93 0.63 0.152 0.020 0.172 0.177
400 -0.82 0.61 0.064 0.010 0.074 0.158
425 -0.82 0.62 0.012 0.026 0.038 0.072
450 -0.84 0.57 0.012 0.025 0.037 0.041
475 -0.82 0.59 0.025 0.012 0.037 0.093
500 -0.79 0.57 0.068 0.031 0.099 0.094
525 -0.69 0.53 0.055 0.021 0.076 0.119
550 -0.70 0.54 0.055 0.015 0.070 0.093
575 -0.60 0.51 0.050 0.015 0.065 0.059
600 -0.65 0.52 0.032 0.015 0.047 0.062
625 -0.66 0.49 0.021 0.021 0.042 0.064
650 -0.62 0.48 0.061 0.006 0.067 0.065
675 -0.54 0.49 0.040 0.006 0.046 0.061
700 -0.59 0.48 0.029 0.021 0.050
725 -0.59 0.45
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Table 6. Aigner-Chu Translog Distance Function Estimates

No bootstrap SW bootstrap m of n bootstrap

Std. Std.
Coefficient Variable Est. Est. Dev. Est. Dev.

α0 cons 10.116 7.431 21.629 4.800 183.347
α1 lny -1.711 -1.777 0.181 -1.860 1.811
β2 lnx2 0.328 0.006 0.607 0.368 2.660
β3 lnx3 0.075 0.400 0.452 0.237 2.375
ψ1 lnz1 0.403 0.864 0.260 2.472 3.698
ψ2 lnz2 -0.258 -0.308 0.322 -2.231 4.455
α11 lnylny 0.066 0.048 0.002 0.095 0.017
β22 lnx2lnx2 0.005 -0.036 0.009 0.011 0.029
β23 lnx2lnx3 0.012 0.034 0.004 0.011 0.017
β33 lnx3lnx3 0.001 -0.020 0.003 -0.010 0.017
ψ11 lnz1lnz1 -0.116 -0.203 0.015 -0.190 0.115
ψ12 lnz1lnz2 0.119 0.142 0.004 0.179 0.062
ψ22 lnz2lnz2 0.316 0.284 0.005 0.128 0.057
δ2 lnylnx2 0.039 0.020 0.002 -0.004 0.009
δ3 lnylnx3 -0.006 0.001 0.001 0.016 0.007
γ1 lnylnz1 -0.020 0.013 0.005 -0.109 0.032
γ2 lnylnz2 -0.128 -0.134 0.002 -0.034 0.010
ϕ12 lnz1lnx2 -0.041 0.016 0.001 0.044 0.003
ϕ13 lnz1lnx3 0.042 0.008 0.001 -0.017 0.002
ϕ22 lnz2lnx2 -0.060 -0.074 0.004 -0.126 0.032
ϕ23 lnz2lnx3 0.050 0.054 0.002 0.113 0.023
τ2 DT2 0.221 0.221 0.003 0.180 0.046
τ3 DT3 0.158 0.158 0.003 0.140 0.039
τ4 DT4 0.097 0.098 0.003 0.121 0.040
τ5 DT5 0.021 0.019 0.003 0.059 0.033
τ6 DT6 0.055 0.055 0.003 0.056 0.037
τ7 DT7 0.233 0.234 0.003 0.113 0.042
τ8 DT8 0.034 0.034 0.002 0.049 0.033
τ9 DT9 0.064 0.064 0.002 0.049 0.044
τ10 DT10 0.001 0.003 0.002 0.047 0.037
τ11 DT11 0.296 0.298 0.002 0.128 0.080
τ12 DT12 0.092 0.094 0.002 0.083 0.047
τ13 DT13 0.047 0.046 0.002 0.057 0.047
τ14 DT14 0.047 0.045 0.003 0.011 0.039
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Table 7. Aigner-Chu Translog Cost Function Estimates

No bootstrap SW bootstrap m of n bootstrap

Std. Std.
Coefficient Variable Est. Est. Dev. Est. Dev.

a0 constant -2.789 -0.918 8.945 -1.424 48.138
a1 lny -0.225 -0.295 0.116 0.712 0.930
b2 lnw2 -0.316 -0.317 0.352 0.169 0.825
b3 lnw3 0.000 0.208 0.202 0.037 0.191
c1 lnz1 0.587 0.542 0.284 -1.397 3.040
c2 lnz2 0.995 1.038 0.221 0.666 2.316
a11 lnylny 0.181 0.209 0.002 0.015 0.013
b22 lnw2lnw2 -0.075 -0.010 0.005 -0.031 0.008
b23 lnw2lnw3 0.000 -0.018 0.002 0.003 0.002
b33 lnw3lnw3 0.000 0.013 0.002 -0.004 0.002
c11 lnz1lnz1 0.276 0.372 0.013 0.151 0.118
c22 lnz2lnz2 -0.349 -0.323 0.004 -0.193 0.051
c12 lnz1lnz2 -0.350 0.147 0.284 -0.080 0.057
e1 lnylnz1 -0.152 -0.197 0.005 0.035 0.034
e2 lnylnz2 0.138 0.147 0.001 0.031 0.009
d2 lnw2lny -0.001 0.011 0.004 0.038 0.004
d3 lnw3lny 0.000 -0.001 0.000 -0.004 0.000
f21 lnw2lnz1 0.192 0.128 0.006 0.051 0.014
f31 lnw3lnz1 0.000 -0.002 0.001 -0.002 0.001
f22 lnw2lnz2 -0.164 -0.138 0.004 -0.188 0.010
f23 lnw3lnz2 0.000 0.000 0.001 0.009 0.001
h2 DT2 -0.110 -0.115 0.003 -0.057 0.053
h3 DT3 -0.050 -0.065 0.003 -0.067 0.044
h4 DT4 -0.020 -0.025 0.003 -0.045 0.044
h5 DT5 0.046 0.041 0.003 -0.009 0.035
h6 DT6 0.037 0.032 0.003 0.007 0.042
h7 DT7 -0.180 -0.183 0.003 -0.023 0.054
h8 DT8 0.047 0.042 0.003 0.031 0.035
h9 DT9 0.042 0.039 0.003 0.019 0.036
h10 DT10 -0.120 -0.127 0.003 -0.041 0.056
h11 DT11 -0.010 -0.015 0.003 -0.004 0.045
h12 DT12 -0.070 -0.075 0.003 -0.051 0.043
h13 DT13 -0.050 -0.056 0.003 -0.058 0.044
h14 DT14 -0.050 -0.051 0.003 0.020 0.037
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