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Abstract

Time is a very crucial factor in controlling demand patterns for certain products. In manufacturing processes, the production
rate must be regulated according to the demand pattern and available stock as part of effective lot size management policies.
We incorporate this fundamental idea for constructing the production rate as a function of demand and stock, which is the pri-
mary contribution of this paper. Predicting demand patterns and adjusting the production rate inherently involve vagueness.
We use neutrosophic logic, an advanced mathematical tool for addressing imprecision in decision planning. Neutrosophic
calculus-based analysis of uncertainty involved with the proposed model is the secondary contribution in this paper. Nu-
merical results indicate that the proposed approach yields superior results compared to the crisp environment and traditional
neutrosophic approaches for cost minimization. Furthermore, it is worth noting that Case 1 of the proposed Neutrosophic
Differential Approach guarantees better results than Case 2.

Keywords: EPQ model with deterioration, Time impacted demand, Stock and demand dependent product process, Decision

making under impreciseness, Neutrosophic ruled uncertainty, Triangular Neutrosophic numbers, Neutrosophic differential

equation, Neutrosophic derivative

1. Introduction

Inventory represents idle resources. Therefore, inventory management involves planning and imple-
menting policies to maintain the optimal stock size, maximizing gains while meeting consumer demand.
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Inventory management is relevant in both the retail and manufacturing sectors. In manufacturing, produc-
tion inventory management includes both the manufacturing process and the maintenance of the produced
items to optimize average costs. In this context, lot size models concerning order size and production
size fulfilled the purpose. In this paper, an economic production quantity (EPQ) model is designed and
analyzed using mathematical tools. Demand and production are two important issues impacting the
manufacturing-supply-inventory environment. It is noted that demand may increase as time advances
in a newly constituted supply enterprise. Therefore, the demand for an EPQ model can be viewed as a
function of time. The second notable issue is the dependence of production rates on multiple factors. It
is perceived that demand immediately impacts the production rate. Because the managerial body of a
manufacturing organization must be bothered about the demand rate while taking measures on produc-
tion capacity, another important issue is the influence of the present inventory level on the production
rate. It is customary to reduce the production rate when the inventory level is already high in the store
to avoid carrying costs. Also, the deterioration of production during the inventory inventory-carrying
procedure cannot be overlooked. This concern motivates us to design the proposed EPQ model with new
insights. Primarily, the model is built in a deterministic environment. However, the consideration of
such a deterministic environment may restrict a mathematical model far from the real economic interac-
tions involving uncertainty. Therefore, we find the necessity of uncertainty environments described by
aptly fitted mathematical tools. The study of this paper is engaged in finding the answer to the following
questions:

(i) Time impacts demand. What will be the overall impact of time on minimizing the average cost ?

(ii) Production rate is influenced by demand and present stock. What are the roles of these issues in
cost minimization objectives?

(iii) Deterioration is an unavoidable factor related to the inventory-carrying procedure. What is the
subsequent impact of the deterioration factor on cost reduction?

(iv) The impreciseness involved in economic production strategy cannot be ignored. What will be the
mathematical tool and approach to encountering such phenomena with the mentioned objective and
a meaningful perspective?

With the above-mentioned questionaries, the existing literature has been surveyed, which is detailed
in the succeeding section.

The remaining text in this paper is structured in pockets as follows: Section 2 summarizes the litera-
ture survey and gaps in the existing literature. Section 3 provides the mathematical preliminaries, which
help the reader understand the mathematical foundation of this paper. Section 4 describes the notations
and symbols in the paper and their meanings. Also, the same section discusses the assumptions for the
mathematical formulation of the proposed model. Section 5 details the proposed model in a crisp envi-
ronment. Subsequently, Section 6 reconsiders the proposed model under neutrosophic uncertainty. The
crispification of the neutrosophic model is described in Section 7. Section 8 is about the numerical results
of the proposed model in different environments and approaches. Section 9 lists significant findings and



Acc
ep

ted
man

us
cri

pt

Solution of an uncertain EPQ model... 3

managerial interpretations. The concluding remarks on the investigation and findings of the paper are
given in Section 10.

2. Literature review

The literature survey is performed on keywords like recent literature on the EPQ model in a crisp envi-
ronment, inventory models under different types of uncertainty, and recent advancements in neutrosophic
logic and its applications. The subsections corresponding to each mentioned keyword are followed by
subsections concerning research gaps, motivations, and the contribution of the paper.

2.1. Recent literature on the EPQ model in a crisp environment

Cárdenas-Barrón [10] proposed an EPQ model incorporating planned backorders. This system produces
imperfect-quality items, all of which are reworked within the same production cycle. A deteriorating EPQ
model with multiple manufacturing stages and one remanufacturing stage is introduced by Widyadana
and Wee [60]. Taleizadeh et al. [57] formulated an EPQ model that incorporates random defective items,
repair failures, shortages, and the presence of a single machine, which leads to constrained production
capacity. A production-supply model with learning-based production cost is developed by Teng et al.
[58] from the seller’s perspective to determine the optimal lot size and trade credit tenure simultaneously.
Hsu and Hsu [22] presented a defective production-based EPQ model that allows for complete backlog
shortages. A learning-based EPQ model is investigated by Khan et al. [25], where learning is imposed
on production rate and demand is dependent on variable lead time stochastically. Cunha et al. [13] pro-
posed an EPQ model considering partial backlogged shortages and defective production batches. They
demonstrate that selling imperfect items promptly is preferable since the reduction in holding costs leads
to an overall cost decrease. Taleizadeh et al. [56] proposed an EPQ model considering sustainability with
three different scenarios of shortage, namely, partial backordered shortage, lost sale, and full backorder
shortage. They found that a partial backlogged shortage case is the best and most realistic model. A de-
fective production-based EPQ model is presented by Keshavarzfard et al. [24], where the production rate
is dependent on the demand pattern. Marchi et al. [30] examined a production inventory model by ap-
plying the learning-by-doing approach to the production rate and maintaining the quality of items, which
leads to the efficiency of energy and reliability of the system. They demonstrated the interconnected-
ness between production learning and energy efficiency and how this relationship influences the optimal
quantity of lot size. Taleizadeh et al. [55] introduced a reworked-based EPQ system with price-dependent
demand-taking pricing, producing quantity, and back-ordered quantity as decision variables. Nobil et al.
[38] studied an EPQ model for a defective production system with remanufacturing and shortages under
a 100% inspection process. Recently, Rahaman et al. [42] designed an imperfect production-based EPQ
model where the demand rate is influenced by the frequency of promotion, the greenness of the item, and
the selling price, and the rate of producing defective items is linearly dependent on time. Haque et al.
[20] presented a sustainable production inventory model with price- and greenness-dependent demand
and demand-dependent remanufacturing rates. In this study, a deteriorating EPQ model is analyzed,
where production rate is influenced by demand and on-hand stock level, and demand is influenced by
time.
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2.2. Inventory models under different types of uncertainty

After fuzzy set theory was introduced, Park [40] was the first to incorporate fuzzy concepts into an
Economic Order Quantity (EOQ) model. In the inventory control problem, several research articles are
published incorporating fuzzy uncertainty, such as work by Hojati [21], Bag et al. [8], De and Sana
[14], Sadeghi et al. [45], Sarkar and Mahapatra [48], Majumder et al. [28], and Mahata et al. [26].
Debnath et al. [17] investigated a sustainable EPQ model in a type-2 fuzzy uncertain environment where
the demand pattern is dependent on inventory level and selling price and the production rate is dependent
on the demand rate. De and Sana [15, 16] used the notion of intuitionistic fuzzy in controlling strategy.
Garai et al. [18] used intuitionistic fuzzy numbers to measure the uncertainty in an inventory system
with stock-dependent demand. A good number of studies have been published on inventory models
using intuitionistic fuzzy, such as Ali et al. [5], Sahoo et al. [46], Supakar et al. [54], and Giri et
al. [19]. Momena et al. [34] discussed an EOQ model with price-dependent demand under all unit
price discount policies in a densely fuzzy environment. A sustainable production and rework model is
developed in a dense-lock fuzzy environment by Karmakar et al. [23]. Rahaman et al. [44] studied
an EPQ model in a lock fuzzy environment where the demand rate is dependent on price, inventory
level, and deterioration of the item using a preservation facility. Maiti [27] studied an EPQ model with
imperfect production and demand-dependent production rates in an uncertain arena by taking the price
of the produced item as a fuzzy cloud number and using PSO to solve the problem. Barman et al. [9]
investigated a deteriorating EPQ model with a partial backlogged shortage and time-dependent demand
in the cloud fuzzy phenomenon. Manna et al. [29] studied a production inventory model with green-
level-dependent demand, considering carbon emissions during production in an uncertain environment.
Rahaman et al. [43] interpreted an EOQ model with price and stock-dependent demand in a type-2
interval uncertain environment.

2.3. Recent advancements in neutrosophic logic and its application

The introduction of the neutrosophic philosophy triggers enthusiasm among the researcher communities
around the globe. Classification of different types of neutrosophic numbers, namely single-valued (Wang
et al. [59]), triangular (Chakraborty et al. [12]), trapezoidal (Ye [61]), pentagonal (Chakraborty [11]),
and complex (Ali and Smarandache [6]), neutrosophic numbers, has been done subsequently, along with
their possible application in the fields of engineering and management. The intuition and sense of neutro-
sophic philosophy had been further enriched by several worthy findings, such as the neutrosophic triplet
group by Smarandache and Ali [50], the neutrosophic vector space by Agboola and Akinleye [4], and
the neutrosophic topological space by Salama and Alblowi [47]. The fuzzy derivative of a fuzzy valued
function was first introduced by Puri and Ralescu [41]. Several researchers [1–3, 7] applied this con-
cept to their research. Smarandache [49] introduced the concept of the neutrosophic derivative within
the neutrosophic realm as an expansion of the fuzzy derivative. Son et al. [51] gave a novel definition
of the neutrosophic derivative, namely, the granular derivative providing the necessary and sufficient
state for the granular derivative of a neutrosophic-valued function. Sumathi and Priya [53] and Sumathi
and Sweety [52] discussed an NDE based on the parametric representation of the neutrosophic number.
However, Moi et al. [31] introduced a new type of neutrosophic derivative, which is known as a gener-
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alized neutrosophic derivative and used this definition to discuss a second-order neutrosophic boundary
value problem in [32]. Several researchers used neutrosophic logic in various fields, including control
theory and decision-making. Mullai and Surya [36, 37] used triangular neutrosophic numbers in the lot-
sizing model. Pal and Chakraborty [39] used the area removal technique method to optimize a triangular
neutrosophic-based economic order quantity model. Mondal et al. [35] studied a lot-sizing model for
deteriorating seasonal products under partial backordering and time-dependent demand. Up to date, the
neutrosophic differential equation (NDE) has little use in solving uncertain inventory control problems.
Momena et al. [33] used NDE to discuss an uncertain EOQ model where the market demand pattern is
dependent on the stock level, price, and warranty time of the item. In this article, the NDE approach is
used to solve a production quantity model where demand-related parameters and deterioration rates are
taken as neutrosophic numbers.

2.4. Research gaps and motivations

The following Table 1 shows the comparison between the literature in the related keywords and the
proposed model:

Table 1. Comparison of the contributions among the literature related to the present paper
References Model types Stock-dependent Demand-dependent Time-dependent Deterioration Model environment Solution Methodology

production rate production rate demand
Khan et al. [25] EPQ × ×

√
× Crisp Differential equation

Keshavarzfard et al. [24] EPQ ×
√ √

× Crisp Differential equation
Haque et al. [20] EPQ ×

√
× × Crisp Differential equation

Majumder et al. [28] EPQ × ×
√ √

Fuzzy Fuzzy differential equation
Debnath et al. [17] EPQ ×

√
× × Type-2 fuzzy Fuzzy differential equation

Rahaman et al. [44] EPQ
√

× ×
√

Lock fuzzy Parametric representation of lock fuzzy number
Maiti [27] EPQ ×

√
× × Cloudy fuzzy Parametric representation of the cloudy fuzzy number

Barman et al. [9] EPQ × ×
√ √

Cloudy fuzzy Parametric representation of the cloudy fuzzy number
Mondal et al. [35] EOQ - -

√ √
Neutrosophic Parametric representation of the neutrosophic number

Momena et al. [33] EOQ - - × × Neutrosophic Neutrosophic differential equation
This article EPQ

√ √ √ √
Neutrosophic Neutrosophic differential equation

From the detailed research survey on the above-mentioned keywords, we have found the following
research gaps which are targeted to be overcome in the present article:

(i) Demand with time dependency was discussed in many existing models. However, the demand-
dependent production rate is rarely considered in the existing literature. In this paper, the production
rate is assumed to be demand- and stock-dependent.

(ii) Many economic scenarios under impreciseness were discussed using mathematical tools like dif-
ferent fuzzy and interval numbers. Among these studies, only a few adapted uncertain differential
equation approaches driven by interval and fuzzy-valued calculus. This lacuna motivates us to con-
sider the proposed EPQ model under an uncertain decision environment and to describe it using
uncertain differential equations.

(iii) The philosophy of neutrosophy extends the idea of uncertainty incurred by fuzzy and intuitionistic
fuzzy logic. A fuzzy set comprises the notion of membership of elements generalizing the classical
set. An intuitionistic fuzzy has the additional feature of a non-membership grade. Furthermore, a
neutrosophic set contributes a more structured and generalized mathematical sense of uncertainty
with membership, non-membership, and hesitancy grades. Thus, we feel the necessity of discussing
the proposed EPQ model under uncertainty using neutrosophic sets and numbers.
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(iv) Surveying the applications of the neutrosophic numbers in the inventory models, we find some EOQ
and EPQ models in the existing literature. However, in those studies, the de-neutrosophication
technique is used very before the optimization. In other words, the dynamics of the neutrosophic-
based system in those studies are described in terms of crisp calculus. In this paper, the neutrosophic
differential equation is used to describe an inventory control model.

2.5. Novelty

The current article contributes to some novel perspectives on theoretical advancement. They are:

(i) Time has an obvious impact on the demand rate. In many newly organized supply bodies, the en-
thusiasm increases linearly with time. This concern was addressed in much literature. Also, present
stock controls the production rate of a manufacturing body, and this issue has been investigated by
many authors. However, we cannot find a single piece of literature where the impact of time on
the production rate through demand patterns and the stock has been traced. The proposed model is
distinguished in this context.

(ii) The proposed crisp model is analyzed, and the optimality criteria have been found in the cost mini-
mization objective. Then, we introduced uncertainty using the neutrosophic number, which carries a
more generalized sense of uncertainty compared to fuzzy and intuitionistic fuzzy numbers. The the-
ory of neutrosophic calculus and differential equations has been employed to analyze the uncertain
version of the proposed EPQ model.

(iii) In this current article, a novel de-neutrosophication formula has been introduced.

(iv) Moreover, the new de-neutrosophication formula, along with the neutrosophic differential equation
approach, provides better results compared to the crisp and old neutrosophic optimization tech-
niques regarding the cost minimization objective.

3. Mathematical preliminaries

Definition 1. [12] A fuzzy set is denoted by the pair (x, µ(x)), where x is an element in the universal
set X , and µ(x) represents the degree to which x belongs to X , with µ(x) falling within the range [0, 1].

Definition 2. [12] An intuitionistic fuzzy set is represented by the ordered triplet (x, µ(x), ν(x)),
where x is an element in the universal set X , µ(x) and ν(x) represents the degree of belongingness and
non-belongingness of x in X , respectively, and both µ(x) and ν(x) are within the range [0, 1] satisfying
the condition 0 ≤ µ(x) + ν(x) ≤ 1.

Definition 3. [12] A neutrosophic set is represented by the ordered triplet (x, T (x), I(x), F (x)), where
x is an element in the universal set X , T (x), I(x) and F (x) respectively signify the degrees of truthiness,
indeterminacy, and falsity of x in X . Each of T (x), I(x) and F (x) lies in the range [0, 1], fulfilling the
condition 0 ≤ T (x) + I(x) + F (x) ≤ 3.
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Definition 4. [12] A single-valued triangular neutrosophic (SVTN) number of Type 1, denoted as
G̃TN = (d1, d2, d3; s1, s2, s3; z1, z2, z3) is a specific type of neutrosophic set on the real numbers R. It is
characterized by its truth, indeterminacy, and falsity membership functions, which are defined as follows:

TG̃TN
(x) =



x−d1
d2−d1

when d1 ≤ x ≤ d2

1 when x = d2
d3−x
d3−d2

when d2 ≤ x ≤ d3

0 otherwiae

IG̃TN
(x) =



s1−x
s2−s1

when s1 ≤ x ≤ s2

0 when x = s2
x−s2
s3−s2

when s2 ≤ x ≤ s3

1 otherwiae

FG̃TN
(x) =



z1−x
z2−z1

when z1 ≤ x ≤ z2

0 when x = z2
x−z2
z3−z2

when z2 ≤ x ≤ z3

1 otherwiae

and 0 ≤ TG̃TN
(x) + IG̃TN

(x) + FG̃TN
(x) ≤ 3.

Definition 5. [12] The (α, β, γ)-cut of a neutrosophic set G̃ = (x, TG̃(x), IG̃(x), FG̃(x) over X is
indicated by [G̃]α,β,γ and is defined by [G̃]α,β,γ = {⟨x, TG̃(x), IG̃(x), FG̃(x)⟩ : TG̃ ≥ α, IG̃(x) ≤ β, FG̃ ≤
γ}. It is also known as a parametric representation or parametric form of the neutrosophic set.

Note: The parametric representation of an SVTN number G̃TNN = (d1, d2, d3; s1, s2, s3; z1, z2, z3)

includes six components. These six components are written as ⟨[G1(α), G2(α)], [G
′
1(β), G

′
2(β)], [G

′′
1(γ),

G′′
2(γ)]⟩, where G1(α) = d1 + α(d2 − d1), G2(α) = d3 − α(d3 − d2), G′

1(β) = s2 − β(s2 − s1),
G′

2(β) = s2 + β(s3 − s2), G′′
1(γ) = z2 − γ(z2 − z1) and G′′

2(γ) = z2 + γ(z3 − z2).

Definition 6. [31] Let g̃ : I → N be a neutrosophic-valued function given in the parametric repre-
sentation by g̃(t) = ⟨[g1(t;α), g2(t;α)], [g′1(t; β), g′2(t; β)], [g′′1(t; γ), g′′2(t; γ)]⟩,∀t ∈ I . The generalized
neutrosophic derivative of g̃(t) at t = c ∈ I is written as ˜̇g(c) = ⟨ġT (c), ġI(c), ġF (c)⟩ in which ġT (c),
ġI(c) and ġF (c) are defined as the following

1. ġT (c) = [min{ġ1(c;α), ġ2(c;α)}, max{ġ1(c;α), ġ2(c;α)}]

2. ġI(c) = [min{ġ′1(c; β), ġ′2(c; β)}, max{ġ′1(c; β), ġ′2(c;α)}]

3. ġF (c) = [min{ġ′′1(c; γ), ġ′′2(c; γ)}, max{ġ′′1(c; γ), ġ′′2(c; γ)}]

provided ġ1(c;α), ġ2(c;α), ġ′1(c; β), ġ
′
2(c; β), ġ′′1(c; γ) and ġ′′2(c; γ) are all exists. ˜̇g(c) is said to be a

type-1 derivative if the parametric representation of ˜̇g(c) is given by

˜̇g(c) = ⟨[ġ1(c;α), ġ2(c;α)], [ġ′1(c; β), ġ′2(c; β)], [ġ′′1(c; γ), ġ′′2(c; γ)]⟩
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and type-2 derivative if the parametric representation of ˜̇g(c) is given by

˜̇g(c) = ⟨[ġ2(c;α), ġ1(c;α)], [ġ′2(c; β), ġ′1(c; β)], [ġ′′2(c; γ), ġ′′1(c; γ)]⟩

4. Notations and assumptions of the proposed model

To explain the proposed model, the subsequent symbols and presumptions are employed.

4.1. Notations

All the notations related to the proposed model are described in Table 2.

Table 2. Descriptions of the notations and their description units

Notations Explanation Units
a The constant part of the demand pattern Constant
b Coefficient of time in the demand pattern Constant
m A constant part of the production rate Constant
n Coefficient of inventory level in the production rate Constant
l Coefficient of the demand pattern in the production rate Constant
θ Rate of deterioration Constant
ch Holding cost per unit item per unit time $/item/unit time
cp Production cost per unit item per unit time $/item/unit time
C0 Ordering cost $/cycle
K Production rate Unit item/unit time
t1 Production time (decision variable) Unit time
T Total cycle time (decision variable) Unit time
ϕ Total average profit (objective function) $

4.2. Assumptions

We consider the phenomenon of a newly launched production plant. There are ambiguities about the
demand pattern, and the demand for the produced items increases gradually as time passes due to the
recognition of the newly built production plan among the consumer communities. The production of
items is dependent on the stock of items already produced and on the demand pattern. Also, the deteri-
oration of items in stock is taken into consideration. Mathematically, the proposed model is developed
based on the assumptions listed below:

(a) The demand rate of the produced item is dependent on time, i.e., over time, the rate of demand is
steadily rising as a linear function of time. D(t) = a+ bt, where a, b are positive constants.

(b) The production rate is dependent on the hand stock level as well as on the demand rate. i.e., K =

m− nq(t) + lD(t) = (m+ al)− nq(t) + lbt, where m,n, l are positive constants.

(c) The products in stock have deteriorated at a constant rate θ(0 ≤ θ ≤ 1) throughout the whole lot-
sizing cycle.

(d) The lead time is zero.

(e) The rate of replenishment is infinite, yet the lot size is finite.
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(f) No shortage is considered in the whole lot-sizing cycle.

(g) The time horizon is finite.

5. Formulation of the proposed crisp EPQ model

The production inventory model is started at t = 0 with stock- and demand-dependent production rates.
The production phase is stopped at t = t1 making the highest possible stocks of the whole production-
supply cycle. The lot-sizing cycle has faced decay in the inventory level due to deterioration at a constant
rate and a time-dependent demand rate. The whole lot-sizing cycle is terminated at t = T (see Figure 1).
The mathematical correspondence of the mentioned set-up can be represented by the set of subsequent
two differential equations.

Figure 1. Graphical representation of the proposed EOQ mode

The governing differential equation of the production time (0 ≤ t ≤ t1) along with the boundary
conditions is given by

dq(t)

dt
= {(m+ al)− nq(t) + lbt} − {a+ bt} − θq(t)

with q(0) = 0, q(t1) = Q. That means,

dq(t)

dt
= m− (1− l)a− (1− l)bt− (θ + n)q(t) (1)

and the governing differential equation of the non-production time (t1 ≤ t ≤ T ) of the lot cycle is given
by

dq(t)

dt
= −{a+ bt} − θq(t) (2)

with q(T ) = 0.
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Solving the systems represented by equations (1) and (2), the following results are obtained: the stock
level in the productive time interval (0 ≤ t ≤ t1) is obtained as

q(t) =
k1k3 + k2

k2
1

{1− e−k1t} − k2
k1

t (3)

where k1 = θ + n, k2 = b(1− l) and k3 = m− a(1− l).
The stock level in the non-productive time interval (t1 ≤ t ≤ T ) is given by

q(t) =
b− θ(a+ bt)

θ2
− b− θ(a+ bT )

θ2
eθ(T−t) (4)

The highest level of stock at t = t1 is obtained as

Q =
k1k3 + k2

k2
1

{1− e−k1t1} − k2
k1

t1 (5)

Using the continuity of the stock function at t = t1 from equations (3) and (4), the following constraint
is obtained

b− θ(a+ bt1)

θ2
− b− θ(a+ bT )

θ2
eθ(T−t1) =

k1k3 + k2
k2
1

{1− e−k1t1} − k2
k1

t1 (6)

Several relevant costs associated with the model are formulated as follows:

HC = ch

[∫ t1

0

q(t)dt+

∫ T

t1

q(t)dt

]

= ch

[
k1k3 + k2

k3
1

{e−k1t1 + t1k1 − 1} − k2t
2
1

2k1
+

b

2θ
(t21 − T 2) +

b− θ(a+ bT )

θ3
{1− eθ(T−t1)}

]

Production Cost (PC): the production cost is given by

PC = cp

[∫ t1

0

{(m+ al)− nq(t) + lbt}dt

]

= cp

[
(m+ al)t1 +

lbt21
2

− n
{k1k3 + k2

k3
1

{e−k1t1 + t1k1 − 1} − k2t
2
1

2k1

}]

Setup Cost (SC): the setup cost is taken as constant C0 throughout the inventory cycle.
Therefore, the total average cost of the production system during the entire circle is given by

Φ(t1, T ) =
HC + PC + C0

T
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Φ(t1, T ) =
1

T

[
ch

[k1k3 + k2
k3
1

{e−k1t1 + t1k1 − 1} − k2t
2
1

2k1
+

b

2θ
(t21 − T 2) +

b− θ(a+ bT )

θ3

×{1− eθ(T−t1)}
]
+ cp

[
(m+ al)t1 +

lbt21
2

− n
{k1k3 + k2

k3
1

{e−k1t1 + t1k1 − 1}

−k2t
2
1

2k1

}]
+ C0

]

Therefore, the cost-minimization problem will be

Minimize Φ(t1, T ) =
HC+PC+C0

T

Subject to Q = k1k3+k2
k21

{1− e−k1t1} − k2
k1
t1

b−θ(a+bt1)
θ2

− b−θ(a+bT )
θ2

eθ(T−t1) = k1k3+k2
k21

{1− e−k1t1} − k2
k1
t1

0 ≤ t1 ≤ T

(7)

Here, the goal is to investigate the convexity of the average cost function Φ(t1, T ) concerning the decision
variables t1 and T .

Theorem 1. The average cost function Φ(t1, T ) is strictly pseudo-convex in t1 and T hence, Φ(t1, T )
attains the minimum value at the point (t∗1, T

∗), provided

(ch − ncp)(k1k3 + k2)

k1
e−k1t1 +

chb

θ
+ cplb > (ch − ncp)

k2
k1

+
chb

θ
eθ(T−t1) (8)

Proof. For convenience, let us take the average cost function Φ(t1, T ) as

Φ(t1, T ) =
Φ1(t1, T )

Φ2(t1, T )

where Φ1(t1, T ) = ch

[
k1k3+k2

k31
{e−k1t1 + t1k1 − 1} − k2t21

2k1
+ b

2θ
(t21 − T 2) + b−θ(a+bT )

θ3
{1 − eθ(T−t1)}

]
+

cp

[
(m+ al)t1 +

lbt21
2

− n
{

k1k3+k2
k31

{e−k1t1 + t1k1 − 1} − k2t21
2k1

}]
+ C0 and Φ2(t1, T ) = T .

Now, Φ1(t1, T ) can be written as

Φ1(t1, T ) = C0 +
A

k3
1

(e−k1t1 + t1k1 − 1) + cp(m+ al)t1 +
B

2
t21 −

C

2
t21 −

chb

2θ
T 2

+
ch
θ3
{b− θ(a+ bT )}{1− e(θ(T − t1))}

where A = (ch − ncp)(k1k3 + k2), B = chb
θ

+ cplb and C = (ch − ncp)
k2
k1

.
To construct the Hessian matrix for Φ1(t1, T ), all the first and second-order partial derivatives of Φ1(t1, T )

concerning t1 and T are calculated as

∂Φ1(t1, T )

∂t1
=

A

k2
1

(1− e−k1t1) + cp(m+ al) +Bt1 − Ct1 +
ch
θ2
{b− θ(a+ bT )}eθ(T−t1)
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∂Φ1(t1, T )

∂T
= −chb

θ
T − ch

θ2
{b− θ(a+ bT )eθ(T−t1)}

∂2Φ1(t1, T )

∂t21
=

A

k1
e−k1t1 +B − C − ch

θ
{b− θ(a+ bT )}eθ(T−t1)

∂2Φ1(t1, T )

∂t1∂T
= −ch(a+ bT )eθ(T−t1) =

∂2Φ1(t1, T )

∂T∂t1

∂2Φ1(t1, T )

∂t21
= ch(a+ bT )eθ(T−t1)

Therefore, the Hessian matrix corresponding to Φ1(t1, T ) can be expressed as

Hii =

[
∂2Φ1(t1,T )

∂t21

∂2Φ1(t1,T )
∂t1∂T

∂2Φ1(t1,T )
∂T∂t1

∂2Φ1(t1,T )
∂T 2

]

The first principal minor is

|H11| =
A

k1
e−k1t1 +B − C − ch

θ
{b− θ(a+ bT )}eθ(T−t1)

= ch(a+ bT )eθ(T−t1) +
A

k1
e−k1t1 +B − C − chb

θ
eθ(T−t1)

Clearly, k1 = θ + n > 0. As 0 < l < 1, k2 = b(1 − l) > 0. Again, the fixed part of the production rate
function is greater than the fixed part of the market demand; therefore, k3 = (m− a) + al > 0. Also, it
is assumed that ch > ncp, therefore, A,B and C are all positive. Hence |H11| > 0 if

A

k1
e−k1t1 +B > C +

chb

θ
eθ(T−t1)

The second principal minor is

|H22| =
∂2Φ1(t1, T )

∂t21

∂2Φ1(t1, T )

∂T 2
− ∂2Φ1(t1, T )

∂t1∂T

∂2Φ1(t1, T )

∂T∂t1

= ch(a+ bT )eθ(T−t1)

[
A

k1
e−k1t1 +B − C − chb

θ
eθ(T−t1)

]

Clearly, |H22| is positive when (8) is preserved.
Therefore, Φ1(t1, T ) is a positive definite and hence it is a convex function of t1 and T . Also Φ2(t1, T )

is non-negative and differentiable concerning t1 and T . Furthermore, Φ2(t1, T ) is positive and affine
function. Consequently, the average cost function Φ(t1, T ) is strictly a pseudo-convex function in t1 and
T , and it has a unique minimum value. □

The first-order partial derivatives of Φ(t1, T ) concerning t1 and T equal to zero yield the necessary
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conditions for minimizing the total cost Φ(t1, T ).

∂Φ(t1, T )

∂t1
=

1

T

[
(ch − ncp)(k1k3 + k2)

k2
1

(1− e−k1t1) + cp(m+ al) +
(chb

θ
+ cplb

)
t1 − (ch − ncp)

k2
k1

t1

+
ch
θ2
{b− θ(a+ bT )}eθ(T−t1)

]
= 0

which gives

(ch − ncp)(k1k3 + k2)

k2
1

(1− e−k1t1) + cp(m+ al) +
(chb

θ
+ cplb

)
t1 − (ch − ncp)

k2
k1

t1

+
ch
θ2
{b− θ(a+ bT )}eθ(T−t1) = 0 (9)

and
∂Φ(t1, T )

∂T
= −Φ1(t1, T )

T 2
+

∂Φ1(t1, T )

∂T
= 0

which gives

C0 +
(ch − ncp)(k1k3 + k2)

k3
1

(e−k1t1 + t1k1 − 1) + cp(m+ al)t1 +
(chb

θ
+ cplb

)t21
2
− (ch − ncp)

×k2t
2
1

2k1
− chb

2θ
T 2 +

ch
θ3
{b− θ(a+ bT )}{1− eθ(T−t1)}+ chT

θ2
{b− θ(a+ bT )eθ(T−t1)} = 0 (10)

6. Proposed EPQ model in a neutrosophic environment

In this subsection, we reconstruct the manufacturing-supply scenario in the neutrosophic arena, letting
three parameters ã, b̃ and θ̃ as neutrosophic numbers. Then, the neutrosophic counterpart of the equations
(1) and (2) is given as follows:
For the productive phase (0 ≤ t ≤ t1):

dq̃(t)
dt

= m− (1− l)ã− (1− l)b̃t− (θ̃ + n)q̃(t)

with q̃(0) = 0, q̃(t1) = Q̃
(11)

For the non-productive phase (t1 ≤ t ≤ T ):
dq̃(t)
dt

= −{ã+ b̃t} − θ̃q̃(t)

with q̃(t1) = Q̃, q̃(T ) = 0
(12)

Now the concept of generalized neutrosophic differentiation is applied to explain the neutrosophic dif-
ferential equations (11) and (12). Suppose (α, β, γ)-cut of the neutrosophic valued function q̃(t) is given
as [

q̃(t)
]
(α,β,γ)

= ⟨[q1(t;α), q2(t;α)], [q′1(t; β), q′2(t; β)], [q′′1(t; γ), q′′2(t; γ)]⟩



Acc
ep

ted
man

us
cri

pt

14 M. Rahaman et al.

Also, let the parametric representations, i.e., (α, β, γ)-cut of the neutrosophic number ã, b̃ and θ̃ be given
as [

θ̃
]
(α,β,γ)

= ⟨[θ1(α), θ2(α)], [θ′1(β), θ′2(β)], [θ′′1(γ), θ′′2(γ)]⟩[
ã
]
(α,β,γ)

= ⟨[a1(α), a2(α)], [a′1(β), a′2(β)], [a′′1(γ), a′′2(γ)]⟩[
b̃
]
(α,β,γ)

= ⟨[b1(α), b2(α)], [b′1(β), b′2(β)], [b′′1(γ), b′′2(γ)]⟩

The following two cases are considered according to the two types of generalized neutrosophic deriva-
tives of the neutrosophic valued function q̃(t).

Case 1: When q̃(t) is type-1 neutrosophic differentiable
Then, the differential equation (11) represents the productive phase (0 ≤ t ≤ t1) and is turned into a
parametric form as

⟨[q̇1(t;α), q̇2(t;α)], [q̇′1(t; β), q̇′2(t; β)], [q̇′′1(t; γ), q̇′′2(t; γ)]⟩ = m− (1− l)⟨[a1(α), a2(α)],
[a′1(β), a

′
2(β)], [a

′′
1(γ), a

′′
2(γ)]⟩ − (1− l)⟨[b1(α), b2(α)], [b′1(β), b′2(β)], [b′′1(γ), b′′2(γ)]⟩t

−
{
⟨[θ1(α), θ2(α)], [θ′1(β), θ′2(β)], [θ′′1(γ), θ′′2(γ)]⟩+ n

}
⟨[q1(t;α), q2(t;α)],

[q′1(t; β), q
′
2(t; β)], [q

′′
1(t; γ), q

′′
2(t; γ)]⟩

The above expression gives a system of crisp differential equations as follows:

q̇1(t;α) = m− (1− l)a2(α)− (1− l)b2(α)t− {θ2(α) + n}q2(t;α) (13)

q̇2(t;α) = m− (1− l)a1(α)− (1− l)b1(α)t− {θ1(α) + n}q1(t;α) (14)

q̇′1(t; β) = m− (1− l)a′2(β)− (1− l)b′2(β)t− {θ′2(β) + n}q′2(t; β) (15)

q̇′2(t; β) = m− (1− l)a′1(β)− (1− l)b′1(β)t− {θ′1(β) + n}q′1(t; β) (16)

q̇′′1(t; γ) = m− (1− l)a′′2(γ)− (1− l)b′′2(γ)t− {θ′′2(γ) + n}q′′2(t; γ) (17)

q̇′′2(t; γ) = m− (1− l)a′′1(γ)− (1− l)b′′1(γ)t− {θ′′1(γ) + n}q′′1(t; γ) (18)

with q1(0;α) = q2(0;α) = q′1(0; β) = q′2(0; β) = q′′1(0; γ) = q′′2(0; γ) = 0.
Equations (13) and (14) can be simplified asq̇1(t;α) = −u2q2(t;α)− v2t+ w2

q̇2(t;α) = −u1q1(t;α)− v1t+ w1

(19)

where u2 = θ1(α) + n, u1 = θ2(α) + n, v1 = (1− l)b1(α), v2 = (1− l)b2(α), w1 = m− (1− l)a1(α)

and w2 = m− (1− l)a2(α).
The solution of the system (19) is given byq1(t;α) = c1e

√
u1u2t + c2e

−√
u1u2t + u2(w1−v1t)+v2

u1u2

q2(t;α) = −
√

u1

u2
c1e

√
u1u2t +

√
u1

u2
c2e

−√
u1u2t + u1(w2−v2t)+v1

u1u2

(20)
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Using the initial information q1(0;α) = 0 and q2(0;α) = 0, the values of the constants c1 and c2 are
obtained as c1 = −

√
u1(u2w1+v2)−

√
u2(u1w2+v1)

2
√
u1u1u2

c2 = −
√
u1(u2w1+v2)+

√
u2(u1w2+v1)

2
√
u1u1u2

(21)

Similarly, the solution of the remaining system of equations (15)-(16) and (17)-(18) are obtained as

q′1(t; β) = c3e
√
u3u4t + c4e

−√
u3u4t + u4(w3−v3t)+v4

u3u4

q′2(t; β) = −
√

u3

u4
c3e

√
u3u4t +

√
u3

u4
c4e

−√
u3u4t + u3(w4−v4t)+v3

u3u4

q′′1(t; γ) = c5e
√
u5u6t + c6e

−√
u5u6t + u6(w5−v5t)+v6

u5u6

q′′2(t; γ) = −
√

u5

u6
c5e

√
u5u6t +

√
u5

u6
c6e

−√
u5u6t + u5(w6−v6t)+v5

u5u6

(22)

where ui, vi and wi (i = 3, 4, 5, 6) are taken as follows
u3 = θ′1(β) + n, v3 = b′1(β)(1− l), w3 = m+ a′1(β)(l − 1)

u4 = θ′2(β) + n, v4 = b′2(β)(1− l), w4 = m+ a′2(β)(l − 1)

u5 = θ′′1(γ) + n, v5 = b′′1(γ)(1− l), w5 = m+ a′′1(γ)(l − 1)

u6 = θ′′2(γ) + n, v6 = b′′2(γ)(1− l), w6 = m+ a′′2(γ)(l − 1)

and the constants are c3, c4, c5 and c4 are given as

c3 = −
√
u3(u4w3+v4)−

√
u4(u3w4+v3)

2
√
u3u3u4

c4 = −
√
u3(u4w3+v4)+

√
u4(u3w4+v3)

2
√
u3u3u4

c5 = −
√
u5(u6w5+v6)−

√
u6(u5w6+v5)

2
√
u5u5u6

c6 = −
√
u5(u6w5+v6)+

√
u6(u5w6+v5)

2
√
u5u5u6

Again, the neutrosophic differential equation (12) represents the non-productive phase (t1 ≤ t ≤ T ) is
turned in the parametric form,

⟨[q̇1(t;α), q̇2(t;α)], [q̇′1(t; β), q̇′2(t; β)], [q̇′′1(t; γ), q̇′′2(t; γ)]⟩ = −⟨[a1(α), a2(α)], [a′1(β), a′2(β)],
[a′′1(γ), a

′′
2(γ)]⟩ − ⟨[b1(α), b2(α)], [b′1(β), b′2(β)], [b′′1(γ), b′′2(γ)]⟩t− ⟨[θ1(α), θ2(α)],

[θ′1(β), θ
′
2(β)], [θ

′′
1(γ), θ

′′
2(γ)]⟩⟨[q1(t;α), q2(t;α)], [q′1(t; β), q′2(t; β)], [q′′1(t; γ), q′′2(t; γ)]⟩

which gives a system of differential equations as follows:

q̇1(t;α) = −a2(α)− b2(α)t− θ2(α)q2(t;α) (23)

q̇2(t;α) = −a1(α)− b1(α)t− θ1(α)q1(t;α) (24)

q̇′1(t; β) = −a′2(β)− b′2(β)t− θ′2(β)q
′
2(t; β) (25)

q̇′2(t; β) = −a′1(β)− b′1(β)t− θ′1(β)q
′
1(t; β) (26)

q̇′′1(t; γ) = −a′′2(γ)− b′′2(γ)t− θ′′2(γ)q
′′
2(t; γ) (27)

q̇′′2(t; γ) = −a′′1(γ)− b′′1(γ)t− θ′′1(γ)q
′′
1(t; γ) (28)
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with q1(T ;α) = q2(T ;α) = q′1(T ; β) = q′2(T ; β) = q′′1(T ; γ) = q′′2(T ; γ) = 0.
By solving the equations (23) and (24) one can get

q1(t;α) = c7e
√

θ1(α)θ2(α)t + c8e
−
√

θ1(α)θ2(α)t + b2(α)−θ2(α)(b1(α)t+a1(α))
θ1(α)θ2(α)

q2(t;α) = c7

√
θ1(α)
θ2(α)

e
√

θ1(α)θ2(α)t + c8

√
θ1(α)
θ2(α)

e−
√

θ1(α)θ2(α)t + b1(α)−θ1(α)(b2(α)t+a2(α))
θ1(α)θ2(α)

(29)

Using the initial information q1(T ;α) = 0, q2(T ;α) = 0 the values of the constants c7 and c8 are
obtained as



c7 = − e−
√

θ1(α)θ2(α)T

2
√

θ1(α)θ1(α)θ2(α)

[√
θ1(α)

{
b2(α)− θ2(α)(b1(α)T + a1(α))

}
−

√
θ2(α)

{
b1(α)

−θ1(α)(b2(α)T + a2(α))
}]

c8 = − e
√

θ1(α)θ2(α)T

2
√

θ1(α)θ1(α)θ2(α)

[√
θ1(α)

{
b2(α)− θ2(α)(b1(α)T + a1(α))

}
+
√

θ2(α)
{
b1(α)

−θ1(α)(b2(α)T + a2(α))
}]

(30)

Similarly, by solving the remaining equations (25)-(28) one can get,



q′1(t; β) = c9e
√

θ′1(β)θ
′
2(β)t + c10e

−
√

θ′1(β)θ
′
2(β)t +

b′2(β)−θ′2(β)(b
′
1(β)t+a′1(β))

θ′1(β)θ
′
2(β)

q′2(t; β) = c9

√
θ′1(β)

θ′2(β)
e
√

θ′1(β)θ
′
2(β)t + c10

√
θ′1(β)

θ′2(β)
e−

√
θ′1(β)θ

′
2(β)t +

b′1(β)−θ′1(β)(b
′
2(β)t+a′2(β))

θ′1(β)θ
′
2(β)

q′′1(t; γ) = c11e
√

θ′′1 (γ)θ
′′
2 (γ)t + c12e

−
√

θ′′1 (γ)θ
′′
2 (γ)t +

b′′2 (γ)−θ′′2 (γ)(b
′′
1 (γ)t+a′′1 (γ))

θ′′1 (γ)θ
′′
2 (γ)

q′′2(t; γ) = c11

√
θ′′1 (γ)

θ′′2 (γ)
e
√

θ′′1 (γ)θ
′′
2 (γ)t + c12

√
θ′′1 (γ)

θ′′2 (γ)
e−

√
θ′′1 (γ)θ

′′
2 (γ)t +

b′′1 (γ)−θ′′1 (γ)(b
′′
2 (γ)t+a′′2 (γ))

θ′′1 (γ)θ
′′
2 (γ)

(31)
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Where the values of the constants c9, c10, c11 and c12 are obtained as

c9 = − e−
√

θ′1(β)θ
′
2(β)T

2
√

θ′1(β)θ
′
1(β)θ

′
2(β)

[√
θ′1(β)

{
b′2(β)− θ′2(β)(b

′
1(β)T + a′1(β))

}
−
√

θ′2(β)
{
b′1(β)

−θ′1(β)(b
′
2(β)T + a′2(β))

}]
c10 = − e

√
θ′1(β)θ

′
2(β)T

2
√

θ′1(β)θ
′
1(β)θ

′
2(β)

[√
θ′1(β)

{
b′2(β)− θ′2(β)(b

′
1(β)T + a′1(β))

}
+
√

θ′2(β)
{
b′1(β)

−θ′1(β)(b
′
2(β)T + a′2(β))

}]
c11 = − e−

√
θ′′1 (γ)θ

′′
2 (γ)T

2
√

θ′′1(γ)θ
′′
1(γ)θ

′′
2(γ)

[√
θ′′1(γ)

{
b′′2(γ)− θ′′2(γ)(b

′′
1(γ)T + a′′1(γ))

}
−
√

θ′′2(γ)
{
b′′1(γ)

−θ′′1(γ)(b
′′
2(γ)T + a′′2(γ))

}]
c12 = − e

√
θ′′1 (γ)θ

′′
2 (γ)T

2
√

θ′′1(γ)θ
′′
1(γ)θ

′′
2(γ)

[√
θ′′1(γ)

{
b′′2(γ)− θ′′2(γ)(b

′′
1(γ)T + a′′1(γ))

}
+
√
θ′′2(γ)

{
b′′1(γ)

−θ′′1(γ)(b
′′
2(γ)T + a′′2(γ))

}]

Some relevant costs:
Therefore, the holding cost, H̃C = ⟨[HC1(α), HC2(α)], [HC ′

1(β), HC ′
2(β)], [HC ′′

1 (γ), HC ′′
2 (γ)]⟩ given

by

HC1(α) = ch

[ ∫ t1

0

q1(t;α)dt+

∫ T

t1

q2(t;α)dt

]
= ch

[ ∫ t1

0

{
c1e

√
u1u2t + c2e

−√
u1u2t +

u2(w1 − v1t) + v2
u1u2

}
dt+

∫ T

t1

{
c7e

√
θ1(α)θ2(α)t

+c8e
−
√

θ1(α)θ2(α)t +
b2(α)− θ2(α)(b1(α)t+ a1(α))

θ1(α)θ2(α)

}
dt

]
= ch

[{
c1√
u1u2

(
e
√
u1u2t1 − 1

)
− c2√

u1u2

(
e−

√
u1u2t1 − 1

)
+

2(u2w1 + v2)t1 − u2v1t
2
1

2u1u2

}
+

{
c7√

θ1(α)θ2(α)

(
e
√

θ1(α)θ2(α)T − e
√

θ1(α)θ2(α)t1

)
+

c8√
θ1(α)θ2(α)

(
e−

√
θ1(α)θ2(α)T

−e−
√

θ1(α)θ2(α)t1

)
− θ2(α)b1(α)(T

2 − t21) + 2(θ2(α)a1(α)− b2(α))(T − t1)

2θ1(α)θ2(α)

}]
Similarly, solving the other components of the holding cost as
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HC2(α) = ch

[{
c1
u2

(
1− e

√
u1u2t1

)
− c2

u2

(
1− e−

√
u1u2t1

)
+

2(u1w2 + v1)t1 − u1v2t
2
1

2u1u2

}
+

{
c7

θ2(α)

(
e
√

θ1(α)θ2(α)t1 − e
√

θ1(α)θ2(α)T

)
+

c8
θ2(α)

(
e−

√
θ1(α)θ2(α)t1

−e−
√

θ1(α)θ2(α)T

)
− θ1(α)b2(α)(T

2 − t21) + 2(θ1(α)a2(α)− b1(α))(T − t1)

2θ1(α)θ2(α)

}]

HC ′
1(β) = ch

[{
c3√
u3u4

(
e
√
u3u4t1 − 1

)
− c4√

u3u4

(
e−

√
u3u4t1 − 1

)
+

2(u4w3 + v4)t1 − u4v3t
2
1

2u3u4

}
+

{
c9√

θ′1(β)θ
′
2(β)

(
e
√

θ′1(β)θ
′
2(β)T − e

√
θ′1(β)θ

′
2(β)t1

)
+

c10√
θ′1(β)θ

′
2(β)

(
e−

√
θ′1(β)θ

′
2(β)T

−e−
√

θ′1(β)θ
′
2(β)t1

)
− θ′2(β)b

′
1(β)(T

2 − t21) + 2(θ′2(β)a
′
1(β)− b′2(β))(T − t1)

2θ′1(β)θ
′
2(β)

}]

HC ′
2(β) = ch

[{
c3
u4

(
1− e

√
u3u4t1

)
− c4

u4

(
1− e−

√
u3u4t1

)
+

2(u3w4 + v3)t1 − u3v4t
2
1

2u3u4

}
+

{
c9

θ′2(β)

(
e
√

θ′1(β)θ
′
2(β)t1 − e

√
θ′1(β)θ

′
2(β)T

)
+

c10
θ′2(β)

(
e−

√
θ′1(β)θ

′
2(β)t1

−e−
√

θ′1(β)θ
′
2(β)T

)
− θ′1(β)b

′
2(β)(T

2 − t21) + 2(θ′1(β)a
′
2(β)− b′1(β))(T − t1)

2θ′1(β)θ
′
2(β)

}]

HC ′′
1 (γ) = ch

[{
c5√
u5u6

(
e
√
u5u6t1 − 1

)
− c6√

u5u6

(
e−

√
u5u6t1 − 1

)
+

2(u6w5 + v6)t1 − u6v5t
2
1

2u5u6

}
+

{
c11√

θ′′1(γ)θ
′′
2(γ)

(
e
√

θ′′1 (γ)θ
′′
2 (γ)T − e

√
θ′′1 (γ)θ

′′
2 (γ)t1

)
+

c12√
θ′′1(γ)θ

′′
2(γ)

(
e−

√
θ′′1 (γ)θ

′′
2 (γ)T

−e−
√

θ′′1 (γ)θ
′′
2 (γ)t1

)
− θ′′2(γ)b

′′
1(γ)(T

2 − t21) + 2(θ′′2(γ)a
′′
1(γ)− b′′2(γ))(T − t1)

2θ′′1(γ)θ
′′
2(γ)

}]

HC ′′
2 (γ) = ch

[{
c5
u6

(
1− e

√
u5u6t1

)
− c6

u6

(
1− e−

√
u5u6t1

)
+

2(u5w6 + v5)t1 − u5v6t
2
1

2u5u6

}
+

{
c11

θ′′2(γ)

(
e
√

θ′′1 (γ)θ
′′
2 (γ)t1 − e

√
θ′′1 (γ)θ

′′
2 (γ)T

)
+

c12
θ′′2(γ)

(
e−

√
θ′′1 (γ)θ

′′
2 (γ)t1

−e−
√

θ′′1 (γ)θ
′′
2 (γ)T

)
− θ′′1(γ)b

′′
2(γ)(T

2 − t21) + 2(θ′′1(γ)a
′′
2(γ)− b′′1(γ))(T − t1)

2θ′′1(γ)θ
′′
2(γ)

}]
Therefore, the production cost P̃C = ⟨[PC1(α), PC2(α)], [PC ′

1(β), PC ′
2(β)], [PC ′′

1 (γ), PC ′′
2 (γ)]⟩

during the entire circle is given by
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PC1(α) = cp

[ ∫ t1

0

{
(m+ la1(α))− nq1(t;α) + lb1(α)t

}
dt

]
= cp

[
(m+ la1(α))t1 + lb1(α)

t21
2
− n

∫ t1

0

q1(t;α)dt

]
= cp

[
(m+ la1(α))t1 + lb1(α)

t21
2
− n

{
c1√
u1u2

(
e
√
u1u2t1 − 1

)
− c2√

u1u2

(
e−

√
u1u2t1 − 1

)
+
2(u2w1 + v2)t1 − u2v1t

2
1

2u1u2

}]

PC2(α) = cp

[ ∫ t1

0

{
(m+ la2(α))− nq2(t;α) + lb2(α)t

}
dt

]
= cp

[
(m+ la2(α))t1 + lb2(α)

t21
2
− n

∫ t1

0

q2(t;α)dt

]
= cp

[
(m+ la2(α))t1 + lb2(α)

t21
2
− n

{
c1
u2

(
1− e

√
u1u2t1

)
− c2

u2

(
1− e−

√
u1u2t1

)
+
2(u1w2 + v1)t1 − u1v2t

2
1

2u1u2

}]

PC ′
1(β) = cp

[
(m+ la′1(β))t1 + lb′1(β)

t21
2
− n

{
c3√
u3u4

(
e
√
u3u4t1 − 1

)
− c4√

u3u4

(
e−

√
u3u4t1 − 1

)
+
2(u4w3 + v4)t1 − u4v3t

2
1

2u3u4

}]

PC ′′
1 (β) = cp

[
(m+ la′2(β))t1 + lb′2(β)

t21
2
− n

{
c3
u4

(
1− e

√
u3u4t1

)
− c4

u4

(
1− e−

√
u3u4t1

)
+
2(u3w4 + v3)t1 − u3v4t

2
1

2u3u4

}]

PC ′′
2 (γ) = cp

[
(m+ la′′1(γ))t1 + lb′′1(γ)

t21
2
− n

{
c5√
u5u6

(
e
√
u5u6t1 − 1

)
− c6√

u5u6

(
e−

√
u5u6t1 − 1

)
+
2(u6w5 + v6)t1 − u6v5t

2
1

2u5u6

}]

PC ′′
2 (γ) = cp

[
(m+ la′′2(γ))t1 + lb′′2(γ)

t21
2
− n

{
c5
u6

(
1− e

√
u5u6t1

)
− c6

u6

(
1− e−

√
u5u6t1

)
+
2(u5w6 + v5)t1 − u5v6t

2
1

2u5u6

}]



Acc
ep

ted
man

us
cri

pt

20 M. Rahaman et al.

Therefore, the total average cost of the system during the entire circle can be obtained in the parametric
form as [Φ̃]α,β,γ = ⟨[Φ1(α), Φ2(α)], [Φ

′
1(β), Φ

′
2(β)], [Φ

′′
1(γ), Φ

′′
2(γ)]⟩, where Φ1(α) =

HC1(α)+PC1(α)+C0

T
,

Φ2(α) =
HC2(α)+PC2(α)+C0

T
, Φ′

1(β) =
HC′

1(β)+PC′
1(β)+C0

T
, Φ′

2(β) =
HC′

2(β)+PC′
2(β)+C0

T
,

Φ′′
1(γ) =

HC′′
1 (γ)+PC′′

1 (γ)+C0

T
and Φ′′

2(γ) =
HC′′

2 (γ)+PC′′
2 (γ)+C0

T
.

Therefore, mathematically, the minimization problem concerning the production inventory model in
the case of type-1 neutrosophic differentiability of q̃(t) is obtained as follows:

Minimize Φ1(α)

Minimize Φ2(α)

Minimize Φ′
1(β)

Minimize Φ′
2(β)

Minimize Φ′′
1(γ)

Minimize Φ′′
2(γ)

Subject to T ≥ t1 ≥ 0

0 ≤ α, β, γ ≤ 1 with α + β + γ ≤ 3

(32)

Case 2: When q̃(t) is type-2 neutrosophic differentiable
Then, the differential equation (11) representing the productive phase (0 ≤ t ≤ t1) is turned into a
parametric form,

⟨[q̇2(t;α), q̇1(t;α)], [q̇′2(t; β), q̇′1(t; β)], [q̇′′2(t; γ), q̇′′1(t; γ)]⟩ = m− (1− l)⟨[a1(α), a2(α)],
[a′1(β), a

′
2(β)], [a

′′
1(γ), a

′′
2(γ)]⟩ − (1− l)⟨[b1(α), b2(α)], [b′1(β), b′2(β)], [b′′1(γ), b′′2(γ)]⟩t

−
{
⟨[θ1(α), θ2(α)], [θ′1(β), θ′2(β)], [θ′′1(γ), θ′′2(γ)]⟩+ n

}
⟨[q1(t;α), q2(t;α)],

[q′1(t; β), q
′
2(t; β)], [q

′′
1(t; γ), q

′′
2(t; γ)]⟩

The above expression gives a system of crisp differential equations as follows:

q̇2(t;α) = m− (1− l)a2(α)− (1− l)b2(α)t− {θ2(α) + n}q2(t;α) (33)

q̇1(t;α) = m− (1− l)a1(α)− (1− l)b1(α)t− {θ1(α) + n}q1(t;α) (34)

q̇′2(t; β) = m− (1− l)a′2(β)− (1− l)b′2(β)t− {θ′2(β) + n}q′2(t; β) (35)

q̇′1(t; β) = m− (1− l)a′1(β)− (1− l)b′1(β)t− {θ′1(β) + n}q′1(t; β) (36)

q̇′′2(t; γ) = m− (1− l)a′′2(γ)− (1− l)b′′2(γ)t− {θ′′2(γ) + n}q′′2(t; γ) (37)

q̇′′1(t; γ) = m− (1− l)a′′1(γ)− (1− l)b′′1(γ)t− {θ′′1(γ) + n}q′′1(t; γ) (38)

with q1(0;α) = q2(0;α) = q′1(0; β) = q′2(0; β) = q′′1(0; γ) = q′′2(0; γ) = 0.
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Now, the equation (34) can be simplified asq̇1(t;α) + u1q1(t;α) = w1 − v1t

q1(0;α) = 0
(39)

The solution of equation (39) is obtained as

q1(t;α) =
u1w1 + v1

u2
1

(1− e−u1t)− v1
u1

t (40)

Proceeding similarly, the solution of the equations (33) and (35)-(38) are obtained as

q2(t;α) =
u2w2+v2

u2
2

(1− e−u2t)− v2
u2
t

q′1(t; β) =
u3w3+v3

u2
3

(1− e−u3t)− v3
u3
t

q′2(t; β) =
u4w4+v4

u2
4

(1− e−u4t)− v4
u4
t

q′′1(t; γ) =
u5w5+v5

u2
5

(1− e−u5t)− v5
u5
t

q′′2(t; γ) =
u6w6+v6

u2
6

(1− e−u6t)− v6
u6
t

(41)

Again, the neutrosophic differential equation (12) represents the non-productive phase (t1 ≤ t ≤ T )

in case of type-2 neutrosophic differentiability is turned in the parametric form,

⟨[q̇2(t;α), q̇1(t;α)], [q̇′2(t; β), q̇′1(t; β)], [q̇′′2(t; γ), q̇′′1(t; γ)]⟩ = −⟨[a1(α), a2(α)], [a′1(β), a′2(β)],
[a′′1(γ), a

′′
2(γ)]⟩ − ⟨[b1(α), b2(α)], [b′1(β), b′2(β)], [b′′1(γ), b′′2(γ)]⟩t− ⟨[θ1(α), θ2(α)],

[θ′1(β), θ
′
2(β)], [θ

′′
1(γ), θ

′′
2(γ)]⟩⟨[q1(t;α), q2(t;α)], [q′1(t; β), q′2(t; β)], [q′′1(t; γ), q′′2(t; γ)]⟩

which gives a system of differential equations as follows:

q̇2(t;α) = −a2(α)− b2(α)t− θ2(α)q2(t;α) (42)

q̇1(t;α) = −a1(α)− b1(α)t− θ1(α)q1(t;α) (43)

q̇′2(t; β) = −a′2(β)− b′2(β)t− θ′2(β)q
′
2(t; β) (44)

q̇′2(t; β) = −a′1(β)− b′1(β)t− θ′1(β)q
′
1(t; β) (45)

q̇′′2(t; γ) = −a′′2(γ)− b′′2(γ)t− θ′′2(γ)q
′′
2(t; γ) (46)

q̇′′2(t; γ) = −a′′1(γ)− b′′1(γ)t− θ′′1(γ)q
′′
1(t; γ) (47)

with q1(T ;α) = q2(T ;α) = q′1(T ; β) = q′2(T ; β) = q′′1(T ; γ) = q′′2(T ; γ) = 0.

The solution of the equation (43) is obtained as

q1(t;α) =
b1(α)− θ1(α)(b1(α)t+ a1(α))

(θ1(α))2
− b1(α)− θ1(α)(b1(α)T + a1(α))

(θ1(α))2
eθ1(α)(T−t1) (48)

Proceeding similarly, the solution of the equations (42) and (44)-(47) for the non-productive phase (t1 ≤
t ≤ T ) are obtained as
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q1(t;α) =
b2(α)−θ2(α)(b2(α)t+a2(α))

(θ2(α))2
− b2(α)−θ2(α)(b2(α)T+a2(α))

(θ2(α))2
eθ2(α)(T−t1)

q′1(t; β) =
b′1(β)−θ′1(β)(b

′
1(β)t+a′1(β))

(θ′1(β))
2 − b′1(β)−θ′1(β)(b

′
1(β)T+a′1(β))

(θ′1(β))
2 eθ

′
1(β)(T−t1)

q′2(t; β) =
b′2(β)−θ′2(β)(b

′
2(β)t+a′2(β))

(θ′2(β))
2 − b′2(β)−θ′2(β)(b

′
2(β)T+a′2(β))

(θ′2(β))
2 eθ

′
2(β)(T−t1)

q′′1(t; γ) =
b′′1 (γ)−θ′′1 (γ)(b

′′
1 (γ)t+a′′1 (γ))

(θ′′1 (γ))
2 − b′′1 (γ)−θ′′1 (γ)(b

′′
1 (γ)T+a′′1 (γ))

(θ′′1 (γ))
2 eθ

′′
1 (γ)(T−t1)

q′′2(t; γ) =
b′′2 (γ)−θ′′2 (γ)(b

′′
2 (γ)t+a′′2 (γ))

(θ′′2 (γ))
2 − b′′2 (γ)−θ′′2 (γ)(b

′′
2 (γ)T+a′′2 (γ))

(θ′′2 (γ))
2 eθ

′′
2 (γ)(T−t1)

(49)

Several relevant costs associated with the model are formulated as follows: Therefore, the holding cost,
H̃C = ⟨[HC1(α), HC2(α)], [HC ′

1(β), HC ′
2(β)], [HC ′′

1 (γ), HC ′′
2 (γ)]⟩ given by

HC1(α) = ch

[ ∫ t1

0

q1(t;α)dt+

∫ T

t1

q2(t;α)dt

]
= ch

[ ∫ t1

0

{
u1w1 + v1

u2
1

(1− e−u1t)− v1
u1

t

}
dt+

∫ T

t1

{
b1(α)− θ1(α)(b1(α)t+ a1(α))

(θ1(α))2

−b1(α)− θ1(α)(b1(α)T + a1(α))

(θ1(α))2
eθ1(α)(T−t1)

}
dt

]
= ch

[
u1w1 + v1

u3
1

(
e−u1t1 + u1t1 − 1

)
− v1

2u1

t21 −
b1(α)

2θ1(α)
(T 2 − t21)

+
b1(α)− θ1(α)(b1(α)T + a1(α))

(θ1(α))3
{
1− eθ1(α)(T−t1)

}]
Similarly, calculating the other components of the holding cost as

HC2(α) = ch

[
u2w2 + v2

u3
2

(
e−u2t1 + u2t1 − 1

)
− v2

2u2

t21 −
b2(α)

2θ2(α)
(T 2 − t21)

+
b2(α)− θ2(α)(b2(α)T + a2(α))

(θ2(α))3
{
1− eθ2(α)(T−t1)

}]

HC ′
1(β) = ch

[
u3w3 + v3

u3
3

(
e−u3t1 + u3t1 − 1

)
− v3

2u3

t21 −
b′1(β)

2θ′1(β)
(T 2 − t21)

+
b′1(β)− θ′1(β)(b

′
1(β)T + a′1(β))

(θ′1(β))
3

{
1− eθ

′
1(β)(T−t1)

}]

HC ′
2(β) = ch

[
u4w4 + v4

u3
4

(
e−u4t1 + u4t1 − 1

)
− v4

2u4

t21 −
b′2(β)

2θ′2(β)
(T 2 − t21)

+
b′2(β)− θ′2(β)(b

′
2(β)T + a′2(β))

(θ′2(β))
3

{
1− eθ

′
2(β)(T−t1)

}]



Acc
ep

ted
man

us
cri

pt

Solution of an uncertain EPQ model... 23

HC ′′
1 (γ) = ch

[
u5w5 + v5

u3
5

(
e−u5t1 + u5t1 − 1

)
− v5

2u5

t21 −
b′′1(γ)

2θ′′1(γ)
(T 2 − t21)

+
b′′1(γ)− θ′′1(γ)(b

′′
1(γ)T + a′′1(γ))

(θ′′1(γ))
3

{
1− eθ

′′
1 (γ)(T−t1)

}]

HC ′′
2 (γ) = ch

[
u6w6 + v6

u3
6

(
e−u6t1 + u6t1 − 1

)
− v6

2u6

t21 −
b′′2(γ)

2θ′′2(γ)
(T 2 − t21)

+
b′′2(γ)− θ′′2(γ)(b

′′
2(γ)T + a′′2(γ))

(θ′′2(γ))
3

{
1− eθ

′′
2 (γ)(T−t1)

}]
Therefore, the production cost P̃C = ⟨[PC1(α), PC2(α)], [PC ′

1(β), PC ′
2(β)], [PC ′′

1 (γ), PC ′′
2 (γ)]⟩

during the entire circle is given by

PC1(α) = cp

[ ∫ t1

0

{
(m+ la1(α))− nq1(t;α) + lb1(α)t

}
dt

]
= cp

[
(m+ la1(α))t1 + lb1(α)

t21
2
− n

∫ t1

0

q1(t;α)dt

]
= cp

[
(m+ la1(α))t1 + lb1(α)

t21
2
− n

{
u1w1 + v1

u3
1

(
e−u1t1 + u1t1 − 1

)
− v1

2u1

t21

}]

PC2(α) = cp

[ ∫ t1

0

{
(m+ la2(α))− nq2(t;α) + lb2(α)t

}
dt

]
= cp

[
(m+ la2(α))t1 + lb2(α)

t21
2
− n

∫ t1

0

q2(t;α)dt

]
= cp

[
(m+ la2(α))t1 + lb2(α)

t21
2
− n

{
u2w2 + v2

u3
2

(
e−u2t1 + u2t1 − 1

)
− v2

2u2

t21

}]

PC ′
1(β) = cp

[
(m+ la′1(β))t1 + lb′1(β)

t21
2
− n

{
u3w3 + v3

u3
3

(
e−u3t1 + u3t1 − 1

)
− v3

2u3

t21

}]

PC ′′
2 (β) = cp

[
(m+ la′2(β))t1 + lb′2(β)

t21
2
− n

{
u4w4 + v4

u3
4

(
e−u4t1 + u4t1 − 1

)
− v4

2u4

t21

}]

PC ′′
1 (γ) = cp

[
(m+ la′′1(γ))t1 + lb′′1(γ)

t21
2
− n

{
u5w5 + v5

u3
5

(
e−u5t1 + u5t1 − 1

)
− v5

2u5

t21

}]
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PC ′′
2 (γ) = cp

[
(m+ la′′2(γ))t1 + lb′′2(γ)

t21
2
− n

{
u6w6 + v6

u3
6

(
e−u6t1 + u6t1 − 1

)
− v6

2u6

t21

}]
Therefore, the total average cost of the system during the entire circle can be obtained in the parametric

form as [Ψ̃]α,β,γ = ⟨[Ψ1(α), Ψ2(α)], [Ψ
′
1(β), Ψ

′
2(β)], [Ψ

′′
1(γ), Ψ

′′
2(γ)]⟩, where Ψ1(α) =

HC1(α)+PC1(α)+C0

T
,

Ψ2(α) =
HC2(α)+PC2(α)+C0

T
, Ψ′

1(β) =
HC′

1(β)+PC′
1(β)+C0

T
, Ψ′

2(β) =
HC′

2(β)+PC′
2(β)+C0

T
,

Ψ′′
1(γ) =

HC′′
1 (γ)+PC′′

1 (γ)+C0

T
and Ψ′′

2(γ) =
HC′′

2 (γ)+PC′′
2 (γ)+C0

T
.

Therefore, mathematically, the minimization problem concerning the production inventory model in
the case of type-2 neutrosophic differentiability of q̃(t) is obtained as follows:

Minimize Ψ1(α)

Minimize Ψ2(α)

Minimize Ψ′
1(β)

Minimize Ψ′
2(β)

Minimize Ψ′′
1(γ)

Minimize Ψ′′
2(γ)

Subject to T ≥ t1 ≥ 0

0 ≤ α, β, γ ≤ 1 with α + β + γ ≤ 3

(50)

7. Used new De-Neutrosophication Method

To understand the neutrosophic outcome and to compare the results obtained in terms of neutrosophic
numbers, it urges to assign a crisp value to the neutrosophic numbers in an appropriate means. The de-
neutrosophication technique then comes into the picture. The removal area method [12] is one of the
popular methods. In this method, the de-neutrosophication value of a triangular single-valued neutro-
sophic number P̃DN = ⟨(u, v, w : ϵ), (x, y, z : δ), (h, i, j : γ)⟩ is

DNew(P̃DN , 0) =
u+ 2v + w + x+ 2y + z + h+ 2i+ j

12
(51)

In the current article, the following de-neutrosophication technique is introduced:

Suppose ÃTN = (a1, a2, a3; b1, b2, b3; c1, c2, c3) be a triangular neutrosophic number whose parametric
form can be described by ⟨[A1(α), A2(α)], [A

′
1(β), A

′
2(β)], [A

′′
1(γ), A

′′
2(γ)]⟩, where A1(α) = a1+α(a2−

a1), A2(α) = a3−α(a3−a2), A′
1(β) = b2−β(b2−b1), A′

2(β) = b2+β(b3−b2), A′′
1(γ) = c2−γ(c2−c1)

and A′′
2(γ) = c2 + γ(c3 − c2). Then, the de-neutrosophication value of ÃTN is denoted by ADe−Neu and

is given by

ADe−Neu =
A1 + A2 + A3

3
(52)
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where A1 = αA1(α)+ (1−α)A2(α), A2 = βA′
1(β)+ (1−β)A′

2(β) and A3 = γA′′
1(γ)+ (1− γ)A′′

2(γ).

Using the proposed de-neutrosophication technique, the multi-objective optimization problem (30)
for case 1 is transformed into a single objective crisp problem.

Minimize Φ̃De−New

where Φ̃De−New = Φ11+Φ12+Φ13

3

Φ11 = αΦ1(α) + (1− α)Φ2(α)

Φ12 = βΦ′
1(β) + (1− β)Φ′

2(β)

Φ13 = γΦ′′
1(γ) + (1− γ)Φ′′

2(γ)

Subject to T > t1 > 0, 0 ≤ α, β, γ ≤ 1.

(53)

For case 2, the multi-objective optimization problem (50) is transformed into the following single objec-
tive crisp problem 

Minimize Ψ̃De−New

where Ψ̃De−New = Ψ11+Ψ12+Ψ13

3

Ψ11 = αΨ1(α) + (1− α)Ψ2(α)

Ψ12 = βΨ′
1(β) + (1− β)Ψ′

2(β)

Ψ13 = γΨ′′
1(γ) + (1− γ)Ψ′′

2(γ)

Subject to T > t1 > 0, 0 ≤ α, β, γ ≤ 1.

(54)

8. Numerical Simulation

8.1. Algorithm of the Numerical Solution

Step 1 Input the numerical value of the crisp parameter l,m, n, a, b, θ, cp, ch and C0.

Step 2 Solve the crisp minimization problem (7) and get the optimum average cost TAC, production cycle
time t1 and inventory cycle length T .

Step 3 Take the demand-control parameters a and b and deterioration rate θ as the triangular neutrosophic
number and consider the model in the neutrosophic arena. Go to step 4 or go to step 6.

Step 4 Find the de-neutrosophication values of the neutrosophic parameters using the formula given in
(51).

Step 5 Solve the model with the de-neutrosophication values of the neutrosophic parameters along with
other crisp inputs (called the old method).

Step 6 Solve two minimization problems (53) and (54) (namely, Case 1 and Case 2) corresponding to two
types of the generalized neutrosophic differentiability of the neutrosophic valued function q̃(t).

Step 7 Compare the results of Case 1, Case 2, and the old method for neutrosophic problems with the crisp
method and get the optimum average cost.
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Step 8 End.

The above-mentioned algorithm can be depicted visually in the following flow chart given in Figure 2.

Figure 2. Flowchart for numerical solutions.

8.2. Numerical results and graphical representation

In this subsection, four different problems are set for the numerical manipulation. Besides the crisp
problem, three problems are considered from the data with neutrosophic uncertainty. Two types of neu-
trosophic differentiability are associated with two problems, namely Case 1 and Case 2. The problems
named Case 1 and Case 2 are described and analyzed through the neutrosophic differential equation,
and the optimum values of the decision variables and objective function are obtained using the proposed
de-neutrosophication technique discussed in Section 7. Also, another problem (named the old method)
is considered: taking de-neutrosophication of the given neutrosophic parameters before going for crisp-
valued calculus-inspired dynamics of the system. For numerical simulation, the following inputs are
considered:
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1. For the crisp model, we take m = 90, n = 0.06, l = 0.3, a = 40, b = 0.5, θ = 0.05, cp = 6, ch =

1, C0 = 140.

2. For the neutrosophic model, the neutrosophic number ã, b̃ and θ̃ are taken as a single-valued trian-
gular neutrosophic number with nine components as
ã = (35, 40, 45; 41, 45, 49; 31, 37, 43),
b̃ = (0.45, 0.50, 0.55; 0.54, 0.55, 0.56; 0.3, 0.45, 0.6) and
θ̃ = (0.045, 0.050, 0.055; 0.054, 0.055, 0.056; 0.03, 0.045, 0.06)

and the value of other parameters is taken as the same as in the crisp model.

The optimum value of the average cost (TAC∗) and the decision variables, namely, the total time cycle
(T ) and production time (t1) is represented by Table 3. A graphical counterpart of the obtained results is
also displayed through the bar diagram given in Figure 3.

Table 3. Optimum results for four different methods for solving the proposed EPQ model in crisp and neutrosophic arena

Model t∗1 T ∗ TAC∗

Crisp Model 1.867337 3.718347 681.1805
Neutrosophic Model (Case 1) 4.890101 10.28361 309.1551
Neutrosophic Model (Case 2) 2.869033 4.828840 654.0223

Neutrosophic Model (Old Method) 2.070397 3.758374 688.2674

Figure 3. Total average costs in different methods.

From Table 3 and Figure 3, it is perceived that the cost minimization objective is better fulfilled while
considering the neutrosophic phenomena with neutrosophic calculus-oriented discussion and proposed
de-neutrosophication technique. The old method with the removal of the area de-neutrosophication tech-
nique before going for the crisp calculus-oriented approach seems to give the most likely outcome of the
crisp model. Therefore, the proposed approach to dealing with the dynamic of the inventory is estab-
lished through numerical outcomes. Among the two cases of the proposed technique, Case 1 seems to
be more effective in minimizing the TAC. However, the inventory cycle phase is seen to be very high
in Case 1, which is concerned with the feasibility of the system. Therefore, Case 2 is fitted to the most
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desired approach in the cost minimization objective with a feasible measure of the productive time and
total lot-sizing cycle.

Figure 4. Total average cost versus total inventory cycle time.

Figure 4 shows the graph of the TAC concerning the lot-sizing cycle length. The initial trend of the
graph of the TAC is decreasing against the total time cycle, and reaching the lowest value of 681.1805 at
time 3.718347 months, the graph again increases.

Figure 5. Interdependency of average cost, production time, and time cycle.

Figure 5 shows the three-dimensional inter-dependence among the average cost, total time cycle, and
production cycle. The locally convex nature of the graph around (1.867337, 3.718347, 681.1805) is
spotted clearly in the figure.
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8.3. Sensitivity Analysis with respect to deterministic parameters

In this section, a sensitivity analysis is performed for both cases on the crisp parameter by changing a
parameter on a range of -15% to +30% while other parameters kept their original values. The sensitivity
of the optimal results against the crisp parameters is given in Table 4. A graphical counterpart of the
tabular display is presented in Figures 6 and 7.

Table 4. Sensitivity of the optimum results concerning the crisp input

Crisp Change Case 1 Case 2

parameters in (%) t∗1 T ∗ TAC∗ t∗1 T ∗ TAC∗

m = 90

+15 4.656 10.3219 328.92 - 2.5342 677.14
+10 - 0.8628 301.39 0.3922 2.8986 676.38
+5 4.809 10.3031 315.80 1.4687 3.7814 668.75
-5 - 10.2149 301.3885 46.7081 46.7081 368.63

-10 5.0546 10.2147 295.72 45.1739 45.1739 335.13
-15 5.0546 10.2146 295.72 43.5424 43.5424 290.33

n=0.06

+15 4.9276 10.3212 307.01 3.4011 5.3092 652.18
+10 4.9150 10.3086 307.72 3.1843 5.1119 652.86
+5 - 0.8628 301.39 3.0116 4.9562 653.47
-5 4.8777 10.2712 309.89 2.7487 4.7221 654.52

-10 4.8654 10.2589 310.61 2.6457 4.6312 654.97
-15 4.8532 10.2466 311.34 2.5568 4.5532 655.38

l=0.3

+15 4.9549 10.4763 312.18 2.0761 4.2152 661.43
+10 4.9335 10.4124 311.17 2.3046 4.3892 659.17
+5 - 0.8628 301.39 2.5644 4.5895 656.71
-5 4.8681 10.2187 308.14 3.2451 5.1328 651.09

-10 - 0.8628 301.38 3.7611 5.5671 647.85
-15 4.8237 10.088 306.12 44.522 44.5220 383.48

cp = 6

+15 - 0.8628 301.38 - 2.5342 677.14
+10 4.8900 10.2836 336.35 - - -
+5 4.8901 10.2836 322.75 1.7362 4.0398 668.66
-5 4.8901 10.2836 295.56 3.6488 5.2027 636.25

-10 - 0.8628 301.39 4.0748 5.1733 616.31
-15 4.8902 10.2836 268.36 4.1871 4.7713 594.25

ch = 1

+15 - 0.8628 322.26 3.7992 4.5065 689.20
+10 4.8901 10.2835 311.52 3.7494 4.8810 679.32
+5 4.8901 10.2836 310.34 3.4733 5.0214 667.64
-5 - 0.8628 294.43 1.8214 4.1753 637.55

-10 - 0.8628 287.48 0.1646 2.8207 614.75
-15 - 0.8628 280.52 - 2.7350 583.54

C0 = 140

+15 - 0.8628 325.73 48.1973 48.1974 388.93
+10 4.8901 10.2836 310.52 3.1793 5.1926 656.82
+5 - 0.8628 309.50 3.0225 5.0097 655.45
-5 4.8901 10.2836 308.47 2.7183 4.6493 652.54

-10 4.8901 10.2836 307.79 2.5695 4.4703 651.01
-15 4.8901 10.2836 307.11 2.4222 4.2911 649.41

From Table 4, Figure 6, and Figure 7, the following points can be summarized:

(i) In the discussion, m denotes the fixed part of the production rate. It is seen that the average profit
in the first case does not follow any monotonicity characteristic when the values of m increases.
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Figure 6. Sensitivity analysis of case 1 of the crisp parameter on total average profit.

Figure 7. Sensitivity analysis of case 2 of the crisp parameter on total average profit.

Because the optimal solution of variant values of m corresponds to some distinguished production
and decision tenures. The second case shows a specific pattern in this regard. It is noted that the
average cost can be minimized through the minimization of the production rate.

(ii) In the discussion, n denotes the coefficient of stock dependency of the production rate. As the
value of n increases, the production rate should be lowered. However, in the first case, we find
some infeasible cases regarding the pattern of optimal values of production and decision cycle to
the variance of n. Thus, the impact of n on the cost, minimization is not well perceived in the first
case. It is noted that the average cost can be lowered with the enhancement of the values of n in the
second case.

(iii) In the discussion, l denotes the coefficient of the demand dependency of the production rate. The
model was built with the general perspective that the production rate should be increased as demand
increases. Now, in the first case of the above discussion, there is no such straightforward conclusion
on the impact of the demand on the minimization of the average profit. A significant result corre-
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sponds to the second case of the above discussion. It is seen that the average cost increases with the
enhancement of the demand rate.

(iv) The remaining crisp parameters in Table 4 are the production, holding, and setup costs of the items.
Therefore, the average cost increases when the individual cost increases.

8.4. Sensitivity Analysis with respect to imprecise parameters

In this section, stability of the best obtained cost with optimal production and decision cycle length is
examined in the context of imprecise parameters. The results regarding sensitivity of optimal solution
with respect to neutrosophic valued parameters are displayed in Table 5. A graphical counterpart of the
tabular display is presented in Figures 8 and 9.

Table 5. Sensitivity of the optimum results concerning the Neutrosophic input

Imprecise Change Case 1 Case 2

parameters in (%) t∗1 T ∗ TAC∗ t∗1 T ∗ TAC∗

ã

+15 5.236302 10.45742 331.31 2.871687 4.923177 658.26
+10 0.000000 0.8412141 332.67 2.871785 4.892951 656.85
+5 5.014098 10.35621 316.55 2.870835 4.861444 655.44
-5 0.000000 0.8723352 286.77 2.866525 4.795275 652.59

-10 0.000000 0.8830415 272.92 2.863420 4.760849 651.15
-15 4.8901 10.2836 307.11 2.4222 4.2911 649.41

b̃

+15 7.617859 15.06751 316.54 1.869831 4.148519 638.04
+10 0.000000 0.8792371 286.96 2.267089 4.445040 643.72
+5 4.842598 10.17940 309.85 2.598877 4.670114 649.01
-5 0.000000 0.8430415 277.92 3.076379 4.925095 658.62

-10 0.000000 0.873415 281.92 3.250088 4.974487 663.40
-15 4.60248 10.19637 312.81 3.375978 4.976268 667.82

θ̃

+15 4.330256 9.149906 308.22 0.5962931 3.067986 624.63
+10 4.502700 9.500159 308.43 1.291782 3.652540 636.28
+5 4.688800 9.877092 308.74 2.036938 4.226846 646.03
-5 5.108348 10.72296 309.70 3.871620 5.538776 660.22

-10 5.345510 11.19878 310.41 45.49685 45.49685 415.23
-15 5.603750 11.71507 311.31 44.12879 44.12879 421.71

In the proposed model, three parameters have been taken imprecise. The demand is the most signifi-
cant but volatile issue in an economic production quantity model. Therefore, both the demand impacting
parameters have been taken triangular neutrosophic numbers for tackling impreciseness. Between these
parameters, ã denotes the imprecise demand potential, and b̃ represents the coefficient of uncertain re-
liance of demand on the most crucial independent variable time. Also, we have considered the rate of de-
terioration as imprecise parameters θ̃. The best results in an imprecise environment correspond to the im-
precise inputs ã = (35, 40, 45; 41, 45, 49; 31, 37, 43), b̃ = (0.45, 0.50, 0.55; 0.54, 0.55, 0.56; 0.3, 0.45, 0.6)

and θ̃ = (0.045, 0.050, 0.055; 0.054, 0.055, 0.056; 0.03, 0.045, 0.06) in both cases of neutrosophic differ-
entiation. The sensitivity analysis with respect to these parameters has been performed varying the im-
pacting parameters between -15% and 15% of the mentioned values. The changing the values with given
ranges, not only the value is scaled but also dispersion of data due imprecision is also scaled. The results
in Table 5 can be interpreted as follows:
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Figure 8. Sensitivity analysis of case 1 of the Neutrosophic parameter on total average profit.

Figure 9. Sensitivity analysis of case 2 of the Neutrosophic parameter on total average profit.

(i) In case of neutrosophic derivative of first type, we did not find any specific pattern of changes in
average costs with respect to the demand potential ã. Furthermore, the productive cycle becomes
infeasible in many occasions connected to Case 1. However, in Case 2, a crystal pattern is obtained
regarding the impact of the demand potential on average cost. The average cost can be made lowered
by decreasing demand potential. In this case, the ambiguities associated with demand prediction
increases with production potential resulting negative impression on cost reduction goal. Also, the
production cycle and complete lot cycle are increased with the deviation of imprecise data.

(ii) In this imprecise EPQ model, b̃ represents the coefficient of variability of demand on time. In case
of neutrosophic derivative of first type, we did not find any specific pattern of changes in average
costs against variance of b̃. Furthermore, the productive cycle becomes infeasible in many occasions
connected to Case 1. However, in Case 2, the results in Table 5 reflect reverse pattern compared to
the pattern obtained for ã. The cost can be minimized by increasing values of b̃. The observation
can be interpreted that increasing time influence of the demand rate favors the cost reduction goal.
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The production cycle and whole lot cycle also follow the pattern for average cost.

(iii) The deterioration of products during inventory carrying period is a natural phenomenon. In this
paper, deterioration rate is described by an uncertain parameter θ̃. In both cases of the neutrosophic
derivative of inventory function of time, average cost, production and decision lot sizes decrease
with the increasing nature of θ̃ and associated impressions.

9. Major research findings and managerial intuitions

In the first part of this section, we summarize all the research outcomes from the proposed model. The
managerial implications corresponding to the outcomes are listed subsequently. Fundamental observa-
tions in numerical simulation can be briefed as follows:

(i) Average cost increases robustly accordingly the primary part of the production rate in all the dis-
cussed models. However, in both cases of imprecise decision environment, optimal manufacturing
cycle and overall decision cycle become infeasible with respect to many values of m. Thus, the
obtained solutions are locally optimal and highly sensitive with respect to the demand potential.

(ii) In proposed model, n denotes the coefficient of stock controlling the production rate. The numerical
results show that cost can be minimized by increasing the influence of stock on production process.

(iii) The results regarding l shows that average cost increases as the control of demand on the production
process increases.

(iv) The imprecise decision-making phenomena with triangular neutrosophic number reduce the cost
effectively compared two decision making environment. Among mentioned approaches of neutro-
sophic decision making phenomena, the neutrosophic differential equation of type 2 is established
smarter.

(v) The average cost can be made lowered by decreasing demand potential. However, increasing time
influence of the demand rate favors the cost reduction goal.

At the end of this section the managerial implications are decoded as follows:

(i) The decision maker must install cohesion between on hand stock and production process. The
average cost can be made significantly reduced by a smart managerial strategy which considers
strong influence of the inventory on manufacturing rate.

(ii) The demand is imprecise and indeterministic in nature. As a consequence, much impacts of demand
on production process includes additional cost. Therefore, the smart decision maker must set policy
such that the production process can be impacted a very little with the imprecisions involved with
demand pattern.

(iii) Also, the decision maker can reduce the average cost by increasing the weight of influence of time
on the demand pattern.
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10. Conclusions

In this paper, we use an EPQ model with a time-dependent demand rate, a demand-, and stock-dependent
production rate, and a constant rate of deterioration. The hypothesis was built on a very general per-
ception. In the newly organized manufacturing-supply sector, demand increases as time goes by. Also,
the production rate varies according to the demand rate and the stock already in the warehouse. During
the inventory-carrying process, the produced items deteriorate gradually as a natural cause. Our objec-
tive was to address the impact of the mentioned issues on cost reduction. Furthermore, an additional
query was about the involvement of uncertainty regarding the decision environment. Therefore, in this
paper, the proposed model has been formulated mathematically in a crisp environment. With the the-
ory of differential equations and calculus, the criteria for the optimality of the objective function have
been discussed in a crisp environment. Then, the uncertainty regarding real-world production-inventory
management has been tackled using neutrosophic numbers and the theory of the neutrosophic differential
equation. In the end, a de-neutrosophication formula has been used for comparing results in distinct cases
of uncertain phenomena as well as their crisp counterparts. The numerical results provide some of the
finest insights regarding the proposed model. First, the demand enhancement is not favorable for the cost
minimization objective. Another significant observation is that stock in the showroom can favor the cost
minimization objective. Furthermore, the proposed approach of the neutrosophic differential equation as
a tool to describe the EPQ model and the proposed de-neutrosophication formula provide better results
compared to the crisp and existing methods to deal with an EPQ model under uncertainty.

At the end of the discussion, it is to be mentioned that the theory of neutrosophic numbers has been
limited in some multi-criteria decision-making problems in the recently introduced literature. However,
it has a wider scope to describe the uncertainty regarding the dynamics of problems in operational re-
search, especially in inventory theory. In the future, the notions of neutrosophic calculus and neutrosophic
differential equations must be improved; therefore, a non-linear inventory model with more realistic as-
sumptions can be fitted to be analyzed through it. Furthermore, the proposed model can be modified with
variable rates of deterioration and preservation measures, etc., for more reliable mathematical models in
the future.
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