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Abstract

This study presents a strategy for managing pharmaceutical inventory during pandemics, focusing on optimizing investment
in COVID-19 medicines while ensuring product preservation. A customized inventory model considers critical factors such as
price, infection rate, and preservation, adaptable to various pandemic scenarios. Optimal control theory is applied for dynamic
investment adjustments, enhancing resource allocations and decision-making. The study addresses a complex replenishment
problem involving joint pricing, environmental costs, order costs, preservation technology, and replenishment schedules for
non-instantaneous deteriorating items, aiming to maximize retailer’s profit. Advanced optimization algorithms, including Ant
Colony and Cuckoo Search, determine optimal pricing, investment costs, and replenishment schedules. Theoretical analysis
and numerical experiments under a fuzzy learning environment provide a robust foundation for the model. Sensitivity analysis
offers practical insights, guiding decision-makers in adapting strategies to real-world challenges. From a managerial perspec-
tive, this study provides actionable solutions for balancing profitability with sustainability, ensuring efficient resource use
during crises. It also highlights the importance of integrating environmental costs and preservation technology into inventory
decisions, particularly in dynamic and uncertain environments like a pandemic. The study delivers comprehensive guidance
for effective pandemic response planning, helping managers to make informed decisions that align with both economic and
public health goals.

Keywords: Dynamic investment, Metaheuristic Algorithm, Preservation technology, Infection awareness investments, Fuzzy

learning, Environment cost, Trapezoidal-type demand.

1. Introduction

In December 2019, the world faced the emergence of the novel coronavirus disease (COVID-19) in
Wuhan, China, triggering unprecedented global challenges. On March 11, 2020, the World Health Or-
ganization (WHO) declared COVID-19 a global pandemic. Within a few months, the virus had rapidly
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spread worldwide, infecting nearly 2.5 million people by April 23, 2020, Kulkarni et al. [20]. This
pandemic has not only caused widespread illness but has also profoundly disrupted global economies,
particularly impacting the pharmaceutical industry. As a result, pharmaceutical companies are struggling
to maintain market stability, with the pandemic hindering access to essential, affordable medicines—a
fundamental goal of every pharmaceutical system 1.

Beyond the global challenges, it is crucial to conduct situational analyses of the pharmaceutical indus-
try in developing countries with diverse markets to understand the pandemic’s broader impacts. COVID-
19 presents a unique opportunity for the pharmaceutical sector due to the increased demand for prescrip-
tion medicines, vaccines, and medical devices. Amid the pandemic, the importance of effective pharma-
ceutical inventory management has been underscored by the dynamic demand for medicines, vaccines,
masks, and medical devices, coupled with the urgent need for healthcare resources (Akhtar et al.[2]).

1.1. Motivations

Our research is driven by the need to understand and model the unique trapezoidal demand pattern ob-
served in pharmaceutical inventory during the COVID-19 pandemic. During the initial stages of the pan-
demic, the demand for pharmaceutical products increased gradually as the infection rate surged within the
population. This rise was largely driven by the urgent need for medical devices and treatments to manage
the growing number of COVID-19 cases. As the pandemic advanced to its middle stage, the infection
rate stabilised, leading to a steady demand for pharmaceutical inventory. This plateau was mainly due to
the widespread implementation of vaccination campaigns, which played a critical role in controlling the
virus’s spread and mitigating its impact on public health. In the final stage of the pandemic, the demand
for pharmaceutical products started to decline, reflecting the reduced need for COVID-19-related medi-
cal resources. This decrease was closely tied to the population’s increasing immunity through successful
vaccination efforts.

The trapezoidal demand pattern highlights the dynamic interplay between the progression of the pan-
demic, the effectiveness of vaccination strategies, and the resulting fluctuations in pharmaceutical inven-
tory demand. Additionally, our research integrates the concept of learning, which is vital for enhancing
the economic sustainability of the system. This integration is crucial for developing more adaptive and
resilient inventory management strategies in the face of future public health crises.

1.2. Objectives

The proposed model seeks to achieve the following objectives:

• We will assess the potential profitability and feasibility of investing in preservation technology
within the pharmaceutical industry, focusing on its ability to extend product shelf life and enhance
market competitiveness.

• We will develop a sophisticated pricing framework that adapts to dynamic market conditions, i.e.
(Spi) and including promotion efforts (Fs(t)) influenced by the fluctuating COVID-19 infection
rates.

1https://www.who.int/publications/i/item/924154547X

https://www.who.int/publications/i/item/924154547X


Acc
ep

ted
man

us
cri

pt

Sustainability-Driven Inventory Optimization... 3

• We will construct a comprehensive model where the demand for pharmaceutical products dynami-
cally responds to changes in the COVID-19 infection rate (ϵ).

• We plan to conduct an in-depth analysis to understand how increasing vaccination rates influence
consumer behaviour and subsequently affect demand patterns within the pharmaceutical sector.

• We will explore sustainable inventory management strategies, emphasizing the reduction of en-
vironmental emissions and preventing the damage, expiration, or degradation of pharmaceutical
products through targeted investments. This includes a focus on controllable environmental carbon
emissions, which has gained significant interest from both practitioners and researchers.

In inventory management, key factors such as demand patterns, promotional efforts, and the dete-
rioration rates of pharmaceutical products play crucial roles in determining optimal inventory policies.
Retailers often employ various strategies to boost demand for pharmaceutical inventory, with promotional
efforts being particularly effective (Manna et al. [23]). These efforts are often aimed at achieving specific
sales targets, with promotions offered as incentives once those targets are met (Blom et al. [5]). How-
ever, deciding to invest in promotional activities during a pandemic presents significant challenges. Such
investments are dynamic rather than deterministic, making it difficult to model them mathematically.

Despite these challenges, the literature highlights the importance of promotions in stimulating con-
sumer demand and staying competitive (Goli et al. [11]). Promotions serve various objectives, such
as boosting pharmaceutical sales Goli et al. [12]). As pharmaceutical products move through different
stages of their lifecycle, retailers must adapt their promotional strategies to the evolving market dynamics.
In the early stages of the COVID-19 pandemic, promotions focused on raising awareness and building
brand recognition, similar to initial efforts to educate the public on safety measures. As the pandemic
progressed, the focus shifted to persuading consumers, akin to promoting vaccine uptake. In the final
stages, promotions aimed to clear the remaining inventory, maximizing revenue as the pandemic wound
down.

The demand for pharmaceutical products is influenced by multiple factors, including price, expiration
dates, stock levels, and product quality. This is particularly true for perishable items like pharmaceuticals,
where demand often spikes during a pandemic. Traders must, therefore, employ effective strategies to
minimize deterioration and extend shelf life, as expired pharmaceutical products can pose significant
health risks. Governments often establish cold storage facilities for the long-term preservation of these
items. Research has underscored the importance of preservation technology in managing the inventory
of perishable goods, including pharmaceuticals (Dye et al. [9]).

The volatility in demand creates significant challenges for industries in balancing costs, availability,
and consumer needs. These costs include inventory holding, ordering, promotions, and potential stock-
outs, all of which directly impact profitability (Braglia et al. [6]). Optimizing pharmaceutical inventory
management during the COVID-19 pandemic is essential to meet healthcare demands while maximiz-
ing profit. Pontryagin’s Maximum Principle offers a framework for dynamically adjusting promotional
efforts, preservation technologies, pharmaceutical products, and storage strategies in response to fluctuat-
ing demand and urgent healthcare needs (Harrison et al. [10]). This approach considers constraints such
as vaccine production capacities, storage facilities, and regulatory requirements, enabling businesses
to effectively allocate resources and respond to the pandemic (Supakar et al. [29]). This comprehen-
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sive strategy allows pharmaceutical industries and healthcare systems to address the challenges of the
COVID-19 pandemic while ensuring the availability of essential medical supplies (Almurisi [3]).

2. Literature Review

This literature review is organized around the following key areas of research:

2.1. Trapezoidal-Type Demand for Dynamics of COVID-19

During COVID-19 pandemic has led to a significant rise in the demand for pharmaceuticals inventory as
shown in Figure 1, especially medications used to treat COVID-19 and its related issues like pneumonia.
This surge is mainly due to more people being hospitalized with COVID-19 and experiencing pneumo-
nia, as well as an increased need for ventilators to support patients. As a result, there has been a shortage
of these crucial medicines. Regulatory bodies worldwide have recognized this problem and have pub-
lished lists confirming the shortages, which mostly include drugs for treating COVID-19 and pneumonia.
For instance, the FDA in the United States has noted shortages in medications specifically meant for
COVID-19 treatment, including potential therapies like hydroxychloroquine and chloroquine, along with
commonly used drugs for COVID-19 patients in critical care, such as azithromycin, dopamine, dobu-
tamine, fentanyl, heparin, midazolam, propofol, and dexmedetomidine, as highlighted by Arati et al. [4].
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Figure 1. Trajectory of Demand Function with Key Intervention Points tcov and tvac.

2.2. Marketing and Promotional Policy

Pricing strategies and replenishment schedules are fundamental elements of inventory management. Pro-
motional activities significantly influence demand and, consequently, pricing schemes. Ullah et al. [32]
investigated dynamic pricing policies within a multi-period inventory model, while Yu et al. [34] explored
various types of promotional efforts. Despite these contributions, a notable gap exists in the literature
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regarding the integration of promotional strategies with the dynamic nature of pandemics, particularly
under a trapezoidal demand pattern. Afshar-Nadjafi et al. [1] developed a mathematical model address-
ing time-dependent demand policies, while Dwivedi [8] highlighted how brand image, staff behaviour,
and customer loyalty influence profitability. These studies underscore the importance of integrating pro-
motional strategies with dynamic market conditions to optimize retail performance.

Promotional efforts exert a substantial impact on both the retail industry and consumer behaviour.
Research indicates that coordination between manufacturers and retailers can be highly advantageous.
For instance, Nguyen et al. [27] examined cooperative advertising policies between retailers and manu-
facturers. Additionally, factors such as brand image play a critical role in shaping retailer profitability.

2.3. Preservation Technology

In addition to trapezoidal-type demand, the literature relevant to this study primarily focuses on sev-
eral key research areas, including dynamic investment in preservation technology. In the retail industry,
product perishability is a critical concern. Beyond natural deterioration, perishability can be exacerbated
by factors such as improper handling, inadequate maintenance, suboptimal display techniques, irregular
disposal, and adverse environmental conditions. Investing in preservation technology can significantly
reduce deterioration rates, minimize product losses, and help retailers optimise profit. This need has
become even more urgent during the global pandemic, particularly due to the sharp increase in prod-
uct deterioration resulting from lockdowns and disruptions in routine activities. Therefore, investing in
preservation technology is crucial to extending product lifespan.

Tiwari et al. [30] examined an optimal pricing policy for deteriorating items within a warehouse set-
ting, considering warehouse capacity in their model. In another study, Tiwari et al. [31] explored a joint
pricing and inventory model for deteriorating items with expiration dates, incorporating a partial trade-
credit policy with partial backlogging. Hsu et al. [13] introduced a preservation technology strategy
aimed at enhancing the profitability of a monopolistic retailer. More recently, various inventory replen-
ishment models for deteriorating items have been discussed, including Dye et al. [9], who proposed a
preservation strategy to identify the optimal replenishment policy.

2.4. Sustainable Inventory Model

Recent advancements in sustainable supply chain management highlight a focus on integrating emis-
sions reduction with profit maximization. Datta [7] pioneered a model that balances profit with emis-
sions reduction by incorporating technology equipment costs under carbon tax policies. Lin [22] further
advanced this by exploring investment strategies to lower transportation emissions in sustainable inven-
tory systems that accommodate backordering. Meanwhile, Keswani and Khedlekar [16] developed an
optimal inventory system that addresses both product deterioration and emission rates and also created
an item green retailing model that combines two-phase advance sales with a discount policy. khedlekar
et al. [19] expanded on these concepts by designing a inventory model that integrates carbon emissions
considerations in a green production model in an interval-valued framework. In this paper, deterioration
occurs due to the physical nature of the item. To address this, an investment is made in preservation
technology to control the deterioration rate, while cost parameters are adjusted to account for the effects
of learning rate.
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This proposed research addresses the identified research gap. Several scholars have considered the
effects of deterioration without incorporating investment in preservation technology. This study specif-
ically examines the impact of such investment under trapezoidal-type demand. The paper is structured
as follows: Sections 1 and 2 provide an introduction and a literature review, which aims to identify the
research gap and highlight contributions. Section 3 outlines the problem description, while Section 4 de-
tails the simulation approach, including estimating necessary medicine quantities, mathematical model-
ing, notations, and resilience concepts. Section 5 discusses the ant colony and cuckoo search algorithms.
Section 6 presents a numerical example, and Section 7 offers a sensitivity analysis. Section 8 provides
managerial insights, and Section 9 concludes with the major findings, limitations, and suggestions for
future research.

2.5. Fuzzy Learning Curve

The learning curve represents a geometric progression that demonstrates the consistent cost reduction as
repetitive tasks are performed. According to the theory, as production doubles, the per-unit cost decreases
by a constant percentage. Although there has been considerable debate among researchers regarding
the appropriate form of the learning curve, whether it should follow a power or exponential model, a
consensus has emerged in favor of the power form. The most widely accepted model, as proposed by
Kazemi et al. [15], Khatua et al. [18], and Kumar et al. [21], is illustrated in Figures 2, 3, 4, 5, 6 and
7. This model outlines three key phases: the initial incipient phase, the learning phase, and the maturity
phase.

The graphical representation of the fuzzy learning rate of holding cost, ordering cost and purchasing
cost.

3. Comparison with Existing Work

As shown in Table ?? and through our literature review, no previous research has given priority to human
learning alongside financial considerations, environmental, and social sustainability in the way this study
does. Consequently, a direct numerical comparison with earlier studies is not possible. However, the
core model of this study shares similarities with previous models when certain assumptions are relaxed.

• If we relax the assumptions regarding social sustainability and human learning, and instead consider
price-dependent demand, holding costs, carbon tax, and a crisp environment, the base model of this
study aligns with that of Mishra et al. [26].

• By relaxing the assumptions related to environmental and social sustainability, human learning,
and considering fixed holding costs, no deterioration, selling price-dependent demand, shortages
without partial backordering, and a crisp environment, the base model of this study corresponds to
Kumar et al. [21].

• If we remove the assumptions regarding environmental and social sustainability, omit human learn-
ing, and include shortages, Weibull distribution for the deterioration rate, selling price-dependent
demand, and a crisp environment, the base model of this study is comparable to Keswani et al. [17].



Acc
ep

ted
man

us
cri

pt

Sustainability-Driven Inventory Optimization... 7

2 4 6 8 10
Cumulative Frequency (l)

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Pu
rc
ha

si
ng

 C
os
t 

̃
P
L

Purchasing Cost vs. Cumulative Frequency for Different λ Values
Learning Rate (λ)

λ = 0.2
λ = 0.5
λ = 0.8
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4. Problem Formulation, Notation and Assumptions

This study examines how demand for pharmaceutical inventory changes during the different stages of the
COVID-19 pandemic. It identifies patterns in demand, from an initial increase during the early stages of
the pandemic to a stabilizing phase as vaccination efforts progress, and finally to a decline as cases of
COVID-19 decrease. The research also looks at how factors like promotional strategies and preservation
techniques impact inventory management during the pandemic. By understanding these dynamics, the
study aims to develop effective strategies for pricing, investment in preservation technology, and respond-
ing to changes in demand influenced by COVID-19 infection rates and vaccination efforts. Ultimately,
the goal is to provide practical insights to help the pharmaceutical industry effectively manage inven-
tory and ensure availability of essential medical supplies while maximizing profitability throughout the
pandemic.

This section presents the mathematical model notation and listed the problem’s primary assumptions
for our work.
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4.1. Notation

Index
I consecutive time period, i = 1, 2, 3

Decision variables
fsi(t) dynamic investment rate for promotion at t ∈ [tcov, tvac]

Spi selling price per unit time t ∈ [tcov, tvac]

I0 initial inventory level, I0 > 0

u(t) preservation technology investment, u ≥ 0

T length of the replenishment cycle
Parameters
I(t) inventory holding position, t ∈ (0, T ]

Fs(t) impact of promotion on demand rate at time t ∈ (0, T ]

K̃L K + Kl

lλ
, 0 < λ < 1 ordering/replenishment cost K per order ($/order),

Kl is constant, λ is the learning rate and l is the cumulative frequency.

P̃L
c Pc +

Pl

lλ
, 0 < λ < 1 purchasing cost per unit ($/unit),

Pl is constant, λ is the learning rate and l is the cumulative frequency.

h̃L h+ hl

lλ
, 0 < λ < 1 inventory holding cost per unit per unit time ($/ unit/unit time),

hl is constant, λ is the learning rate and l is the cumulative frequency.

c̃Ld cd +
cdl
lλ
, 0 < λ < 1 disposal cost per unit ($/unit),

cdl is constant, λ is the learning rate and l is the cumulative frequency.
θd1 deterioration rate under the natural condition
θd0

reduced feasible deterioration rate under preservation technology investment
ηi rate of selling price of products at any time t ∈ [tcov, tvac] ; i = 1, 2, 3

αi marginal cost for investment for promotion at time t ∈ [tcov, tvac] ; i = 1, 2, 3

AΠ total profit per unit time ($/time)
n total pharmaceutical inventory needs per person
Icov number of infected population due to COVID
Vcov number of vaccinated population
ϵ rate of infected population due to COVID
γvac rate of vaccinated population
N total number of populations
νi rate of promotion in different interval ; i=1, 2, 3
ξ efficiency of preservation investment

4.2. Assumptions

The following assumptions are used to formulate the mathematical model.

1. The model considers a single-type of items with an attractive dynamic rate in promotion and infec-
tion of COVID-19 and a Ant Colony Optimization and Cuckoo Search Algorithm is developed to
solve the model by using Prontryagin’s maximum principle.

2. The market demand pattern D (t, Sp1 , Sp2 , Sp3 , Fs(t)) is a price-promotion and trapezoidal-type and
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its functional form is as follows:

D (t, Sp1 , Sp2 , Sp3 , Fs(t)) =


a1 + b1t− η1Sp1 + ν1Fs(t) + nϵeIcov if 0 ≤ t ≤ tcov

D0 − η2Sp2 + ν2Fs(t) +
nϵIcov

N
− γvacVcov if tcov ≤ t ≤ tvac

a2e
−b2t − η3Sp3 + ν3Fs(t) + nϵe−Icov if tvac ≤ t ≤ T

(1)
where a1 and a2 are market-fixed demand values selected from historical survey reviews related
to consumption, b1 and b2 are scaling factors related to the time period, and ν1 and ν2 are scaling
factors related to service investments during that particular period.

The demand pattern is closely related with Wu et al. [33]. The demand increases directly with
respect to time through the initial and growth stage, i.e. [0, tcov], where eIcov implies that the rate
of infection increases exponentially during pandemic. In the maturity stage [tcov, tvac], it becomes
steady with respect to time and ultimately starts declining in the final stage [tvac , T ] . In all three
stages, the additional fluctuation occurs due to prices, rate of infection of COVID-19 and investment
in promotion. The promotion is used to accomplish objectives like, building product awareness,
attract new customers, providing information about the store location, stimulating demand, increase
sales in off-seasons. Therefore, the impact of the promotion cannot be ignored if the retailer would
like to determine tangible the optimal replenishment policy and investment decision. Moreover, it
is commonly observed that the retailer sets different prices during different stages of the product
lifespan, and effective pricing strategy always helps the retailer to maximise profits on sales. This
motivates the proposed study to integrate the effects of promotion and price under a trapezoidal-
type demand curve, allowing us to examine the impact of promotion and price on the demand for
pharmaceutical inventory across three different intervals.

3. It is assumed that the rate of investment in promotion is not uniform throughout different stages of
the product’s lifespan. The retailer can adjust the investment rate and price at each stage. Moreover,
it is natural that the impact of the promotion diminishes as time progresses. The following differ-
ential equation is for the time evolution of promotional investment and its impact is considered as
follows:

Ḟs(t) =


fs1(t)− δ1Fs(t) if 0 ≤ t < tcov

fs2(t)− δ2Fs(t) if tcov ≤ t ≤ tvac

fs3(t)− δ3Fs(t) if tvac ≤ t,

(2)

where δi, i = 1, 2, 3, represent the decay rate of the promotional effect in three consecutive periods,
where δ1 ≤ δ2 ≤ δ3. Further, the retailer’s investment in promotion involves quadratic instantaneous
cost functions at each stage measured by the following form:

C (Fsi(t)) =
αif

2
si
(t)

2
(3)

where αi > 0 implies an increasing marginal cost of service investment. With limited resources,
the firm makes joint investment decisions with respect to preservation technology and service. It is
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assumed that the resource capacity is upper bounded by U, i.e.,

αif
2
si
(t)

2
+ u(t) ≤ U (4)

4. The rate of deterioration is

θd = θd(u) = θd0 + (θd1 − θd0) e
−uξ (5)

under the influence of preservation technology investment u. The existing literature gave the concept
that the deterioration rate tends to zero if the retailer puts in immense investment. It is commonly
observed that products like medicine, vaccines and pharmaceutical inventory deteriorate naturally,
and it is impossible to eliminate the deterioration rate fully. Therefore, a threshold value θd0 is
considered for representing the permissible rate of deterioration under the influence of feasible
investment in preservation technology. Note that, for θd0 = 0, it is similar to existing literature. It
is another important note that θd → θd1 if u → 0, i.e. the rate of deterioration remains unchanged
if the retailer does not invest in preservation technology. Similarly, θd → θd0 if u → ∞, i.e. the
deterioration rate reaches its threshold value under the large investment of the retailer.

5. The replenishment rate is instantaneous. Due to the deteriorating nature of items, inventory levels
become zero at the end of a replenishment cycle. Thus, the shortage is not allowed. Deteriorating
items should not be repaired or reworked.

6. The environmental emission cost ER is added to the proposed model as a decision variable. If
i (ER) is an investment for reduction of environmental emissions cost, then i (ER) =

1
δ
log
[
E0

R

ER

]
T ,

for 0 < ER ≤ E0
R, where δ is a decrease in the cost of environmental emission ER per dollar to

increase i (ER) and T is the total cycle time. The environmental emission cost i (ER) is a one-
time investment that will provide better returns in the future. Hence, the annual investment cost is
ρi (ER) =

ρ
δ
log
[
E0

R

ER

]
T , where ρ is an opportunity cost (Mishra et al. [25]).

7. The impact of learning on ordering, holding, and purchasing costs is considered (refer to Kumar et
al. [21]).

5. Model Formulation

Based on the assumptions, the mathematical formulation of the proposed model is developed in this
section. The demand and deterioration are the causes of the depletion of inventory, and the governing
differential equations represent the inventory level as follows:

İ(t) =


−a1 − b1t+ η1Sp1 − ν1Fs(t)− θdI(t)− nϵeIcov if 0 ≤ t ≤ tcov

−D0 + η2Sp2 − ν2Fs(t)− θdI(t)− nϵIcov
N

+ γvacVcov if tcov ≤ t ≤ tvac

−a2e
−b2t + η3Sp3 − ν3Fs(t)− nϵe−Icov − θdI(t) if µ ≤ t ≤ T,

(6)

where I(0) = Q0 is initial stock and I(T ) = 0. Using the rate of change of inventory during several
time intervals, it is easy to calculate the revenues and other system costs, which are needed to decide
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the dynamic investment in promotion. By that, the management of the industry would decide how much
investment they can allow for the promotion. Due to the physical nature of the item, deterioration occurs
over time. To manage this deterioration, investments are made in preservation technology. Additionally,
the impact of learning is factored into the cost parameters.

• Sells revenue (SR) in the cycle [0, T]

Within any supply chain, the customer is the retailer’s source of revenue. Therefore, revenue plays
a very important role in any decision-making process. Basic revenue can be found in the multi-
plication of demand and selling price. However, nowadays, due to the complexity of the business
market, it is not always possible to fix demand. It may be possibly different in several cases. The
demand and selling prices are different at different intervals. Thus, the sales revenue (SR) in the
cycle [0, T] can be calculated as follows:

SR =
1

T

[
Sp1

∫ tcov

0

[
a1 + b1t− η1Sp1 + ν1Fs(t) + nϵeIcov

]
dt

+ Sp2

∫ tvac

tcov

[
D0 − η2Sp2 + ν2Fs(t) +

nϵIcov
N

− γvacVcov

]
dt

+ Sp3

∫ T

tvac

[
a2e

−b2t − η3Sp3 + ν3Fs(t) + nϵe−Icov
]
dt

] (7)

• Ordering cost (OC)

Generally, the ordering cost is used time for ordering products by the retailer or many times but is
considered constant. In this model, however, the ordering cost for a sustainable inventory system,
accounting for the effect of learning (per unit time), is given by:

OC =
KL

T
(8)

• Inventory holding cost (HC) in the cycle [0, T]

The average inventory varies across different time intervals. The total holding cost for a sustainable
inventory system, considering the effect of learning (per unit time), is given by:

HC =
hL

T

[∫ tcov

0

I(t)dt+

∫ tvac

tcov

I(t)dt+

∫ T

tvac

I(t)dt

]
. (9)

• Purchasing cost (PC)

To obtain more profit, it is important that the purchasing cost is low. To purchase basic items, the
industry has to pay the purchasing cost, which allows it to hold the inventory for the future. The
cost for a sustainable inventory system, accounting for the effect of learning (per unit time), is given
by:

PC =
PL
c Q0

T
(10)

• Disposal cost (DC) in the cycle [0, T]
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Due to deterioration, the managers have to invest some funds to dispose of items. The management
never prefers to use this fund, but it is very difficult to change it to a zero level. This is the reason
that the preservation technology costs are used to reduce this disposal cost.

However, the disposal cost can be calculated as

DC =
θdcd
T

[∫ tcov

0

I(t)dt+

∫ tvac

tcov

I(t)dt+

∫ T

tvac

I(t)dt

]
. (11)

• Investment in preservation technology (IPT)

To reduce the disposal cost of the whole system, management always invests in preservation tech-
nology. Thus, the cost can be calculated as IPT = u

T

• Investment in promotion (IP)

To motivate more product sales, the common strategy of the management system is investing more in
promotion, but it increases the total system cost. The optimum way is to use the dynamic investment
in promotion purposes. The investment can be calculated as follows:

IP =
1

T

[∫ tcov

0

α1f
2
s1
(t)

2
dt+

∫ tvac

tcov

α2f
2
s2
(t)

2
dt+

∫ T

tvac

α3f
2
s3
(t)

2
dt

]
. (12)

Hence, the total profit per unit of time, Π is given by

AΠ =
1

T

[
Sp1

((
a1 − η1Sp1 + nϵeIcov

)
tcov + b1

t2cov
2

)

+ Sp2 (tvac − tcov)

(
D0 − η2Sp2 +

nϵIcov
N

− γvacVcov

)

+ Sp3

(
a2
(
e−b2tvac − e−b2T

)
b2

−
(
η3Sp3 − nϵe−Icov

)
(T − tvac)

)

+

∫ tcov

0

[
ν1Sp1Fs(t)−

(
hL + θdcd

)
I(t)−

α1f
2
s1
(t)

2

]
dt

+

∫ tvac

tcov

[
ν2Sp2Fs(t)−

(
hL + θdcd

)
I(t)−

α2f
2
s2
(t)

2

]
dt

+

∫ T

tvac

[
ν3Sp3Fs(t)−

(
hL + θdcd

)
I(t)−

α3f
2
s3
(t)

2

]
dt

−
(
K + PL

c Q0 + u
) ]

(13)

Therefore, one can obtain the solution to the above optimization problem to get optimal dynamic
investment rates, selling prices, replenishment time, and preservation technology investment, which
maximize the retailer’s total profit. The simplified form of the discussed problem is

MaxΠ (Sp1 , Sp2 , Sp3 , u, fs1(t), fs2(t), fs3(t), T ) (14)
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subject to

Ḟs(t) =


fs1(t)− δ1Fs(t) if 0 ≤ t < tcov

fs2(t)− δ2Fs(t) if tcov ≤ t ≤ tvac

fs3(t)− δ3Fs(t) if tvac ≤ t

İ(t) =


−a1 − b1t+ η1Sp1 − ν1Fs(t)− nϵeIcov − θdI(t) if 0 ≤ t ≤ tcov

−D0 + η2Sp2 − ν2Fs(t)− nϵIcov
N

+ γvacVcov − θdI(t) if tcov ≤ t ≤ tvac

−a2e
−b2t + η3Sp3 − ν3Fs(t)− nϵe−Icov − θdI(t) if tvac ≤ t ≤ T

I(T ) = 0, S(0) = S0, u(t) ≥ 0,
αif

2
si
(t)

2
+ u(t) ≤ U, T ≥ tvac, and Spi > Pc

(15)

where si(t) represents the control variables, I(t) and Fs(t) represent the state variables and Sp1 ,
Sp2 , Sp3 , u and T represent static variables. Generally, the initial replenishment quantity Q0 is
considered as a decision variable in the above optimization problem. This study considers the
replenishment quantity Q0 as a dependent decision variable. Once the decision variables Sp1 , Sp2 ,
Sp3 , u, T are obtained, the replenishment quantity Q0 can be determined. For analytical tractability,
several authors assumed that purchase cost is zero under a dynamic environment, this restriction
is relaxed. Now, Pontryagin’s maximum principle is employed to obtain control variables for the
optimal dynamic investment rates (Mathur & Dwivedi [24]). Then, Ant Colony Optimization and
Cuckoo Search Algorithm are applied to find ultimate decisions.

6. Proposed Methodology

The optimization is done through two important theorems, which are discussed in the following section.

6.1. Dynamic Investment Strategy

This subsection assumes that Sp1 , Sp2 , Sp3 , u, and T are given and reformulate the optimization prob-
lem Equation (15) as given below:

Π1 =

∫ tcov

0

[
ν1Sp1Fs(t)− (h+ θdcd) I(t)−

α1f
2
s1
(t)

2

]
dt

+

∫ tvac

tcov

[
ν2Sp2Fs(t)− (h+ θdcd) I(t)−

α2f
2
s2
(t)

2

]
dt

+

∫ T

tvac

[
ν3Sp3Fs(t)− (h+ θdcd) I(t)−

α3f
2
s3
(t)

2

]
dt

(16)

subject to the same set of constraints. The following Theorem 6.1 gives the nature of the investment.
Theorem 6.1 The Hamiltonian function of the dynamic problem Equation (16) is concave with respect
to the dynamical investment fsi(t), whereas the dynamical investments depend on the adjoint variables
of the Hamiltonian function.

proof It is assumed that all the functional forms in the problem Equation (16) are non-negative,
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continuous, and differentiable on [0, T ]. The Hamiltonian function H for the above optimization problem
Equation (16) is formulated as follows.

H =



ν1Sp1Fs(t)−
(
hL + θdcd

)
I(t)− α1f2

s1
(t)

2
+ λ1 [fs1(t)− δ1Fs(t)] if 0 ≤ t ≤ tcov

+λ2

[
−a1 − b1t+ η1Sp1 − ν1Fs(t)− nϵeIcov − θdI(t)

]
ν2Sp2Fs(t)−

(
hL + θdcd

)
I(t)− α2f2

s2
(t)

2
+ λ1 [fs2(t)− δ2Fs(t)] if tcov ≤ t ≤ tvac

+λ2

[
−D0 + η2Sp2 − ν2Fs(t)− nϵIcov

N
+ γvacVcov − θdI(t)

]
ν3Sp3Fs(t)−

(
hL + θdcd

)
I(t)− α3f2

s3
(t)

2
+ λ1 [fs3(t)− δ3Fs(t)] if tvac ≤ t ≤ T

+λ2

[
−ae−bt + η2Sp2 − ν3Fs(t)− nϵe−Icov − θdI(t)

]
,

(17)

where λ1 and λ2 are adjoint variables associated with states equations İ(t) and Ṡ(t), respectively. It can
be found from Equation (17) that each component of the Hamiltonian function is composed of two parts:
the first part is the integrant of objective functional, and the second part consists of the right-hand side
of the state equations, which denotes the indirect contribution to the objective functional from the value
of the changes Fs(t) and I(t). Note that, the initial condition I(0) and the terminal conditions of S(T )
remain free, which introduce the following transversality conditions as λ1(T ) = 0 and λ2(0) = 0 and the
adjoint variables λ1 and λ2, must satisfy the following differential equations

λ̇1 = −∂H

∂S
=


δ1λ1 + ν1λ2 − Sp1ν1 if 0 ≤ t ≤ tcov

δ2λ1 + ν2λ2 − Sp2ν2 if tcov ≤ t ≤ tvac

δ3λ1 + ν3λ2 − Sp3ν3 if tcov ≤ t ≤ tvac

(18)

λ̇2 = −∂H

∂I
=


(
hL + θdcd

)
+ λ2θd if 0 ≤ t ≤ tcov(

hL + θdcd
)
+ λ2θd if tcov ≤ t ≤ tvac(

hL + θdcd
)
+ λ2θd if tvac ≤ t ≤ T.

(19)

Solving the differential Equation (19), one yields

λopt
2 (t) =

hL + θdcd
θd

(
eθdt − 1

)
, 0 ≤ t ≤ T (20)

Substituting Equation (20) into Equation (18) and solving, one can obtain

λopt
1 (t) =


ν1

(
Sp1 +

hL+θdcd
θd

)
1−e−δ1(tcov−t)

δ1
+ ν1(hL+θdcd)e

θdt

θd(θd−δ1)
(1− e(θd−δ1)(tcov−t)) , if 0 ≤ t < tcov

ν2

(
Sp2 +

hL+θdcd
θd

)
1−e−δ2(tvac−t)

δ2
+ ν2(hL+θdcd)e

θdt

θd(θd−δ2)
(1− e(θd−δ2)(tvac−t)) , if tcov ≤ t ≤ tvac

ν3

(
Sp3 +

hL+θdcd
θd

)
1−e−δ3(T−t)

δ3
+ ν3(hL+θdcd)e

θdt

θd(θd−δ3)
(1− e(θd−δ3)(T−t)) , if tvac ≤ t ≤ T

(21)
In the following analysis, suppose θd(u) ̸= δi. For the case θd(u) = δi, all the results also hold when
taking the limit in mathematics such that θd(u) = δi.

Corollary 1 : The service investment rate f opt
si

≡ 0 for any t ∈ [0, T ] if the sales price Spi ≤ Spj



Acc
ep

ted
man

us
cri

pt

16 V. Dwivedi et al.

and fsi > 0 for any t ∈ [0, T ) if the sale price Spi ≥ Sp0 , where

Sp1 =
γ1(cdθd + hL)(1− e−δ1tcov)

θd(δ1 − θd)
− λ1(tcov)e

−δ1tcov
δ1

γ1(1− e−δ1tcov)
− cd −

hL

θd

Sp2 =
γ2(cdθd + hL)(1− e−δ2T )

θd(δ2 − θd)
− λ1(tvac)e

−δ2tvac
δ2

γ2(1− e−δ2tvac)
− cd −

hL

θd

Sp3 = −(cdθd + hL)δ3
θd(θd − δ3)

− cd −
hL

θd

(22)

and

Sp0 =
hL + θdcd

θd

(
eθdT − 1

)
(23)

The optimal control policies
(
Sopt
p1

, Sopt
p2

, Sopt
p3

, uopt , T opt
)

and state trajectories (F opt
s (t), Iopt(t)) have

to maximize the Hamiltonian Function at all the points, that is,

Hopt
(
F opt
s (t), Iopt(t), Sopt

p1
, Sopt

p2
, Sopt

p3
, uopt , T opt, t

)
≥ Hopt

(
F opt
s (t), Iopt(t), Sp1

, Sp2
, Sp3

, u , T , t
)
∀ t (24)

It is to be noted that:

∂λ1(t)

∂t
= −ν3

(
Sp3 + cd + hL/θd

)
e−δ3(T−t)+

ν3
(
hL + θdcd

)
θd (θd − δ3)

(
eθdtθd − δ3e

(θd−δ3)T+δ3t
)
< 0,∀t ∈ [tvac, T ]

(25)
i.e. λ1(t) decreases in the final stage of the product lifespan. To maximize the Hamiltonian H with
respect to fsi(t), the first order condition is obtained by solving ∂H

dfsi
dfsi

(t)
= 0. On simplification,

fs1(t) =
λ1(t)

2α1

, 0 ≤ t ≤ tcov (26)

fs2(t) =
λ1(t)

2α2

, tcov ≤ t ≤ tvac (27)

fs3(t) =
λ1(t)

2α3

, tvac ≤ t ≤ T (28)

Moreover, ∂2H
∂fsi (t)

2 = −2αi < 0 and ∂2H
∂fsi (t)dfsj (t)

= 0 ∀ i ̸= j, therefore H is concave with respect to

fsi(t) and the optimal path of fsi(t) depends on λ1(t).
Finally, Theorem 6.2 can be proved for the optimum strategy for the retailer.

Theorem 6.2 The dynamical investment rate of the retailer decreases continuously if always the re-
tailer’s uniform-price, production-sensitive, and decay rates are identical at each stage.

proof At the beginning of the declining stage, λ1 (tvac) = ν3
δ3
(Sp3 + cd+ h/θd)

(
1− e−δ3(T+t)

)
+

ν3(hL+θdcd)
θd(θd−δ3)

(
eθdt − e(t−δ3)T+δ3t

)
, thus the solution exists if

Sp3 >

(
hL + cdθd

) (
eδ3tvac

(
θd − δ3

(
1− eTθd

))
− eδ3T

(
θd − δ3

(
1− eθdtvac

)))
(eδ3T − eδ3tvac) θd (θd − δ3)

(= Γ1, say ) . (29)
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Substituting Sp1 = Sp2 = Sp3 , ν1 = ν2 = ν3, and δ1 = δ2 = δ3, one can obtain

∂λ1(t)

∂ti
= −ν3 (Sp3 + cd + h/θd) e

−δ3(T−ti) +
ν3 (h+ θdcd)

θd (θd − δ3)

(
eθdtiθd − δ3e

(θd−δ3)T+δ3ti
)
< 0,

where t1 ∈ [0, tcov] , t2 ∈ [tcov, tvac], and t3 ∈ [tvac, T ]. Therefore, the investment rate of the retailer
decreases continuously if the retailer considers uniform price, promotion sensitivity, and decay rates
identical at each stage.

Substituting Equations (26), (27) and (28) in Equation (2), one can find that the optimal path repre-
senting the promotional level as follows:

F opt
s (t) =



ν1(Sp1 + ω1)
(

1−e−δ1t

δ1
− e−δ1tcovω2

)
2α1δ1

+
ν1ω1

(
eθdt−e−δ1t

θd+δ1
− e(θd−δ1)tcovω2

)
2α1 (θd − δ1)

+λ1(tcov)e−δ1tcovω2

2α1
+ Fs0e

−δ1t

if 0 ≤ t ≤ tcov

ν2(Sp2 + ω1)
(

1−eδ2(tcov−t)

δ2
− e−δ2tvacω9

)
2α2δ2

+
ν2ω1

(
eθdt−e(θd+δ2)tcov e−δ2t

θd+δ2
− e(θd−δ2)tvacω9

)
2α2 (θd − δ2)

+λ1(tvac)e−δ2tvacω9

2α2
+ Fs(tcov)e

−δ2(t−tcov)

if tcov ≤ t ≤ tvac

ν3(Sp3 + ω1)
(

1−eδ3(tvac−t)

δ3
− e−δ3Tω10

)
2α3δ3

+
ν3ω1

(
eθdt−e(θd+δ3)tvace−δ3t

θd+δ3
− e(θd−δ3)Tω10

)
2α3 (θd − δ3)

+Fs(tvac)e
−δ3(t−tvac)

if tvac ≤ t < T

(30)
[See all values in Appendix A]. Finally, substituting Equation (30) in Equation (6), the optimal path

representing the inventory level in the entire replenishment cycle is obtained by the following equations.
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Iopt(t) =



Q0e
−θdt −

(a1 − η1Sp1)
(
1− e−θdt

)
θd

− b1

(
t

θd
− 1− e−θdt

θ2d

)
+ ν1Fs0ω3

− ν1
2α1

[
λ1(tcov)e−δ1tcovω11

2δ1
+ ν1

δ1
(Sp1 + ω1)

(
1
δ1

(
1−e−θdt

θd
− ω3

)
− e−δ1tcovω11

2δ1

)
+ ν1ω1

(θd−δ1)

(
1

θd+δ1

(
eθdt−e−θdt

2θd
− ω3

)
− e(θd−δ1)tcovω11

2δ1

)]
if 0 ≤ t ≤ tcov

I (tcov) e
−θd(t−tcov) −

(D0 − η2Sp2)
(
1− e−θd(t−tcov)

)
θd

− ν2Fs (tcov) e
δ2tcovω5

− ν2
2α2

[
ν2
δ2
(Sp2 + ω1)

(
1
δ2

(
1−eθd(tcov−t)

θd
− eδ2tcovω5

)
− e−δ2tvacω12

2δ2

)
+ ν2ω1

(θd−δ2)

(
eθdt−e2θdtcov e−θdt

2θd(θd+δ2)
− e(θd+δ2)tcovω5

θd+δ2
− e(θd−δ2)tvacω12

2δ2

)
+ λ1tvace−δ2tvacω12

2δ2

]
if tcov ≤ t ≤ tvac

I (tvac) e
−θd(t−tvac) +

η3Sp3

(
1− e−θd(t−tvac)

)
θd

−
a3
(
e−b3t − e(θd−b3)tvace−θdt

)
θd − b3

−ν3Fs (tvac) + eδ3tvacω7 − ν3
2α3

[
ν3(Sp3+ω1)

δ3

(
1−eθd(tvac−t)

θdδ3
− eδ3tvacω7

δ3
− e−δ3Tω13

2δ3

)
+ ν3ω1

(θd−δ3)

(
eθdt−e2θdtvace−θdt

2θd(θd+δ3)
− e(θd+δ3)tvacω7

(θd+δ3)
− e(θd−δ3)Tω13

2δ3

)
+ λ1(µ3)e−δ3µ3ω13

2δ3

]
if tvac ≤ t ≤ T

(31)

Using Equation (31), the replenishment quantity Q0 can be obtained by using the condition I(T ) = 0.
Therefore, one needs to find the following optimization problem to get optimal decision

MaxΠ (Sp1 , Sp2 , Sp3 , u , T ) (32)

subject to 

a1 − η1Sp1 + ν1S(0) ≥ 0

D0 − η2Sp2 + ν2S (tcov) ≥ 0

a2e
−b2tvac − η2Sp2 + ν3S (tvac) ≥ 0

I(T ) = 0, S(0) = S0, Sp1 > c, Sp2 > c,

Sp3 > Max {c, Γ1} , T ≥ tvac, 0 ≤ fsi ≤
√

2
αi
(U − u(t))

(33)

where the constraints set Equation (33) ensure non-negative demand throughout the product lifespan.
Where the constraints set (33) ensure non-negative demand throughout the product lifespan. Due to

the complexity and nonlinear characteristics of both the objective function and constraints, the analytical
solution is difficult to find. Therefore, the Ants Colony Algorithm and Cuckoo Search Algorithm for
solving the above optimization problem (Yu et al. [35]) is given in the following section.

6.2. Ant Colony Optimization

Ant colony optimization offers an innovative and efficient approach to simplifying complex measures
while maintaining validity and reliability (Karl et al. [14]). Ants are a kind of social insects. After a lot
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of research, it has been found that ants can transmit information through a substance called exogenous
hormone in the course of their movement. They leave this substance on the path. At the same time,
ants can perceive the existence and intensity of this substance in the process of movement and use this
substance to guide their movement direction. Therefore, the more ants walk along a certain path, the
higher the intensity of exogenous hormones left behind, and the greater the probability that the latter
will choose the path. It is through the exchange of information among ants that the purpose of searching
for food is achieved Yu et al. [34]. Algorithm 1 represents the pseudocode of the applied Ant Colony
Optimization.

6.3. Cuckoo Search Algorithm

The Cuckoo Search is a stochastic search evolutionary algorithm. The Cuckoo Search algorithm was
first proposed by Srinivasan et al. [28]. It is inspired by cuckoo breeding behaviour. The cuckoo lays
eggs in the nests of other species with the intention that the host will look after the cuckoos eggs as if
they were the hosts own. Each egg in a nest signifies a solution. A cuckoos egg signifies a new solution.
The objective is to use new and possibly superior solutions to replace an inferior solution in the nests.
The probability that the host identifies the cuckoos eggs and abandons the nests are denoted by Pa. To
generate a new solution, the cuckoo search approach exhibits Levy flight distribution.

Cuckoo Search Algorithm

The following rules are applied in cuckoo search algorithm (Srinivasan et al. [28]):

1. Each cuckoo lays one egg at a time, and a nest is chosen randomly for dumping it.

2. The best nests are the ones with high-quality eggs that would survive to carry over to the next
generations.

3. There is a fixed number of host nests, and if the laid egg is discovered with a probability pa (pa ∈
[0, 1]), the host bird may either throw it away or leave the nest to construct a completely new nest.

Considering Li and Ui as the lower and upper bounds for decision variable xi, the initial solutions for
the cuckoo search algorithm can be determined by:

xi = Li + rand(Ui − Li). (22)

Moreover, the new solution for cuckoo i, xi(t + 1), is generated by performing Levy flight as shown
in:

xi(t+ 1) = xi(t) + α⊙ Levy(λ), (23)

where α > 0 is the step size and ⊙ represents entry-wise multiplication. The Levy flight provides a
random walk in which the random steps are drawn from a Levy distribution with infinite variance and
mean:

Levy ∼ u = t−λ, 1 ≤ λ ≤ 3. (24)

Algorithm 2, represents the pseudocode of the applied cuckoo search algorithm.
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7. Numerical Validations

This section explores the characteristics of the proposed model and the solution procedure with two
numerical examples. The sensitivity analysis performs a crucial role in finding out the changes of key
parameters over the optimal solution and convergence rate of the Algorithm. The following parametric
values are considered to illustrate the model as given in Table 1.

Table 1. Input data of numerical example

n = 0.2 ϵ = 0.05 Icov = 0.1
a1 = 40 a2 = 100 b1 = 5

b2 = 0.086 η1 = 0.1 η2 = 0.5
η3 = 0.5 γvac = 0.9 h = 1.8
θd = 1.3 α1 = 0.7 α2 = 0.8
α3 = 0.9 ν1 = 1.5 ν2 = 1.6
ν3 = 1.7 K = 2.0 Pc = 2.1
Q0 = 2.2 N = 150 cd = 5
D0 = 50 Vcov = 5000 λ = 0.2
h = 1.5 hl = 1.2 l = 1
K = 20 Kl = 18 Pc = 25
P1 = 20 cd = 5 cdl = 3
ξ = 0.03

The optimal investment rate in promotion and the corresponding promotional level are governed by
the following relations:

f1(t) = 70.8628− 31.4823e0.202554t + 14.2673e0.25t if 0 ≤ t ≤ tcov

f2(t) = 69.1923− 15.3285e0.202554t + 1.24483e0.3t if tcov ≤ t ≤ tvac

f3(t) = 44.6242− 11.4964e0.202554t + 1.71617e0.3t if tvac ≤ t ≤ T

(34)

F (t) =


283.451− 192.42e−0.25t − 69.5652e0.202554t + 28.5342e0.25t if 0 ≤ t ≤ tcov

230.641− 116.646e−0.3t − 30.5011e0.202554t + 2.07465e0.3t if tcov ≤ t ≤ tvac

148.747 + 265.706e−0.3t − 22.8758e0.202554t + 2.86022e0.3t if tvac ≤ t ≤ T.

(35)

For the experiment of Ant Colony Optimization (ACO). We consider 50 ants set up. The pheromone
renewal mechanism was the optimal one. The Volatilization Coefficient of pheromone was 0.2. α = 2 and
β = 5 are parameters that tune the balance between exploiting pheromone trails (α) and exploring based
on heuristic information (β) in the ACO algorithm with initial iteration = 100. and for the experiment of
Cuckoo Search Algorithm. We consider the number of cuckoos to be 40 and the number of iterations to
be 100.

By applying Ant Colony Optimization (ACO) and Cuckoo Search Algorithm (CSA), the optimal
decision of the proposed model is obtained as shown in Table 2 and Figure 8

When comparing Ant Colony Optimization (ACO) and Cuckoo Search Algorithm (CSA) for opti-
mizing pharmaceutical inventory profit, it’s evident that ACO performs better, generating a profit of
248,845.36 compared to CSA’s 246,708.59. While there are slight differences in selling prices and cycle
times, ACO boasts a slightly lower cycle time of 7.00 versus CSA’s 7.01. Importantly, the significance of
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Table 2. Optimal Results of Proposed Algorithms using Dataset from Table 1

Algorithm Profit(A∗
π) S∗

p1
S∗
p2

S∗
p3

T ∗ E∗
1 u∗

ACO 340861.89 95.60 149.54 103.04 5.03 1.43 91.94
CSA 337478.27 90.07 149.67 98.96 5.07 1.52 70.23
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Figure 8. Convergence Graphs through Ant Colony Optimization for Inventory Profit from Table (1).

preservation technology is highlighted not only for maximizing profitability but also for reducing health
risks associated with poorly preserved medications. This suggests that further investment in preservation
technology could enhance the effectiveness of both algorithms. In summary, ACO emerges as the pre-
ferred choice for profit maximization, emphasizing the importance of selecting the right algorithm for
inventory optimization strategies.

7.1. Statistical Analysis and Comparison of both Algorithm

The statistical test ANOVA was conducted to test the hypothesis in the research design. Based on the
results presented in Tables 3 the comparison between Ant Colony Optimization and Cuckoo Search
Algorithm reveals that not only was the Ant Colony Algorithm faster, but it also outperformed the Cuckoo
Search Algorithm in terms of every solution and the best solution.

8. Sensitivity Analysis

The sensitivity analysis is conducted on the optimal policy concerning the price-sensitive parameters η1,
η2, and η3, as listed in Table 4. When the value of one parameter varies, all others remain constant as
shown in Figures 9 and 10.

The price sensitivity of demand and total profit are closely intertwined. It is intuitive to understand
that as the price sensitivity of products increases, profit decreases, impacting the investment opportunities
for the retailer, either in reducing deterioration or promoting the product. The results presented in Table
4 corroborate this common intuition. However, the characteristics of the optimal solution undergo signif-
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Table 3. ANOVA, Model Summary, Means, and Pairwise Comparisons for Factor (ACO Profit, CSA Profit)

Factor Information Factor (ACO Profit, CSA Profit)
Factor Levels Values 2 (ACO Profit, CSA Profit)

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 1 1.47023E+11 1.47023E+11 1.32 0.257
Error 46 5.14130E+12 1.11767E+11
Total 47 5.28832E+12

Model Summary
S R-sq R-sq(adj) R-sq(pred)

334316 2.78% 0.67% 0.00%
Means
Factor N Mean StDev 95% CI

ACO Profit 24 366266 471540 (228902, 503630)
CSA Profit 24 255578 34412 (118213, 392942)

Pooled StDev 334316
Grouping Information Using the Tukey Method and 95% Confidence

Factor N Mean Grouping
ACO Profit 24 366266 A
CSA Profit 24 255578 A

Means that do not share a letter are significantly different.
Tukey Simultaneous Tests for Differences of Means

Difference of Levels Difference of Means SE of Difference 95% CI T-Value Adjusted P-Value
CSA Profit - ACO Profit -110688 96509 (-304950, 83574) -1.15 0.257

Individual confidence level = 95.00%
Grouping Information Using the Fisher LSD Method and 95% Confidence

Factor N Mean Grouping
ACO Profit 24 366266 A
CSA Profit 24 255578 A

Fisher Individual Tests for Differences of Means
Difference of Levels Difference of Means SE of Difference 95% CI T-Value Adjusted P-Value

CSA Profit - ACO Profit -110688 96509 (-304950, 83574) -1.15 0.257
Simultaneous confidence level = 95.00%

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050
Epsilon (ε)

338000

339000

340000

341000

342000

343000

Be
st
 S
ol
ut
io
  
(P
ro
fit
 A
_π
*)

337356

342736

340752

340359

339109

Se sitivit( A al(sis: Impact of Epsilon on Profit (A_π*)
Best Solutio  (Profit A_π*)

0.06 0.08 0.10 0.12 0.14
Inventory Coverage (I_cov)

338000

340000

342000

344000

346000

348000

Be
st
 S
ol
ut
io
  
(P
ro
fit
 A
_π
*)

339469

338126

341053

349079

341707

Se sitivit( A al(sis: Impact of Inventory Coverage (I_cov) o  Profit (A_π*)
Best Solutio  (Profit A_π*)

Figure 9. Sensitivity Analysis Graph for Parameters ϵ and Icov .
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icant changes. While increases in η1 and η2 lead to an increase in the retailer’s replenishment cycle time,
the opposite effect occurs for η3. Therefore, the retailer should reduce the length of the replenishment
cycle to maximize profit, especially in cases of high price sensitivity in the final stage. Importantly, opti-
mal investment decisions and profit are influenced by the price sensitivity of products during the maturity
stage, with the price sensitivity in the final stage exerting a greater influence than in the initial stage on
determining the optimal preservation technology investment.

From Table 5, it is evident that the decision to apply market skimming, penetration, or a mixed pric-
ing strategy should be based on the price sensitivity at different stages. Consequently, the retailer should
monitor price sensitivity and decide on the pricing strategy accordingly to achieve optimal profit. Pro-
motional investments are typically utilized to shift consumer focus away from price and towards product
benefits. As consumer sensitivity to promotions increases, such investments become more profitable.
Analysis of Table 4 reveals that as νi, i = 1, 2, 3 increases, promotional investments also increase. With
higher demand, the retailer can charge more, providing opportunities not only for increased promotional
spending but also for investments in preservation technology. Implicitly, the profitability and replen-
ishment cycle time of the retailer are significantly influenced by promotional sensitivity in the maturity
stage. Additionally, as Q0 increases, the retailer’s profit increases, indicating the substantial impact of
the retailer’s reputation on profitability. Thus, investments in promotion not only enhance current cycle
profits but also create opportunities for higher profits in the future.

From Table 4 and 5, it is evident that as the decay rate increases, so does the profit of the retailer.
In other words, if the investment in promotion fails to effectively attract consumers, it could lead to a
catastrophe in the retailer’s profitability. Additionally, the retailer’s profit is highly sensitive to the decay
rate, particularly in the initial and growth stages compared to the decline stage. In situations where the
decay rate is high, the retailer should consider reducing both the length of the replenishment cycle and
the price of the product to maximize the impact of promotion. Moreover, a higher decay rate reduces
opportunities for investment in preservation technology.

In comparison to existing literature on preservation technology, this study assumes that the retailer
can reduce the rate of deterioration up to a certain threshold limit (refer to Tables 4 and 5). For instance,
perishable items like milk or vegetables degrade over time, necessitating various preservation measures
that require adjustable investments. The findings suggest that determining the threshold value, which
signifies the extent to which deterioration can be mitigated, is crucial for guiding preservation technology
investments. The results demonstrate that the retailer’s profit is highly sensitive to this threshold value. A
smaller deterioration rate necessitates a lesser investment in preservation technology by the retailer. The
pricing of products is also influenced by the threshold value. It is logical to observe that as ξ increases,
the retailer’s profit rises while investment in preservation technology decreases. This observation aligns
with the results of the sensitivity analysis conducted in the model. Therefore, it is essential for the retailer
to assess the nature of the product and make preservation technology investment decisions accordingly.

From Tables 4 and 5, it is evident that the impact of holding cost and disposal cost on the retailer’s
profitability is not as significant as the unit cost of the product. It is natural to observe that as Pc and
h increase, the retailer’s profit decreases. This deduction is supported by the results presented above.
However, the rate of decrement is highly sensitive to Pc, and as Pc increases, the rate of investment
in promotion and preservation technology decreases. Furthermore, the unit cost of the product has a
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considerable impact on the price at the maturity stage. The replenishment time decreases across all
cost parameters due to the higher deterioration rate. It is evident that as the promotion investment cost
coefficients αi (i = 1, 2, 3) increase, profit, replenishment cycle time, and product prices decrease. If the
promotion cost coefficients are relatively large, the higher promotional costs compel the retailer to invest
less in preservation technology. In order to capitalize on the expanding demand, the retailer is motivated
to set lower prices. Consequently, inefficient promotion activities always negatively impact the retailer’s
profitability. Notably, under the infection awareness-price-and trapezoidal-type demand, the retailer’s
effectiveness in promotion during the initial and growth stages is a critical factor in achieving higher
profits.

The tables present optimal decision variable values and total profit for varying parameters in a model.
Table 6 outlines the results for different cumulative frequency values (’l’). As ’l’ increases, the optimal
values of decision variables S∗

p1
, S∗

p2
, S∗

p3
, u∗, T ∗, and ER show notable variations, with the total profit

fluctuating accordingly. For instance, with ’l’ set to 2, the model achieves the highest total profit of
344,272.54. In contrast, Table 7 explores the impact of the learning rate (λ) on the decision variables and
total profit. Different λ values yield varying results, with the best profit of 347,304.98 achieved when
λ is 0.2. Overall, changes in both ’l’ and λ affect the decision variables and profitability, illustrating
the sensitivity of the model to these parameters. The application of fuzzy learning, as evidenced by
the tables, highlights its significance in optimizing decision variables and maximizing total profit. By
adjusting parameters such as cumulative frequency (’l’) and learning rate (λ). This approach effectively
captures the impact of different parameter settings, demonstrating its capability to handle uncertainties
and improve model performance.

9. Managerial Insights from Industrial Cases: Pharmaceuti-
cal Products

The examination of industrial cases within the pharmaceutical sector offers crucial insights into man-
aging deteriorated products. Due to the unique challenges associated with pharmaceutical items, where
deterioration rates can fluctuate significantly, a static investment strategy may prove economically unfea-
sible. Adopting a dynamic investment approach, which adjusts based on the condition and lifespan of the
products, tends to be more advantageous for pharmaceutical managers.

9.1. Key Insights

• Managing the rate of deterioration in pharmaceuticals is critical. By optimizing factors such as
storage conditions and packaging, managers can extend the shelf life of drugs. This approach not
only ensures prolonged effectiveness but also enhances economic benefits by minimizing wastage
and maximizing of product utility

• Advanced preservation methods, including temperature control and specialized packaging, can
greatly extend the lifespan of pharmaceutical products. However, their effectiveness diminishes
once a product’s deterioration crosses a critical threshold, such as when the active ingredients start
to degrade rapidly.
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Table 4. Sensitivity Analysis of Decision Variables for Overall Inventory Cost (Aπ)

Inventory Variability Selling Selling Selling Cycle T ∗ Preservation Environmental Best solution
Parameters in Values Price Price Price Length Technology emission cost (Profit A∗

Π)
S∗
p1

S∗
p2

S∗
p3

u∗ cost ER

ACO

0.10 99.80 148.20 113.10 05.00 70.48 2.04 330114.00
0.15 99.04 149.70 111.10 05.01 83.27 3.05 339030.40

Varying n 0.20 98.89 149.80 109.00 05.01 87.77 3.22 343970.20
0.25 98.05 149.96 108.40 05.02 97.12 3.38 342283.83
0.30 97.42 149.98 095.80 05.04 99.37 3.66 347651.58

0.001 98.71 149.70 112.90 05.08 96.82 0.54 337356.12
0.002 91.92 149.80 104.70 05.07 90.89 1.48 342736.12

Varying ϵ 0.003 91.72 149.80 104.50 05.06 90.85 1.59 340751.86
0.004 90.59 149.90 100.50 05.04 90.85 1.64 340359.22
0.005 80.01 149.98 095.20 05.04 88.97 1.67 339109.38

0.050 98.56 148.80 104.80 05.01 73.47 1.06 339469.32
0.075 97.89 149.70 110.20 05.02 97.05 1.48 338126.00

Varying Icov 0.100 96.69 149.75 112.60 05.03 82.65 3.34 341052.96
0.125 095.72 148.50 122.90 05.05 95.91 1.03 349078.77
0.150 90.65 147.80 130.90 05.07 75.37 3.32 341706.86

20 97.72 149.30 096.2 05.01 71.78 0.73 338445.43
30 95.42 149.90 097.2 05.03 76.84 1.25 339245.23

Varying a1 40 91.64 148.40 101.9 05.03 82.90 2.04 339874.05
50 91.54 148.30 110.1 05.07 91.29 3.05 339984.94
60 90.14 148.10 111.2 05.08 94.39 3.25 341145.38

050 94.10 149.6 103.6 99.25 05.08 1.11 334484.23
075 99.86 149.8 108.3 85.88 05.03 3.71 340303.95

Varying a2 100 98.74 147.9 106.1 95.60 05.00 0.38 339440.25
125 96.22 149.9 092.3 73.38 05.04 2.70 341211.88
150 92.12 149.5 116.0 80.96 05.03 0.23 344569.16

2.50 90.89 148.80 113.70 91.11 05.01 0.41 340391.24
3.75 97.96 147.85 113.30 89.48 05.03 1.84 339029.65

Varying b1 5.00 98.74 147.60 106.10 95.60 05.00 0.38 339440.25
6.25 99.37 146.50 105.20 83.36 05.01 3.66 342763.41
7.50 99.39 149.70 098.9 99.91 05.04 1.79 340213.14

0.0430 99.85 148.9 111.3 99.67 05.05 1.76 335236.72
0.0645 99.57 148.7 096.0 99.29 05.00 2.81 336227.98

Varying b2 0.0860 98.74 147.9 106.1 95.60 05.00 0.38 339440.25
0.1075 95.02 148.7 104.6 91.33 05.02 1.56 335159.60
0.1290 94.74 149.7 110.9 84.65 05.04 2.73 335712.99
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Table 5. Sensitivity Analysis of Decision Variables for Overall Inventory Cost (Aπ)

Inventory Variability Selling Selling Selling Cycle T ∗ Preservation Environmental Best solution
Parameters in Values Price Price Price Length Technology emission cost (Profit A∗

Π)
S∗
p1

S∗
p2

S∗
p3

u∗ cost ER

ACO

0.050 94.14 149.2 098.6 95.80 05.05 03.04 334266.72
0.075 94.19 148.6 113.6 99.23 05.00 02.50 336892.06

Varying η1 0.100 98.74 147.9 106.1 95.60 05.00 00.38 339440.25
0.125 96.62 147.7 118.1 00.27 05.02 00.13 334230.01
0.150 93.89 147.9 098.5 97.25 05.00 00.06 334211.71

0.250 96.38 149.8 118.2 74.45 05.06 1.881 337994.41
0.375 93.33 149.0 113.3 84.86 05.03 3.099 338993.08

Varying η2 0.500 98.74 147.9 106.1 95.60 05.00 0.384 339440.25
0.625 91.62 148.8 107.5 73.69 05.03 0.653 340808.22
0.750 94.22 149.0 113.9 87.37 05.00 3.172 345558.59

0.250 98.29 147.0 147.0 94.47 05.01 2.140 339978.79
0.375 96.46 148.2 115.9 96.31 05.04 3.074 339192.29

Varying η3 0.500 98.74 147.9 106.1 95.60 05.00 0.384 339440.25
0.625 93.82 149.7 106.2 90.58 05.07 0.181 337491.53
0.750 94.41 149.1 101.3 87.61 05.03 3.786 337409.14

0.450 90.36 149.0 112.7 83.12 05.02 1.691 173929.78
0.675 90.80 149.2 112.9 86.42 05.00 1.279 258636.78

Varying γvac 0.900 98.74 147.9 106.1 95.60 05.00 0.384 339440.25
1.125 90.16 149.7 108.0 84.21 05.02 2.721 425775.88
1.350 96.57 149.5 090.6 72.45 05.02 2.328 507764.46

0.650 93.82 148.6 095.3 82.20 05.00 0.647 340012.65
0.975 92.85 148.4 111.6 92.23 05.00 3.169 340607.84

Varying θd 1.300 98.74 147.9 106.1 95.60 05.00 0.384 339440.25
1.625 90.02 149.6 117.2 90.96 05.01 2.778 343140.07
1.950 91.36 149.8 094.9 82.94 05.00 2.330 342135.21

Table 6. Optimal Decision Variable Values and Total Profit for Different Values of ’l’

Value of ’l’ S∗
p1

S∗
p2

S∗
p3

u∗ T ∗ ER Best Solution
1 97.25 149.69 112.33 90.70 5.00 3.13 347,304.98

2 94.99 148.94 102.08 79.30 5.00 3.37 344,272.54

3 97.49 146.31 117.30 93.18 5.00 2.13 340,350.93

4 90.32 149.46 090.15 74.62 5.02 0.58 342,591.81

5 93.44 147.51 107.44 71.51 5.02 1.44 340,652.96
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Table 7. Optimal Decision Variables and Total Profit for Different Values of ’λ’

Value of ’λ’ S∗
p1

S∗
p2

S∗
p3

u∗ T ∗ ER Best Solution
0.1 99.05 149.43 110.83 87.93 5.02 2.28 345,273.33

0.2 97.25 149.69 112.33 90.70 5.00 3.13 347,304.98

0.3 95.61 148.92 109.32 84.25 5.00 1.45 345,127.04

0.4 90.31 149.88 110.30 99.75 5.03 0.58 344,872.07

0.5 98.23 149.32 107.46 90.72 5.01 2.40 345,024.26

• In the pharmaceutical industry, where product efficacy can decline over time, static investment
strategies are often inadequate. A dynamic investment approach, which adjusts based on the spe-
cific conditions and life-cycle of each product, allows for optimal resource allocation. For instance,
increasing investment in preservation technologies or storage solutions as a product nears its expi-
ration date can be more effective than a one-time, fixed investment.

• When deterioration surpasses a certain level, additional investment like preservation investment
may yield less returns. In such cases, managers can conserve resources by focusing on promoting
faster sales or implementing dynamic preservation techniques. Strategically allocating investments
according to a products condition and remaining shelf life can enhance return on investment and
mitigate losses.

In summary, for pharmaceutical products, a dynamic investment strategy that considers variable de-
terioration rates and specific product needs enables more efficient resource allocation, reduced waste,
and improved profitability. This approach involves ordering and investing strategically to reduce envi-
ronmental emission losses. High environmental emissions necessitate reducing sales prices to expedite
product turnover and minimize losses. Consequently, this shortens the replenishment cycle and naturally
results in lower profits due to increased environmental emissions.

10. Conclusion

This paper analyzed a dynamic promotion rate based on several price ranges and studied an optimum in-
vestment to reduce the rate of deterioration by preservation technology considering their lifespan. Those
products were used, and the demand pattern followed the trapezoidal type. Due to the dynamic invest-
ment rate and trapezoidal demand, the profit was maximized with Pontryagin’s maximum principle, ACO
and CSA together to calculate the selling price, promotion investment, preservation technology invest-
ment, and optimal order quantity simultaneously. Using the algorithm, the mathematical model obtained
the optimum profit of the maximization problem. The Ant Colony Optimization (ACO) and Cuckoo
Search Algorithm (CSA) were executed separately to compare their performance in solving the problem
at hand, with findings showing that ACO performs better. Typically, such algorithms might get stuck in
local optima; however, ACO leverages pheromone trails and positive feedback to enhance global search
capabilities and avoid local optima. In contrast, CSA uses Lévy flights and parasitic egg-laying to explore
the search space more broadly and probabilistically escape local optima. By examining these global op-
timization mechanisms separately, the authors highlight how ACO’s structured exploration outperforms
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CSA’s random search in achieving more optimal global solutions. As the time-dependent promotional
effort was used within the variable demand, the control theory was utilized to solve the proposed study.
Utilizing the time-dependent investment for retailer’s promotional effort, the study obtained the opti-
mum dynamic investment based on time. Numerical studies showed the benefits of dynamic investment.
Through the sensitivity analysis, the effectiveness of the key parameters are discussed.

Moreover, the retailer should decide a pricing strategy, i.e., penetration or skimming or their com-
bination according to the product’s price sensitivity at different stages. Third, investing in preservation
technology is not always profitable for the retailer, and the retailer should make a decision on this issue
based on the nature of the product. Finally, the retailer may determine the optimal replenishment time to
gain the maximum profit with promotion, price dependent trapezoidal demand pattern.

10.1. Key Findings

• The study reveals that increased price sensitivity reduces profit and influences the optimal replen-
ishment cycle, particularly during the final product stage. This effect extends to preservation tech-
nology investments, which are also shaped by fuzzy learning rates.

• Adapting pricing strategies based on price sensitivity at different product stages is crucial. Effective
promotional investments, particularly during high-sensitivity periods, can shift consumer focus from
price to product benefits, enhancing both immediate and long-term profits.

• The research highlights that higher decay rates can improve profitability if promotional efforts are
successful, but they also limit preservation technology investments. Incorporating emission costs
into these decisions further refines the retailer’s strategy for managing profitability.

• The study identifies a threshold for deterioration reduction, guiding optimal preservation technol-
ogy investments. These decisions are crucial for balancing costs, including those related to fuzzy
learning rates and environmental emissions, to achieve maximum profit.

• The findings clarify that unit costs, including emission costs, have a significant impact on profit.
Higher costs reduce the feasibility of investments in promotion and preservation technology, em-
phasizing the need for efficient cost management across all operational areas.

10.2. Limitations

The algorithm primarily focuses on investment strategies related to promotions, pricing, and preservation
technology. However, it does not explicitly consider other factors influencing profitability, such as pro-
duction costs, distribution channels, and regulatory requirements. Additionally, the algorithm assumes a
trapezoidal-type demand pattern, which may not accurately represent all products or market segments.
Despite its effectiveness, the proposed algorithm faces limitations in generalizability due to its reliance on
specific demand patterns. Furthermore, the computational complexity and resource requirements might
be prohibitive for smaller enterprises. The need for extensive parameter fine-tuning also demands signif-
icant domain-specific knowledge. Lastly, the assumption of accurately predictable dynamic investment
rates and demand patterns may not hold in volatile markets.
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10.3. Applicability of the Proposed Study

The proposed algorithm has the potential to bring numerous benefits to pharmaceutical companies. These
include improved brand visibility through targeted marketing strategies, enhanced sales performance
through optimized pricing and inventory management, cost optimization through identifying cost-saving
opportunities, and risk mitigation through proactive measures to address potential risks. Ultimately, these
benefits can lead to increased revenue, market share, profitability, and overall stability for pharmacists
and pharmaceutical companies to optimize their investment strategies in the pharmaceutical sector.

• Pharmacists can benefit from this proposed strategy by gaining insights into the dynamic nature of
promotional rates and pricing dynamics. This information allows them to strategically allocate re-
sources towards promotional activities, enhance consumer behaviour, and manage costs effectively
over time. Additionally, the algorithm guides the optimal utilization of preservation technology,
helping pharmacists make informed inventory management and product storage decisions to reduce
wastage and improve pharmacy operational efficiency.

• Pharmaceutical companies can also leverage the proposed strategy to refine pricing strategies, pro-
motional campaigns, and investment decisions. Companies can enhance revenue generation, expand
market share, and foster sustainable growth by utilizing advanced optimization techniques such as
Pontryagin’s maximum principle and Ant Colony Optimization.

11. Future Extension of the Proposed Study

One could explore several promising directions for extending this study. For instance, analyzing how
dynamic investment in preservation technology affects optimal replenishment strategies could provide
valuable insights. It would be intriguing to model the impact of price differentiation across different
stages of the demand function, assuming uniform pricing at each stage. we can extend might include
incorporating partial backlogging, time-dependent item deterioration, and fuzzy boundary points for each
stage.

One can combine dynamic investment with an advanced payment strategy might yield a more ro-
bust model than algorithms alone. This combined approach could optimize selling prices, promotion
investments, preservation technology investments, and order quantities simultaneously. The mathemati-
cal model could use Ant Colony Optimization (ACO) and Cuckoo Search Algorithm (CSA) to maximize
profit. Moreover, incorporating control theory to address time-dependent promotional efforts within
variable demand could be beneficial. The study could derive optimal dynamic investment strategies over
time, and numerical analyses could demonstrate the benefits of dynamic investment. Sensitivity analyses
could further clarify the effectiveness of key parameters, providing a comprehensive understanding of
the model’s performance.
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Appendix A. List of additional notation used to simplify expression

h+ θdcd
θd

= ω1,

(
eδ1t − e−δ1t

)
2δ1

= ω2,

(
e−δ1t − e−θdt

)
θd − δ1

= ω3,
eδ1t − e−θdt

θd + δ1
= ω4,

e−δ2t − e(θd−δ2)tcove−θdt

θd − δ2
= ω5,

eδ2t − e(θd+δ2)tcove−θdt

θd + δ2
= ω6,

e−δ3t − e(θd−δ3)tvace−θdt

θd − δ3
= ω7,

eδ3t − e(θd+δ3)tvace−θdt

θd + δ3
= ω8,

(
eδ2t − e2δ2tcove−δ2t

)
2δ2

= ω9,

(
eδ3t − e2δ3tvace−δ3t

)
2δ3

= ω10,

ω4 − ω3 = ω11,
(
ω6 − e2δ2tcovω5

)
= ω12,

(
ω8 − e2δ3tvacω7

)
= ω13.
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