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Abstract

In this paper, a bi-level linear programming problem characterized by interval uncertainty in the coefficients of both objec-
tives and constraints is thoroughly examined. The Karush-Kuhn-Tucker (KKT) optimality conditions for interval nonlinear
programming problems have been developed to address this challenge. Utilizing these conditions, the interval bi-level pro-
gramming problem has been transformed into a deterministic nonlinear programming problem. Subsequently, a comprehen-
sive methodology has been developed to solve the transformed problem. The proposed approach has been validated through
numerous illustrative examples that demonstrate its successful execution. Furthermore, the developed methodology has been
effectively applied to a practical problem in supply chain planning, showcasing its relevance and applicability in real-world
scenarios.

Keywords: Bi-level programming problem, Interval optimization problem, Interval analysis, KKT optimality conditions,

Supply chain

1. Introduction

Bi-level programming problem (BLPP) involves a couple of decision makers(DMs), the so-called leader
or upper-level DM maker, and the follower or lower-level DM. There are two optimization problems
in BLPP, where the constraint field of one problem is explicitly defined by the constraint field of the
other. BLPP has been presented as a way to deal with hierarchical processes involving at least two levels
of decision-making, and is receiving more attention in the literature today. A BLPP is formulated as
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follows:

min
x,y

f1(x,y), where y solves (1)

min
y

f2(x,y) (2)

subject to (x,y) ∈ S, (3)

where

• x ∈Rn1 is an unknown vector associated with the upper level problem and is managed by the upper
level DM;

• y ∈ Rn2 is a decision variable vector associated with the lower level and is managed by the lower
level DM;

• f1, f2 :Rn1+n2 →R are functions for objectives at the upper and lower levels, respectively;

• S ⊆Rn1+n2 is denoted constraint region for both problems.

BLPPs are non-convex and are exceptionally challenging to evaluate due to their structure. The BLPP has
fascinated scholars as well as planners in the field of decision-making sciences over the past few decades
(See [7, 10, 12, 13, 15, 24, 25, 33, 36, 42, 43]). Colson et al. (2007)[10] and Sinha et al. (2017)[39]
provided surveys of the BLPP. Several researchers have attempted to study BLPP in recent years by
submitting applications in various domains. Abdelaziz and Mejri (2018)[1] presented a multi-objective
BLPP with an application to inventory considering the emergency and back-orders in the mathematical
model. Mohanty et al. (2018)[27] studied the vendor-buyer joint production and inventory model with
imperfect quality item. They have also considered the trade credit finance and variable setup cost in their
model. Muneeb et al. (2020) [29] presented a BLPP approach to solve the vendor selection problem.
Deb et al. (2020)[12] approximated a BLPP with population-based evolutionary algorithms.

Generally, coefficients of the objectives as well as constraints are assumed to be known precisely in
the BLPP formulation. However, due to ambiguity in data collection, the coefficient values in some real-
world problems are usually just estimated. Imprecise data encompasses uncertainty due to vagueness,
randomness, and partial knowledge is categorized as fuzzy, random, and grey data. Fuzzy data manages
ambiguity through degrees of membership, providing flexibility in representing subjective information.
Random data involves probabilistic methods to account for inherent variability and chance events. Grey
data handles partial knowledge scenarios, offering a middle ground between deterministic and stochastic
models. Understanding these types of imprecise data enhances the robustness of models in uncertain
environments [11].

Fuzzy set theory is often used to solve the problem of coefficient inaccuracy (Zheng et al. (2011)[41]),
where fuzzy parameters are measured with predefined membership functions. However, defining mem-
bership functions of fuzzy parameters for DMs can be somewhat complicated in reality. To handle these
uncertainty issues in mathematical programming problems, the interval analysis developed by Moore
(1966) has been provided as an alternative approach. In this approach, we consider uncertain parameters
as closed intervals, making it simple to evaluate both the lower and upper limits of the uncertain data.
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Interval analysis has been successfully applied by many authors to solve optimization problems with
interval parameters (See [5, 6, 9, 17–23, 26, 32, 38, 40]).

The following example will show that how can one present a real life optimization problem based on
interval parameters bi-level programming problem.

Example 1. A logistics chain problem usually consists of several phases. All phases of the process in the
chain are interconnected with respect to a decision made at one phase that has an impact on the following
phase’s performance. The decision goal and alternatives at each step of a logistics plan are dynamically
impacted by previous stage decisions. Meanwhile, as one step seeks to maximize its goal, it may need
to think about the goal of the following stage. The reaction of the following step will also influence its
choice. This study will propose a bi-level decision-making model and its solution for the two stages
since the supplier and the distributor are two important and essential stages in a logistics chain. Both the
supplier and the distributor wish to enhance their profits while reducing their expenses. Here, the supplier
makes the decision first. Then, the distributor will discover a strategy to optimize his or her goal for each
potential option made by the source. The supplier is the leader in this circumstance, while the distributor
is the follower. Each has its own goal (such as benefits or expenses) as well as limitations (such as time,
location, and facilities).

However, in the decision-making process for logistics planning, ambiguity and imprecision are un-
avoidable. In reality, logistics managers frequently have a hazy understanding of the values of associated
constraints and performance objectives when expressing an objective. They can only estimate inventory
carrying costs and transportation costs for a certain set of items, for example. Furthermore, while evalu-
ating different facilities, logistics managers may only provide values based on their own experience, and
these values are sometimes assigned in ambiguous ways, such as these characteristics being designated
closed intervals. Obviously, interval numbers are useful to define when developing a model for such a
decision problem. Therefore, one can use the interval bi-level linear programming problem to solve the
supply chain problem.

In the last few decades, the literature has also reported interval parameters based on linear BLPPs. Cal-
vete and Gale (2012)[8] considered a linear BLPP with interval coefficients in both objective functions
and discussed the best and worst solutions to the problem. Ren and Wang (2014)[34] developed a cutting
plan to study the best and worst optimal solutions to the same problem as considered by Calvete and
Gale (2012)[8]. Nehi and Hamidi (2015)[31] developed algorithms for calculating the worst and best
optimal solutions of the general interval bi-level linear programming problem. Ren and Wang (2017)[35]
presented a new preference-based index approach for the linear BLPP with interval parameters in both
objectives and constraints. Recently, Nayak and Ojha (2020)[30] applied the interval numbers to solve
BLPP, considering a fractional programming problem. Additionally, A bilevel interval-valued optimiza-
tion problem is investigated, and it is reduced to a nonlinear nonsmooth program with necessary opti-
mality conditions using upper convexificators and Abadie’s constraint qualification [14]. They derive
detailed results without assuming Lipschitz continuity or convexity, illustrated by examples [14]. An
extensive survey of bilevel optimization under uncertainty is provided, reviewing classic stochastic and
robust techniques, highlighting richer sources of uncertainty, and discussing applications in energy, in-
terdiction games, security, management sciences, and networks [3]. There are few research works that
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exist in the literature to handle linear BLPP with uncertain environments. Among these papers, some are
considered linear BLPP, consisting of objective functions with uncertain parameters, and all constraint
functions are deterministic. Further, some papers have studied a general linear BLPP with interval pa-
rameters and obtained the search algorithm to find the best and worst solution to the problem. However,
to the best of our knowledge and the aforementioned literature, there is no research paper for the solution
of the general interval linear BLPP using KKT optimality conditions.

Therefore, this article investigates a general linear BLPP in which both objectives and all constraints
are interval valued functions. This problem is rewritten in terms of the mean and radius of the interval val-
ued functions using partial ordering. KKT optimality conditions for non-linear programming problems
are developed using the partial order relations for a set of closed intervals. Using these KKT optimal-
ity conditions, the considered problem is transformed into a classical nonlinear programming problem.
Furthermore, a method for solution procedure is established to study the optimal and feasible solution
of the problem by solving the transformed problem. In order to validate the methodology, supply chain
planning is considered and successfully applied the methodology under uncertain environments.

The paper is organized as follows: Section 2 defines some prerequisites in interval analysis and KKT
optimality conditions for interval optimization problems, which are used for developing the results. In
Section 3, a bi-level linear programming problem with interval parameters is defined and develop the
solution procedure of the problem. Further, the developed solution procedure of the problem is applied
in a real-life supply chain problem in Section 4.

2. Notations and Preliminaries

An English alphabet A denotes a closed interval, and aL and aR represent lower- and upper- bound,
respectively, i.e., A = [aL,aR] with aL ≤ aR. If aL = aR = a, represents a real number. The set of closed
interval on R is denoted by I(R), and I(R) = {[aL,aR]| aL ≤ aR; aL,aR ∈ R}. The mean (am) and half
width (ar) of an interval A are defined as am = aL+aR

2 and ar = aR−aL

2 . Using the mean and half-width of
any closed interval, it can also be denoted as A = ⟨am, ar⟩. In this paper, mr stands for mean-radius.

2.1. Partial ordering and interval valued function

It is necessary to define a partial order on a set of closed intervals due to the incomparability of two closed
intervals exactly. There are several partial order relationships available in the literature ([4, 18, 28]).
Two types of partial ordering relations for maximization (⪰max) and minimization (⪯min) problems are
defined by Ishibuchi and Tanaka (1990)[18] as follows: For any two intervals A = [aL,aR] = ⟨am,ar⟩ and
B = [bL,bR] = ⟨bm,br⟩,

A ⪰max B ⇔ am ≥ bm and ar ≤ br

A ≻max B ⇔ A ⪰max B and A ̸= B.

A ⪯min B ⇔ am ≤ bm and ar ≤ br

A ≺min B ⇔ A ⪯min B and A ̸= B.
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An interval valued function has been defined as the extension of a real valued function onto an interval
with one or more interval parameters in Moore (1966)[28] and Hansen and Walster (2003)[16]. Whereas,
the interval valued function F : X → I(R), X ⊆ Rn is defined by Ishibuchi and Tanaka (1990)[18] as
follows.

F(x) = [ f L(x), f R(x)] = ⟨ f m(x), f r(x)⟩,

where f L, f R, f m, f r : X →R, f L(x)≤ f R(x) ∀ x ∈ X ; and f m(x) = f L(x)+ f R(x)
2 and f r(x) = f R(x)− f L(x)

2 .
Evaluating the best solution to interval bi-level programming problems requires defining optimality

conditions for an interval optimization problem. Consequently, the following subsection shows the opti-
mality condition for an interval optimization problem.

2.2. Optimality conditions for interval optimization problem

Consider the interval optimization problem

min
x∈X⊆Rn

[ f L(x), f R(x)]

Some important definitions of the solution of interval optimization problem are given as follows:

Definition 1. [4] A local minimum of the interval valued function f (x) is a point x∗ ∈ X , if this satisfies
a δ > 0 such that

[ f L(x∗), f R(x∗)]⪯min [ f L(x), f R(x)], ∀ x ∈ B(x∗,δ )∩X ,

where B(x∗,δ ) is an open ball whose center is at x∗ and radius δ .

Definition 2. [4] A global minimum of the interval valued function f (x) is a point x∗ ∈ X , if this satisfies

[ f L(x∗), f R(x∗)]⪯min [ f L(x), f R(x)], ∀ x ∈ X .

Definition 3. [4] A local maximum of the interval valued function f (x) is a point x∗ ∈ X , if this satisfies
a δ > 0 such that

[ f L(x), f R(x)]⪯max [ f L(x∗), f R(x∗)], ∀ x ∈ B(x∗,δ )∩X .

Definition 4. [4] A global maximum of the interval valued function f (x) is a point x∗ ∈ X , if

[ f L(x), f R(x)]⪯max [ f L(x∗), f R(x∗)], ∀ x ∈ X .

Definition 5. [4] An interval valued function f (x) defined on X , is said to be weakly differentiable at
x ∈ X if both f L(x) and f R(x) i.e., f m(x) and f r(x) are differentiable at x.

Definition 6. Let f (x) be an interval valued function defined on a convex set X ⊆Rn. Then f is said to
be mr−convex over X if for every x1,x2 ∈ X and λ ∈ [0,1],

f (λx1 +(1−λ )x2)⪯min λ f (x1)+(1−λ ) f (x2).

Proposition 1. Let X be a convex set ofRn and f be an interval valued function. If f m and f r are convex,
then f (x) is mr−convex on X .
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Consider an interval optimization problem with inequality constraints as follows.

(IOP) min f (x) = [ f L(x), f R(x)]

subject to gi(x) = [gL
i (x),g

R
i (x)]⪯min [0,0], i = 1,2, . . . ,k,

where both f (x) and gi(x), i = 1,2, . . . ,k are interval valued functions and weakly differentiable.
From the definition of partial ordering for minimization problem “ ⪯min", the problem IOP can be

rewritten as:

(IOP− I) min f (x) = [ f L(x), f R(x)] = ⟨ f m(x), f r(x)⟩
subject to gm

i (x)≤ 0, gr
i (x) = 0, i = 1,2, . . . ,k.

In order to derive KKT optimality conditions, we add non-negative slack variable si such that the con-
straint Gm

i (x,si) = gm
i (x)+ s2

i = 0 i = 1,2, . . . ,k. Therefore, the IOP becomes

(IOP− II) min f (x) = ⟨ f m(x), f r(x)⟩
subject to Gm

i (x,si) = 0, i = 1,2, . . . ,k,

gr
i (x) = 0, i = 1,2, . . . ,k.

Consider the Lagrange function corresponding to IOP− II as follows:

L(x,λi,µi,si) = ⟨ f m(x), f r(x)⟩+
k

∑
i=1

λiGm
i (x,si)+

k

∑
i=1

µigr
i (x)

=
〈

f m(x)+
k

∑
i=1

λiGm
i (x,si)+

k

∑
i=1

µigr
i (x), f r(x)

〉
= ⟨Lm(x,λi,µi,si),Lr(x,λi,µi,si)⟩,

where Lm(x,λi,si) = f m(x)+∑
k
i=1 λiGm

i (x,si)+∑
k
i=1 µigr

i (x), Lr(x,λi,si) = f r(x), and
(λ ,µ) = (λ1,λ2, . . . ,λk,µ1,µ2, . . . ,µk) be the Lagrange multipliers. Now, if x be the local minimum of
L(x,λi,µi,si) then from the necessary conditions for optimality of unconstrained optimization, we have

∇Lm(x,λi,µi,si) = 0, ∇Lr(x,λi,µi,si) = 0

Now, ∇Lm(x,λi,µi,si) = 0 gives

∇ f m(x)+
k

∑
i=1

λi∇Gm
i (x,si)+

k

∑
i=1

µi∇gr
i (x) = 0, (4)

λigm
i (x) = 0, µigr

i (x) = 0, i = 1,2, . . . ,k, (5)

gm
i (x)≤ 0, gr

i (x) = 0, i = 1,2, . . . ,k, (6)

λi ≥ 0, i = 1,2, . . . ,k, (7)
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and ∇Lr(x,λi,µi,si) = 0 gives

∇ f r(x) = 0. (8)

The condition ∇ f r(x) = 0 will be considerable only for f r(x) as a constant function; however, for linear
and nonlinear function, it will not be considerable. Thus, we obtain the necessary optimality conditions
for IOP. These conditions are known as KKT optimality conditions.

Theorem 1. (Necessary optimality conditions) Let x∗ be a local mr− minimum of the problem IOP
at which f (x) and gi(x),(i = 1,2, . . . ,k) are weakly differentiable on X . Then there exist multipliers
λi,µi i = 1,2, . . . ,k such that the following conditions hold

∇ f m(x)+
k

∑
i=1

λi∇gm
i (x)+

k

∑
i=1

µi∇gr
i (x) = 0,

λigm
i (x) = 0, µigr

i (x) = 0, i = 1,2, . . . ,k,
gm

i (x)≤ 0, gr
i (x) = 0, i = 1,2, . . . ,k,

λi ≥ 0, i = 1,2, . . . ,k.


(9)

Theorem 2. (Sufficient optimality conditions) Let (x∗,λ1, . . . ,λk,µ1, . . . ,µk) satisfy the KKT conditions
(9) and f (x), gi(x),(i = 1,2, . . . ,k) are mr−convex interval valued functions. Then x∗ is the global
mr−minimizer of IOP.

Example 2. Find the mr− minimum point of the following interval optimization problem:

(IOP) min f (x) = [x1 + x2, x1 + x2 +2]

subject to [x2
1 + x2

2 −3, 3x2
1 + x2

2 −5]⪯min [0,0]

Let g(x1,x2) = [x2
1+x2

2−3, 3x2
1+x2

2−5], gm(x1,x2) = 2x2
1+x2

2−4, gr(x1,x2) = x2
1−1, and f m(x1,x2) =

x1 + x2 + 1, f r(x1,x2) = 1, where f ,gm,gr are continuously differentiable convex functions. The neces-
sary optimality conditions for the problem IOP are:

1+λ (4x1)+µ(2x1) = 0, 1+λ (2x2) = 0,

λ (2x2
1 + x2

2 −4) = 0, µ(x2
1 −1) = 0,

2x2
1 + x2

2 ≤ 4, x2
1 = 1,

λ ≥ 0.

By solving the above conditions, we obtain the optimal solution x∗1 = −1,x∗2 = −
√

2,λ ∗ = 1
2
√

2
, µ =

1
2(1 −

√
2). Hence (−1,−

√
2) is the global mr−minimum solution of the IOP due to convexity of

f , gm, gr.

2.3. Comparative study

Bhunia and Samanta (2014)[4] considered the following partial ordering relation to develop the KKT
conditions for interval non-linear programming problem with minimization case.
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Definition 7. For A = [aL,aR] = ⟨am,ar⟩ and B = [bL,bR] = ⟨bm,br⟩,

A ⪯min B ⇔

{
am < bm, if am ̸= bm;
ar ≤ br, if am = bm

and A ≺min B ⇔ A ⪯min B and A ̸= B.
In the above definition of partial ordering, the idea is to lexicographically compare the mean compo-

nents and (if there is equality in the mean components) the radius components of the two intervals. For
the constraint g(x1,x2) = [x2

1 + x2
2 − 4,x2

1 + x2
2] ⪯min [0,0] in Example 2, this means that it is equivalent

to (case-1) gm(x1,x2) = x2
1 + x2

2 −2 < 0 or (case-2) gm(x1,x2) = x2
1 + x2

2 −2 = 0 and gr(x1,x2) = 2 ≤ 0,
where the second case can obviously never occur. Hence, it is equivalent to x2

1 + x2
2 − 2 < 0, and not

x2
1 + x2

2 −2 ≤ 0 as in the formulation of the necessary conditions due to Bhunia and Samanta (2014)[4].
This might make the feasible region not closed in general, which can be very problematic because the
existence of optimal solutions might not be guaranteed then. They solved the Example 2, and obtained
the solution of the problem as (x1,x2) = (−1,−1), which is claimed to be the global minimum of the
problem, even if it is not feasible due to constraint x2

1 + x2
2 − 2 < 0. However, we developed KKT con-

ditions for interval non-linear optimization problems using partial ordering due to Ishibuchi and Tanaka
(1990)[18], which provide a feasible optimal solution to the problem.

3. Linear bi-level programming problem

A bi-level programming problem in which both objectives and constraint are linear is said to be a linear
bi-level programming problem, and it is defined as follows:

min
x∈X

f1(x,y) = cx+dy,

subject to Ax+By ≥ e,
min
y∈Y

f2(x,y) = ay,

subject to Cx+Dy ≥ f,

(10)

where X ⊂ Rn1; Y ⊂ Rn2; f1, f2 : X ×Y → R; c ∈ Rn1; d,a ∈ Rn2; e ∈ Rm1; f ∈ Rm2 ; A ∈ Rm1×n1;
B ∈Rm1×n2 ; C ∈Rm2×n1; D ∈Rm2×n2 . Some terminologies for the BLPP are given as follows:

Definition 8. ([2])

(a) Constraint region of the BLPP:
S = {(x,y) : x ∈ X ,y ∈ Y,Ax+By ≥ e,Cx+Dy ≥ f}

(b) Projection of S onto the leader’s decision space:
S1 = {x ∈ X : ∃y ∈ Y,Ax+By ≥ e,Cx+Dy ≥ f}

(c) Feasible set for the follower for each fixed x ∈ X :
S(x) = {y ∈ Y : Dy ≥ f−Cx}.

(d) Follower’s rational reaction set for x ∈ S1:
M(x) = {y ∈ Y : y ∈ argmin{ f2(x,y∗) : y∗ ∈ S(x)}}.
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(e) Inducible region:
FR = {(x,y) : x ∈ S1,y ∈ M(x)}.

The set X and Y are generally considered as X = {x ∈Rn1 : x ≥ 0},Y = {y ∈Rn2 : y ≥ 0}.

The problem (10) can be written as follows:

min
x∈X

f1(x,y) =
n1

∑
i=1

cixi +
n2

∑
j=1

d jy j,

subject to
n1

∑
i=1

aikxi +
n2

∑
j=1

b jky j ≥ ek,k = 1,2, . . . ,m1,

min
y∈Y

f2(x,y) =
n2

∑
j=1

a jy j,

subject to
n1

∑
i=1

cilxi +
n2

∑
j=1

d jly j ≥ fl, l = 1,2, . . . ,m2.

(11)

3.1. Interval bi-level programming problem

The interval linear bi-level programming problem (IBLPP) involving interval coefficients in both objec-
tives functions, as well as constraints, can be formulated as:

minx∈X f1(x,y) = ∑
n1
i=1[c

L
i ,c

R
i ]xi +∑

n2
j=1[d

L
j ,d

R
j ]y j,

subject to
∑

n1
i=1[a

L
ik,a

R
ik]xi +∑

n2
j=1[b

L
jk,b

R
jk]y j ≥ [eL

k ,e
R
k ],k = 1,2, . . . ,m1,

miny∈Y f2(x,y) = ∑
n2
j=1[a

L
j ,a

R
j ]y j,

subject to
∑

n1
i=1[c

L
il,c

R
il]xi +∑

n2
j=1[d

L
jl,d

R
jl]y j ≥ [fLl , f

R
l ], l = 1,2, . . . ,m2.

(12)

Here we define some terminologies for the IBLPP as follows:

Definition 9. (a) Constraint region of the IBLPP:

SI =
{
(x,y) : x ∈ X ,y ∈ Y,

n1

∑
i=1

[aL
ik,a

R
ik]xi +

n2

∑
j=1

[bL
jk,b

R
jk]y j ≥ [eL

k ,e
R
k ],k = 1,2, . . . ,m1,

n1

∑
i=1

[cL
il,c

R
il]xi +

n2

∑
j=1

[dL
jl,d

R
jl]y j ≥ [fLl , f

R
l ], l = 1,2, . . . ,m2

}
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(b) Projection of SI onto the leader’s decision space:

S1
I =

{
x ∈ X : ∃y ∈ Y,

n1

∑
i=1

[aL
ik,a

R
ik]xi +

n2

∑
j=1

[bL
jk,b

R
jk]y j ≥ [eL

k ,e
R
k ],k = 1,2, . . . ,m1,

n1

∑
i=1

[cL
il,c

R
il]xi +

n2

∑
j=1

[dL
jl,d

R
jl]y j ≥ [fLl , f

R
l ], l = 1,2, . . . ,m2

}
(c) Feasible set for the follower for each fixed x ∈ X :

SI(x) =
{

y ∈ Y :
n1

∑
i=1

[cL
il,c

R
il]xi +

n2

∑
j=1

[dL
jl,d

R
jl]y j ≥ [fLl , f

R
l ], l = 1,2, . . . ,m2

}

(d) Follower’s rational reaction set for x ∈ S1
I :

MI(x) = {y ∈ Y : y ∈ argmin{ f2(x,y∗) : y∗ ∈ SI(x)}}.

(e) Inducible region:

FRI = {(x,y) : x ∈ S1
I ,y ∈ MI(x)}.

The above problem 12 can be rewritten in terms of its mean and radius of the interval parameters as
follows.

min
x∈X

f1(x,y) =
n1

∑
i=1

⟨cm
i ,c

r
i ⟩xi +

n2

∑
j=1

⟨dm
j ,d

r
j⟩y j,

subject to
n1

∑
i=1

⟨am
ik,a

r
ik⟩xi +

n2

∑
j=1

⟨bm
jk,b

r
jk⟩y j ⪰min ⟨em

k ,e
r
k⟩,k = 1,2, . . . ,m1,

min
y∈Y

f2(x,y) =
n2

∑
j=1

⟨am
j ,a

r
j⟩y j,

subject to
n1

∑
i=1

⟨cm
il ,c

r
il⟩xi +

n2

∑
j=1

⟨dm
jl ,d

r
jl⟩y j ⪰min ⟨fml , f

r
l ⟩, l = 1,2, . . . ,m2.

(13)

Then by the definition of order relation ⪰min, the given constraints can be rewritten as:

n1

∑
i=1

⟨am
ik,a

r
ik⟩xi +

n2

∑
j=1

⟨bm
jk,b

r
jk⟩y j ⪰min ⟨em

k ,e
r
k⟩,k = 1,2, . . . ,m1,

⇒

{
∑

n1
i=1 am

ikxi +∑
n2
j=1 bm

jky j ≥ em
k , k = 1,2, . . . ,m1;

∑
n1
i=1 ar

ikxi +∑
n2
j=1 br

jky j ≥ er
k, k = 1,2, ...,m1.
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n1

∑
i=1

⟨cm
il ,c

r
il⟩xi +

n2

∑
j=1

⟨dm
jl ,d

r
jl⟩y j ⪰min ⟨fml , f

r
l ⟩, l = 1,2, . . . ,m2

⇒

{
∑

n1
i=1 cm

il xi +∑
n2
j=1 dm

jly j ≥ fml , l = 1,2, . . . ,m2;

∑
n1
i=1 cr

ilxi +∑
n2
j=1 dr

jly j ≥ frl , l = 1,2 . . . ,m2.

Then, the above problem 13 can be equivalently written as follows:

min
x∈X

f1(x,y) =
n1

∑
i=1

⟨cm
i ,c

r
i ⟩xi +

n2

∑
j=1

⟨dm
j ,d

r
j⟩y j,

subject to
n1

∑
i=1

am
ikxi +

n2

∑
j=1

bm
jky j ≥ em

k ,k = 1,2, . . . ,m1,

∑
n1
i=1 ar

ikxi +∑
n2
j=1 br

jky j ≥ er
k,k = 1,2, ...,m1.

min
y∈Y

f2(x,y) =
n2

∑
j=1

⟨am
j ,a

r
j⟩y j,

subject to
n1

∑
i=1

cm
il xi +

n2

∑
j=1

dm
jly j ≥ fml , l = 1,2, . . . ,m2,

n1

∑
i=1

cr
ilxi +

n2

∑
j=1

dr
jly j ≥ frl , l = 1,2 . . . ,m2.

(14)

First, we consider lower level problem without considering upper level objective and constraints as fol-
lows:

min
y∈Y

f2(x,y) =
n2

∑
j=1

⟨am
j ,a

r
j⟩y j,

subject to
n1

∑
i=1

cm
il xi +

n2

∑
j=1

dm
jly j ≥ fml , l = 1,2, . . . ,m2,

n1

∑
i=1

cr
ilxi +

n2

∑
j=1

dr
jly j ≥ frl , l = 1,2 . . . ,m2.

(15)

Necessary optimality conditions: Let y be a local mr−minimum of the problem IBLPP. Then there
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exist multipliers λl, µl, l = 1,2, . . . ,m2 such that the following conditions are

am
j −

m2

∑
l=1

λldm
jl −

m2

∑
l=1

µldr
jl = 0, j = 1,2, . . . ,n2,

λl(
n1

∑
i=1

cm
il xi +

n2

∑
j=1

dm
jly j − fml ) = 0, l = 1,2, . . . ,m2,

µl(
n1

∑
i=1

cr
ilxi +

n2

∑
j=1

dr
jly j − frl ) = 0, l = 1,2, . . . ,m2,

n1

∑
i=1

cm
il xi +

n2

∑
j=1

dm
jly j ≥ fml , l = 1,2, . . . ,m2,

n1

∑
i=1

cr
ilxi +

n2

∑
j=1

dr
jly j ≥ frl , l = 1,2 . . . ,m2,

λl ≥ 0,µl ≥ 0, l = 1,2, . . . ,m2.

(16)

The local mr− minimum of the problem IBLPP corresponding to the y response of the lower level
problem can be calculated by solving the following non-linear interval optimization problem

min
x∈X

f1(x,y) =
n1

∑
i=1

⟨cm
i ,c

r
i ⟩xi +

n2

∑
j=1

⟨dm
j ,d

r
j⟩y j,

subject to
n1

∑
i=1

am
ikxi +

n2

∑
j=1

bm
jky j ≥ em

k , k = 1,2, . . . ,m1,

n1

∑
i=1

ar
ikxi +

n2

∑
j=1

br
jky j ≥ er

k, k = 1,2, . . . ,m1,

am
j −

m2

∑
l=1

λldm
jl −

m2

∑
l=1

µldr
jl = 0, j = 1,2, . . . ,n2,

λl(
n1

∑
i=1

cm
il xi +

n2

∑
j=1

dm
jly j − fml ) = 0, l = 1,2, . . . ,m2,

µl(
n1

∑
i=1

cr
ilxi +

n2

∑
j=1

dr
jly j − frl ) = 0, l = 1,2, . . . ,m2,

n1

∑
i=1

cm
il xi +

n2

∑
j=1

dm
jly j ≥ fml , l = 1,2, . . . ,m2,

n1

∑
i=1

cr
ilxi +

n2

∑
j=1

dr
jly j ≥ frl , l = 1,2 . . . ,m2,

λl ≥ 0,µl ≥ 0, l = 1,2, . . . ,m2.

(17)

Based on the partial ordering defined in Subsection 2.1, minimizing an interval involves minimizing
both its mean and its radius. This approach ensures that the interval is centred at the lowest possible value
and as narrow as possible, reducing uncertainty. Therefore, solving the interval minimization problem
(17) is equivalent to solving the following bi-objective programming problem (18). The solution to the
above problem can be calculated by the following bi-objective programming problem: In this bi-objective
formulation, the two objectives—minimizing the mean of the interval and minimizing its radius—are ad-
dressed simultaneously, converting the interval minimization into a more tractable optimization problem.
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This transformation allows the use of established bi-objective optimization techniques to find solutions
that effectively balance both aspects of interval minimization, providing a more comprehensive approach
to the problem (Ishibuchi & Tanaka, 1990 [18]).

min
x∈X

{
f m
1 (x,y), f r

1(x,y)
}

subject to
n1

∑
i=1

am
ikxi +

n2

∑
j=1

bm
jky j ≥ em

k , k = 1,2, . . . ,m1,

n1

∑
i=1

ar
ikxi +

n2

∑
j=1

br
jky j ≥ er

k, k = 1,2, . . . ,m1,

am
j −

m2

∑
l=1

λldm
jl −

m2

∑
l=1

µldr
jl = 0, j = 1,2, . . . ,n2,

λl(
n1

∑
i=1

cm
il xi +

n2

∑
j=1

dm
jly j − fml ) = 0, l = 1,2, . . . ,m2,

µl(
n1

∑
i=1

cr
ilxi +

n2

∑
j=1

dr
jly j − frl ) = 0, l = 1,2, . . . ,m2,

n1

∑
i=1

cm
il xi +

n2

∑
j=1

dm
jly j ≥ fml , l = 1,2, . . . ,m2,

n1

∑
i=1

cr
ilxi +

n2

∑
j=1

dr
jly j ≥ frl , l = 1,2 . . . ,m2,

λl ≥ 0,µl ≥ 0, l = 1,2, . . . ,m2,

(18)

where f m
1 (x,y) = ∑

n1
i=1 cm

i xi +∑
n2
j=1 dm

j y j and f r
1(x,y) = ∑

n1
i=1 cr

i xi +∑
n2
j=1 dr

jy j. Using the weighted sum
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method, the solution to the above problem can be calculated by the following problem:

min
x∈X

w f m
1 (x,y)+(1−w) f r

1(x,y),

subject to
n1

∑
i=1

am
ikxi +

n2

∑
j=1

bm
jky j ≥ em

k , k = 1,2, . . . ,m1,

n1

∑
i=1

ar
ikxi +

n2

∑
j=1

br
jky j ≥ er

k, k = 1,2, . . . ,m1,

am
j −

m2

∑
l=1

λldm
jl −

m2

∑
l=1

µldr
jl = 0, j = 1,2, . . . ,n2,

λl(
n1

∑
i=1

cm
il xi +

n2

∑
j=1

dm
jly j − fml ) = 0, l = 1,2, . . . ,m2,

µl(
n1

∑
i=1

cr
ilxi +

n2

∑
j=1

dr
jly j − frl ) = 0, l = 1,2, . . . ,m2,

n1

∑
i=1

cm
il xi +

n2

∑
j=1

dm
jly j ≥ fml , l = 1,2, . . . ,m2,

n1

∑
i=1

cr
ilxi +

n2

∑
j=1

dr
jly j ≥ frl , l = 1,2 . . . ,m2.

0 ≤ w ≤ 1, λl ≥ 0,µl ≥ 0, l = 1,2, . . . ,m2.

(19)

The whole developed solution methodology is summarized in the following step-by-step procedure.

Solution procedure for IBLPP: The following steps are needed to solve an IBLPP by developed
methodology:

Step-1. Write the given IBLPP in terms of the mean and radius of the interval coefficients.

Step-2. Consider the lower level problem and find its KKT optimality conditions using (9) for the deci-
sion variables of the problem.

Step-3. Write the upper level problem with KKT conditions of lower level problem as constraints.

Step-4. Solve the problem obtained from Step 3 using any optimization software like Lingo, Mathemat-
ica, etc.

Step-5. The solution obtained in Step 4 is the local optimal solution of the given problem.
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3.2. Numerical examples

Example 3. Consider a general IBLPP in which coefficients of both objectives and constraints are as
follows:

min
x≥0

F1 = [1,2]x+[−1,5]y,

subject to

[0.5,1]x+[1.9,2]y ≥ [10,10.5]

min
y≥0

F2 = [1,2]y,

subject to

[−2,−1]x+[1,2]y ≥ [−6,−5],

[−3,−2]x+[0.5,1]y ≥ [−21,20],

[−2,−1]x+[−3,−2]y ≥ [−38,−37],

[0.5,1]x+[−3,−2]y ≥ [−18,−17].

The mean and radius form of the given IBLPP is written as follows:

min
x≥0

F1 = ⟨1.5,0.5⟩x+ ⟨2,3⟩y,

subject to

⟨0.75,0.25⟩x+ ⟨1.95,0.05⟩y ≥ ⟨10.25,0.25⟩
min
y≥0

F2 = ⟨1.5,0.5⟩y,

subject to

⟨−1.5,0.5⟩x+ ⟨1.5,0.5⟩y ≥ ⟨−5.5,0.5⟩,
⟨−2.5,0.5⟩x+ ⟨0.75,0.25⟩y ≥ ⟨−0.5,20.5⟩,
⟨−1.5,0.5⟩x+ ⟨−2.5,0.5⟩y ≥ ⟨−37.5,0.5⟩,
⟨0.75,0.25⟩x+ ⟨−2.5,0.5⟩y ≥ ⟨−17.5,0.5⟩.

First we consider lower level programming by ignoring upper level objectives as follows.

min
y≥0

F2 = ⟨1.5,0.5⟩y,

subject to

⟨−1.5,0.5⟩x+ ⟨1.5,0.5⟩y ≥ ⟨−5.5,0.5⟩,
⟨−2.5,0.5⟩x+ ⟨0.75,0.25⟩y ≥ ⟨−0.5,20.5⟩,
⟨−1.5,0.5⟩x+ ⟨−2.5,0.5⟩y ≥ ⟨−37.5,0.5⟩,
⟨0.75,0.25⟩x+ ⟨−2.5,0.5⟩y ≥ ⟨−17.5,0.5⟩.
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The conditions for the best response y of lower level problem is given as follows.

1.5−1.5λ1 −0.75λ2 +2.5λ3 +2.5λ4 = 0,

λ1(−1.5x+1.5y+5.5) = 0,

λ2(−2.5x+0.75y+0.5) = 0,

λ3(−1.5x−2.5y+37.5) = 0,

λ4(0.75x−2.5y+17.5) = 0,

−1.5x+1.5y+5.5 ≥ 0,

−2.5x+0.75y+0.5 ≥ 0,

−1.5x−2.5y+37.5 ≥ 0,

0.75x−2.5y+17.5 ≥ 0,

x ≥ 0,y ≥ 0;λ1,λ2,λ3 ≥ 0,λ4 ≥ 0.

Hence the local optimal solution of the given IBLPP is given by the optimal solution of the following
non-linear programming problem:

min
x,y

w(1.5x+2y)+(1−w)(0.5x+3y),

subject to

0.75x+1.95y ≥ 10.25,

1.5−1.5λ1 −0.75λ2 +2.5λ3 +2.5λ4 = 0,

λ1(−1.5x+1.5y+5.5) = 0,

λ2(−2.5x+0.75y+0.5) = 0,

λ3(−1.5x−2.5y+37.5) = 0,

λ4(0.75x−2.5y+17.5) = 0,

−1.5x+1.5y+5.5 ≥ 0,

−2.5x+0.75y+0.5 ≥ 0,

−1.5x−2.5y+37.5 ≥ 0,

0.75x−2.5y+17.5 ≥ 0,

x ≥ 0,y ≥ 0, 0 ≤ w ≤ 1,

λ1 ≥ 0,λ2 ≥ 0,λ3 ≥ 0,λ4 ≥ 0.

The local optimal solution of the problem is x∗ = 1.593103,y∗ = 4.643678,λ ∗
1 = 0,λ ∗

2 = 2,λ ∗
3 = 0,λ ∗

4 =

0. Hence local optimal solution of the given IBLPP is x∗ = 1.593103,y∗ = 4.643678.
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4. Application of IBLP to a supply chain planning with interval uncertain
environment

Consider a manufacturing company with two plants P1 and P2, one distribution centre (DC), and two
items A and B. The company’s goal is to reduce its total cost, which includes both manufacturing and
distribution costs. The supply chain model may be formally expressed as the following constraints using
the notation in the table below.

y11 : Product A production quantity at plant P1 (ton)
y12 : Product B production quantity at plant P1 (ton)
y21 : Product A production quantity at plant P2 (ton)
y22 : Product B production quantity at plant P2 (ton)
x1 : Product A’s inventory is held in DC (ton)
x2 : Product B’s inventory is held in DC (ton)

The goal of the production department is to reduce the production cost, which is generally expressed as
follows: ( For detail see [37]):

minZPC =1.5x1 +2x2 +7y11 +3y12 +10y21 +6y22 (20)

subject to y11 + y12 + y21 + y22 ≤ 500, (21)

2y11 + y12 ≤ 200, (22)

y21 + y22 ≤ 250, (23)

y11 + y21 ≤ x1, (24)

y12 + y22 ≤ x2, (25)

where constraint (21) indicates that both plants share the same resources. Constraints (22-23) repre-
sent that individual plant circumstances may influence the availability of some resources. Constraints
(24-25) indicates that the production levels obtained by both plants should not fall below the inventory
requirements..

The objective of the distribution center is to minimize a distribution cost which may be formulated as
follows:

min ZDC =15x1 +13x2 +3y11 +2y12 +3.5y21 +2.5y22 (26)

subject to 3x1 +2x2 ≤ 500, (27)

x1 ≥ 100, (28)

x2 ≥ 100, (29)

where constraint (27) restricted the overall capacity of the inventory level. Constraints (28-29) represent
that the inventory levels should meet demands.

Now, we formulate the above two minimization problems as a (BLPP), which is as follows:
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(First-level: Production model)

min
y11,y12,y21,y22

ZPC =1.5x1 +2x2 +7y11 +3y12 +10y21 +6y22

subject to y11 + y12 + y21 + y22 ≤ 500

2y11 + y12 ≤ 200,

y21 + y22 ≤ 250,

y11 + y21 ≤ x1,

y12 + y22 ≤ x2

y11 ≥ 0,y12 ≥ 0,y21 ≥ 0,y22 ≥ 0.

(Second-level: Distribution model)

min
x1,x2

ZDC =15x1 +13x2 +3y11 +2y12 +3.5y21 +2.5y22

subject to 3x1 +2x2 ≤ 500,

x1 ≥ 100,

x2 ≥ 100,

y11 + y21 ≤ x1,

y12 + y22 ≤ x2

x1 ≥ 0,x2 ≥ 0.

There is typically some inconsistency in data in real-life scenarios. To deal with this vagueness in
the problem, the interval numbers are considered as coefficients of the problem. The bi-level linear
programming problem is reformulated as an interval bi-level linear programming problem as follows:
First-level: Production model

min
y11,y12,y21,y22

ZPC =[1,2]x1 +[1.5,2.5]x2 +[6.5,7.5]y11 +[2.5,3.5]y12 +[9.5,10.5]y21 +[5.5,6.5]y22

subject to y11 + y12 + y21 + y22 ≤ [450,550],

[1.5,2.5]y11 +[0.5,1.5]y12 ≤ [150,250],

[0.5,1.5]y21 + y22 ≤ [200,300],

y11 + y21 ≤ x1,

y12 + y22 ≤ x2,

y11 ≥ 0,y12 ≥ 0,y21 ≥ 0,y22 ≥ 0.
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Second-level: Distribution model

min
x1,x2

ZDC =[14,16]x1 +[12,14]x2 +[2,4]y11 +[1,3]y12 +[3,4]y21 +[2,3]y22

subject to [2.5,3.5]x1 +[1.5,2.5]x2 ≤ [450,550],

x1 ≥ 100,

x2 ≥ 100,

y11 + y21 ≤ x1,

y12 + y22 ≤ x2,

x1 ≥ 0,x2 ≥ 0.

The mean and radius form of the above IBLPP is written as follows:
First-level: Production model

min
y11,y12,y21,y22

ZPC =⟨1.5,0.5⟩x1 + ⟨2,0.5⟩x2 + ⟨7,0.5⟩y11 + ⟨3,0.5⟩y12 + ⟨10,0.5⟩y21 + ⟨6,0.5⟩y22

subject to y11 + y12 + y21 + y22 ≤ ⟨500,50⟩,
⟨2,0.5⟩y11 + ⟨1,0.5⟩y12 ≤ ⟨200,50⟩,
⟨1,0.5⟩y21 + y22 ≤ ⟨250,50⟩,
y11 + y21 ≤ x1,

y12 + y22 ≤ x2,

y11 ≥ 0,y12 ≥ 0,y21 ≥ 0,y22 ≥ 0.

Second-level: Distribution model

minx1,x2 ZDC = ⟨15,1⟩x1 + ⟨13,1⟩x2 + ⟨3,1⟩y11 + ⟨2,1⟩y12 + ⟨3.5,0.5⟩y21 + ⟨2.5,0.5⟩y22

subject to ⟨3,0.5⟩x1 + ⟨2,0.5⟩x2 ≤ ⟨500,50⟩,
x1 ≥ 100,
x2 ≥ 100,
y11 + y21 ≤ x1,

y12 + y22 ≤ x2,

x1 ≥ 0,x2 ≥ 0.

(30)

A nonlinear programming problem is formulated by applying the developed procedure as discussed in
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Section 3. The IBLPP (30) can be solved by solving the following non-linear programming problem:

min Z =w(1.5x1 +2x2 +7y11 +3y12 +10y21 +6y22)+(1−w)(x1 + x2 + y11 + y12 +0.5y21 +0.5y22)

subject to y11 + y12 + y21 + y22 ≤ 500,

2y11 + y12 ≤ 200,y21 + y22 ≤ 250,

y11 + y21 ≤ x1,y12 + y22 ≤ x2,

15+3λ1 −λ2 −λ4 = 0,

13+2λ1 −λ3 −λ5 = 0,

λ1(3x1 +2x2 −500) = 0,

λ2(x1 −100) = 0, λ3(x2 −100) = 0

λ4(y11 + y21 − x1) = 0

λ5(y12 + y22 − x2) = 0

3x1 +2x2 ≤ 500,y11 + y21 ≤ x1,

y12 + y22 ≤ x2; x1 ≥ 100,x2 ≥ 100; 0 ≤ w ≤ 1;

y11 ≥ 0,y12 ≥ 0,y21 ≥ 0,y22 ≥ 0.

The solution of the above problem can be obtained using any optimization software such as Lingo,
Mathematica, Matlab, etc. Here we solve the above problem by Lingo software and obtain the solution
as x1 = 100,x2 = 100,y11 = 50,y12 = 100,y21 = 50,y22 = 0,λ1 = 0,λ2 = 0,λ3 = 1.217516,λ4 = 15,λ5 =

11.78248.

4.1. Result and Discussion

In Section 4, we successfully applied the developed algorithm to solve a real-life supply chain problem
with an uncertain environment and obtained the following decisions:

50 tons of product A is produced in the plant P1

100 tons product B is produced in the plant P1

50 tons of product A is produced in the plant P2

There is no production of product B in the plant P2.
100 tons of product A’s inventory is held in DC
100 tons of product B’s inventory is held in DC
The minimum production cost for the production department lies in the closed interval [1300,1700].
The minimum distribution cost for the distribution center lies in the closed interval [2950,3700].

5. Conclusion

This paper is considered a general bi-level linear programming problem with coefficients in both objec-
tives and constraints are closed intervals. The problem is transformed into a deterministic non-linear
programming problem using partial ordering in terms of means and radius of the interval parameters.
Further, the solution of the original problem is studied by solving the transformed deterministic pro-
gramming problem. The developed approach may be applied to solve various real life management
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problems with uncertainty which contains two level hierarchy models. In light of the developments in
this paper, we may develop a solution method for multi-objective BLPPs with interval uncertainty.
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[3] BECK, Y., LJUBIĆ, I., AND SCHMIDT, M. A survey on bilevel optimization under uncertainty. European Journal of Operational

Research 311, 2 (2023), 401–426.
[4] BHUNIA, A. K., AND SAMANTA, S. S. A study of interval metric and its application in multi-objective optimization with interval

objectives. Computers & Industrial Engineering 74 (2014), 169–178.
[5] BHURJEE, A. K., AND PANDA, G. Sufficient optimality conditions and duality theory for interval optimization problem. Annals of

Operations Research 243, 1 (2016), 335–348.
[6] BHURJEE, A. K., AND PANDA, G. Optimal strategies for two-person normalized matrix game with variable payoffs. Operational

Research 17, 2 (2017), 547–562.
[7] BIALAS, W. F., AND KARWAN, M. H. Two-level linear programming. Management science 30, 8 (1984), 1004–1020.
[8] CALVETE, H. I., AND GALÉ, C. Linear bilevel programming with interval coefficients. Journal of Computational and Applied

Mathematics 236, 15 (2012), 3751–3762.
[9] CHANAS, S., AND KUCHTA, D. Multiobjective programming in optimization of interval objective functions—a generalized approach.

European Journal of Operational Research 94, 3 (1996), 594–598.
[10] COLSON, B., MARCOTTE, P., AND SAVARD, G. An overview of bilevel programming. Annals of Operations Research 153, 1 (2007),

235–256.
[11] DARVISHI, D., FORREST, J., AND LIU, S. A comparative analysis of grey ranking approaches. Grey Systems: Theory and Application

9, 4 (2019), 472–487.
[12] DEB, K., SINHA, A., MALO, P., AND LU, Z. Approximate bilevel optimization with population-based evolutionary algorithms. In

Bilevel Optimization. Springer, 2020, pp. 361–402.
[13] DEMPE, S. Foundations of bilevel programming. dordrecht.
[14] DEMPE, S., GADHI, N. A., AND OHDA, M. On interval-valued bilevel optimization problems using upper convexificators. RAIRO-

Operations Research 57, 3 (2023), 1009–1025.
[15] GASSNER, E., AND KLINZ, B. The computational complexity of bilevel assignment problems. 4OR 7, 4 (2009), 379–394.
[16] HANSEN, E., AND WALSTER, G. W. Global optimization using interval analysis: revised and expanded, vol. 264. CRC Press, 2003.
[17] HAQUE, S., BHURJEE, A., AND KUMAR, P. Multi-objective non-linear solid transportation problem with fixed charge, budget

constraints under uncertain environments. Systems Science & Control Engineering 10, 1 (2022), 899–909.
[18] ISHIBUCHI, H., AND TANAKA, H. Multiobjective programming in optimization of the interval objective function. European Journal

of Operational Research 48, 2 (1990), 219 – 225.
[19] JIANG, C., ZHANG, Z., ZHANG, Q., HAN, X., XIE, H., AND LIU, J. A new nonlinear interval programming method for uncertain

problems with dependent interval variables. European Journal of Operational Research 238, 1 (2014), 245–253.
[20] KUMAR, P. Multi-objective interval linear programming problem with the bounded solution. In AIP Conference Proceedings (2020),

vol. 2277, AIP Publishing.



Acc
ep

ted
man

us
cri

pt

22 Bhurjee et al.

[21] KUMAR, P., AND BHURJEE, A. K. An efficient solution of nonlinear enhanced interval optimization problems and its application to
portfolio optimization. Soft Computing 25, 7 (2021), 5423–5436.

[22] KUMAR, P., AND BHURJEE, A. K. Multi-objective enhanced interval optimization problem. Annals of Operations Research 311, 2
(2022), 1035–1050.

[23] KUMAR, P., PANDA, G., AND GUPTA, U. Multiobjective efficient portfolio selection with bounded parameters. Arabian Journal for
Science and Engineering 43 (2018), 3311–3325.

[24] LABBÉ, M., AND VIOLIN, A. Bilevel programming and price setting problems. 4OR 11, 1 (2013), 1–30.
[25] LAI, Y.-J. Hierarchical optimization: a satisfactory solution. Fuzzy sets and systems 77, 3 (1996), 321–335.
[26] LI, D., LEUNG, Y., AND WU, W. Multiobjective interval linear programming in admissible-order vector space. Information Sciences

486 (2019), 1–19.
[27] MOHANTY, D. J., KUMAR, R. S., AND GOSWAMI, A. Vendor-buyer integrated production-inventory system for imperfect quality

item under trade credit finance and variable setup cost. RAIRO-Operations Research 52, 4-5 (2018), 1277–1293.
[28] MOORE, R. Interval Analysis. Prentice-Hall, 1966.
[29] MUNEEB, S. M., NOMANI, M. A., MASMOUDI, M., AND ADHAMI, A. Y. A bi-level decision-making approach for the vendor

selection problem with random supply and demand. Management Decision 58, 6 (2020), 1164–1189.
[30] NAYAK, S., AND OJHA, A. K. Solving bi-level linear fractional programming problem with interval coefficients. In Numerical

Optimization in Engineering and Sciences. Springer, 2020, pp. 265–273.
[31] NEHI, H. M., AND HAMIDI, F. Upper and lower bounds for the optimal values of the interval bilevel linear programming problem.

Applied Mathematical Modelling 39, 5-6 (2015), 1650–1664.
[32] RAHMAN, M. S., SHAIKH, A. A., AND BHUNIA, A. K. Necessary and sufficient optimality conditions for non-linear unconstrained

and constrained optimization problem with interval valued objective function. Computers & Industrial Engineering 147 (2020),
106634.

[33] REN, A. A novel method for solving the fully fuzzy bilevel linear programming problem. Mathematical Problems in Engineering
2015 (2015).

[34] REN, A., AND WANG, Y. A cutting plane method for bilevel linear programming with interval coefficients. Annals of Operations
Research 223, 1 (2014), 355–378.

[35] REN, A., AND WANG, Y. An approach for solving a fuzzy bilevel programming problem through nearest interval approximation
approach and kkt optimality conditions. Soft Computing 21, 18 (2017), 5515–5526.

[36] RONG, Q., CAI, Y., SU, M., YUE, W., YANG, Z., AND DANG, Z. A simulation-based bi-level multi-objective programming
model for watershed water quality management under interval and stochastic uncertainties. Journal of environmental management
245 (2019), 418–431.

[37] RYU, J.-H., DUA, V., AND PISTIKOPOULOS, E. N. A bilevel programming framework for enterprise-wide process networks under
uncertainty. Computers & Chemical Engineering 28, 6-7 (2004), 1121–1129.

[38] SAHU, B., BHURJEE, A. K., AND KUMAR, P. Efficient solutions for vector optimization problem on an extended interval vector
space and its application to portfolio optimization. Expert Systems with Applications 249 (2024), 123653.

[39] SINHA, A., MALO, P., AND DEB, K. A review on bilevel optimization: from classical to evolutionary approaches and applications.
IEEE Transactions on Evolutionary Computation 22, 2 (2017), 276–295.

[40] YADAV, V., BHURJEE, A., KARMAKAR, S., AND DIKSHIT, A. A facility location model for municipal solid waste management
system under uncertain environment. Science of the Total Environment 603 (2017), 760–771.

[41] ZHENG, Y., WAN, Z., AND WANG, G. A fuzzy interactive method for a class of bilevel multiobjective programming problem. Expert
Systems with Applications 38, 8 (2011), 10384–10388.

[42] ZHU, X., AND GUO, P. Bilevel programming approaches to production planning for multiple products with short life cycles. 4OR
18, 2 (2020), 151–175.

[43] ZHU, X., LI, K. W., AND GUO, P. A bilevel optimization model for the newsvendor problem with the focus theory of choice. 4OR
(2022), 1–19.


	Introduction
	Notations and Preliminaries
	Partial ordering and interval valued function 
	Optimality conditions for interval optimization problem 
	Comparative study

	Linear bi-level programming problem
	Interval bi-level programming problem
	Numerical examples

	Application of IBLP to a supply chain planning with interval uncertain environment
	Result and Discussion

	Conclusion

