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Abstract

In our sub-coalition approach, players and their blocs—termed sub-coalitions—form a grand coalition following the queue
bargaining model. So, sub-coalitional versions of marginal contribution values need to consider the marginal contributions
of blocs of players. This article is a novel contribution in two aspects. The first aspect consists of introducing a new sub-
coalitional value. This value is obtained by a modification of the Solidarity value, introduced by Nowak and Radzik in 1994,
and an egalitarian way to divide the blocs’ contributions. The second aspect consists of applying the queue bargaining model
to provide new formulations for the Sub-coalitional Egalitarian Shapley value introduced in 2017 and the new sub-coalitional
value. Additionally, using a combinatorial approach, we prove that the Solidarity value can be calculated using the queue
model where players share the marginal contributions with their predecessors, which is the same idea as in procedure 4
proposed by Malawski in 2013.
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1. Introduction

This paper focuses on a specific group of one-point solution concepts from cooperative games—the
sub-coalitional values. The notion of sub-coalitional value was first introduced by Stach in 2017 [20].
In the general sub-coalition approach, individual players and their pre-constituted blocs—termed sub-
coalitions—either form a grand coalition all at once or join one at a time in a random sequence. In the
sub-coalition approach considered here, the grand coalition is formed through the successive addition of
blocs of players, randomly one by one, including blocs composed of single players. An intriguing issue
is how the players or blocs distribute their marginal contribution among their members. The method of
dividing the marginal contribution of a sub-coalition among its members, once applied, leads to various
sub-coalitional values.

Received 27 March 2024, accepted 16 November 2024, published online 8 February 2025
ISSN 2391-6060 (Online)/© 2025 Authors
This is not yet the definitive version of the paper. This version will undergo additional copyediting, typesetting and review
before it is published in its final form, but we are providing this version to give early visibility of the article.

http:\www.ord.pwr.edu.pl
https://orcid.org/000-000200-9243-8653
https://orcid.org/000-000200-8051-3022
mailto:istach@agh.edu.pl


Acc
ep

ted
man

us
cri

pt

2 I. Stach and C. Bertini

This work continues the research on sub-coalitional values initiated in Stach (2017) [20], where some
sub-coalitional values were introduced and analyzed, considering some general properties of the values.
Among these sub-coalitional values, one—referred to as the Egalitarian SC-Shapley value—employs an
equal division of the marginal contributions of the blocs of players. In this paper, we propose a formula
for this value, as it was introduced in [20] in a descriptive manner.

Here, we also propose a new sub-coalitional value based on the Solidarity value, introduced by Nowak
and Radzik in 1994 [16], and an egalitarian division of marginal contributions of blocs of players. We
provide a formula for this new sub-coalitional value as well. It is named the Sub-coalitional Egalitarian
Solidarity value. To align with the name of the new sub-coalitional value, we have renamed the egalitarian
sub-coalitional value introduced in [20] to the Sub-coalitional Egalitarian Shapley value. The rationale
for this is that the order of words in the new name accurately describes the order of nesting of the sets of
values used, from the largest to the smallest.

The formulas we propose for the sub-coalitional egalitarian values are based on the queue bargaining
model of the Shapley value (1953) [18]. In the bargaining model of the Shapley value, the formation
of a grand coalition is realized through the random successive addition of individual players—the queue
bargaining model, see also Felsenthal and Machover (1998) [4], for example. The notation we use to
define the formulas is inspired by that used by Felsenthal and Machover in [4].

The queue bargaining model of the Solidarity value [16] is very similar to that of the Shapley value. In
Section 2.1, the differences between the Shapley value and the Solidarity value, as well as their bargaining
models, are explained in detail. Broadly speaking, the difference lies in how the marginal contribution
of a singular player to each coalition is considered in calculating the final value assigned to players.
For a more thorough comparison of the sub-coalition egalitarian values considered in this paper with
their baseline values, we also provide formulas for the latter using the queue model. Particularly, in the
formula based on the queue model for the Solidarity value, players distribute their marginal contribution
with their predecessors in each queue, leading to the grand coalition, see also Malawski (2013) [13].
Malawski in [13] introduced some procedural values with formulas for their calculations. The formula
for Malawski’s "procedure 4" leads to the Solidarity value and is the same as ours but written using
different notation. Additionally, using a combinatorial approach, we demonstrate that the Solidarity
value can be calculated according to the provided formula here, as to the best of the authors’ knowledge,
this has not been done yet.

The Solidarity value and the sub-coalitional egalitarian values considered here belong to a group of
values that show solidarity with weaker players. All these values do not satisfy the null player property,
as can be seen in Examples 2 and 3 in Section 4. Thus, potential applications of the new sub-coalitional
value could be in the social context where goods are public, and stronger players donate a portion of their
winnings to weaker ones. Further considerations related to solidarity solutions can be found in Stach and
Bertini (2022) [23].

The rest of this paper is structured as follows: in Section 2, we introduce some basic definitions and
notations of cooperative games, values, and sub-coalitional values. Here, using the queue bargaining
model, we provide a formula for calculating the Solidarity value [16] and demonstrate that calculations
by this formula yield the same results as the original formula. Section 3 introduces two new formulas.
One, in Section 3.1, for the Sub-coalitional Egalitarian value, and the second one, in Section 3.2, for the
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new sub-coalitional value introduced in this paper. Section 4 compares all considered values in theoretical
examples and in terms of some known and desirable properties in cooperative games defined in Section
2. Finally, Section 5 concludes the paper with some discussions and suggestions for further development.

2. Preliminaries on cooperative games and values

Let N = {1, 2, . . . , n} denote an arbitrary set of players, where n = |N | stands for the size (cardinality)
ofN . Each subset S ofN is called a coalition, and N is called the grand coalition. The set of all coalitions
is denoted by 2N . For brevity, if a coalition is denoted by a capital letter, the corresponding lowercase
letter denotes the cardinality of the coalition, e.g., s = |S|.

A cooperative game is a pair (N, v) formed by a finite set N and a real-valued function v : 2N → R,
called the characteristic function, with a requirement such that v(∅) = 0. For each coalition S ∈ 2N , v(S)
is called the worth of a coalition, and it is interpreted as the payoff that can be achieved if the members
of S cooperate. Let GN be a set of all cooperative games on N .

Many solution concepts have been proposed for cooperative games. Among these concepts is a group
of one-point solutions called values. A value is a real-valued function that assigns to a cooperative
game (N, v) a unique vector f(N, v) = (f1(N, v), f2(N, v), . . . , fn(N, v)). The component fi(N, v) is a
payoff/value what player i ∈ N can expect to obtain playing the cooperative game (N, v). Since N does
not change in the rest of the paper, we will write fi(v) instead of fi(N, v) hereafter.

Let us present below some known desirable properties of values.

• Efficiency property. In a cooperative game (N, v), the main issue is the sharing of the worth v(N) of
the grand coalition among the players. A value f is therefore said to be efficient if

∑
i∈N

f(v) = v(N)

for all v ∈ GN .

• Individual rationality property. A value f is said to be individual rational if, for each player i ∈ N
obtains at least their worth, i.e., f({i}) ≥ v({i}).

• Null player property. A value f fulfils the null player postulate if it allocates zero payoff to all
individuals i ∈ N whose net contribution to any coalition is zero. Formally, for all games v ∈ GN

f(v) = 0 if i is a null player in (N, v), i.e., if marginal contribution of player i ∈ N to coalition S
is [v(S)− v(S\{i})], for all coalitions S ⊆ N\{i}.

• Symmetry (anonymity) property. A value f fulfils the symmetry postulate if, it assigns the same
payoff/value to the “symmetric” players. Formally, for all games v ∈ GN and for each i ∈ N

and each permutation Q : N → N the following holds f(v) = fQ(i)(Q(v)), where Q(v)(S) =

v(Q−1(S)).

2.1. Some known values in cooperative games

Next, we define three very known values that we use in Section 3 to construct the sub-coalitional values.
The definitions of the values below are given for each cooperative game (N, v) and each player i ∈ N .

The egalitarian value e (also called the egalitarian division or egalitarian solution) is an efficient and

symmetric value that assigns to each player i ∈ N equal part of v(N), i.e., ei(v) =
v(N)

n
.
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The Shapley value (σ), introduced by Shapley (1953) [18], is defined as follows:

σi(v) =
∑
S ⊆ N
i ∈ S

(n− s)!(s− 1)!

n!

(
v(S)− v(S\{i})

)
. (1)

Considering the queue bargaining model of the Shapley value (1953) [18]—or of Shapley and Shubik
(1954) [19], see Felsenthal and Machover (1998) [4, p. 182], for example—an alternative equivalent
formula for the Shapley value exists. Before presenting this formula, let us introduce some notions.

LetN be a finite set of n players. A permutation (queue or sequential coalition)Q ofN is any bijection
from N to the set (1, 2, . . . , n}. Q(N) is a set of all permutations of N . In each singular permutation Q,
the order players are listed reflects the order they joined the coalition. By Qi we denote the place of i in
Q. So, Qi is a positive integer and 1 ≤ Qi ≤ n. Next, we define hiQ = {j ∈ N : Qj ≤ Qi} as a head of
i in Q. It means that hiQ ∈ 2N is a coalition with i and those players in N placed ahead of i in Q.

Following the queue bargaining model, we can calculate the Shapley value (1953) [18] as follows:

σi(v) =
1

n!

∑
Q∈Q(N)

(v(hiQ)− v(hiQ\{i})), (2)

where the sum ranges over all n! orders Q ∈ Q(N).
The Solidarity value (ψ), introduced and characterized axiomatically by Nowak and Radzik (1994)

[16], is defined as follows:

ψi(v) =
∑
S ⊆ N

i ∈ S

(n− s)!(s− 1)!

n!
Av(S), (3)

where Av(S) is the average marginal contribution of a member of coalition S and it is defined as follows:

Av(S) =
1

s

∑
i∈S

(v(S)− v(S\{i}) for each coalition S ∈ 2N .

Note that the manner in which players form the grand coalition in the bargaining model of the Solidar-
ity value is the same as that of the Shapley value [18]. This means, loosely speaking, that the formation
of the grand coalition N starts with a single player, then the coalition adds one player at a time until
everyone has been admitted. Players join the coalition in random order, and all n! sequences are equally
probable.

The difference between the two values lies in how the grand coalition’s total win is divided among
the players. In the Shapley value bargaining model, each player, upon their admission to the group,
is promised the amount their adherence to the group contributes to the value of the coalition (as deter-
mined by the characteristic function), i.e., the so-called marginal contribution of a player. The Shapley
value assigns each player their average marginal contribution across all coalitions to which they belong.
Meanwhile, the Solidarity value assigns each player the sum of the coalition members’ average marginal
contribution across all coalitions to which the player belongs. Thus, the foundation of the Solidarity
value is to be in solidarity with the weaker players. In other words, if a player become a member of

coalition S, then he obtains Av(S) =
1

s

∑
i∈S

(v(S) − v(S\{i})—the average marginal contribution of a

member of S.
Hereafter, we provide another formula for calculating the Solidarity value, but first, let us introduce
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further notation. Consider the set of all permutations of N—Q(N). For each Q ∈ Q(N) and i ∈ N , let
us define tiQ = {j ∈ N : Qj ≥ Qi} as a tail of i in Q. It means that tiQ ∈ 2N is a coalition with i and
those players in N placed behind of i in Q.

If we follow the queue bargaining model of Shapley and Shubik (1954) [19], see Felsenthal and
Machover (1998) [4] as well, we can calculate the Solidarity value as follows:

ψi(v) =
1

n!

∑
Q∈Q(N)

∑
k∈tiQ

v(hkQ)− v(hkQ\{k})
|hkQ|

(4)

where
v(hkQ)− v(hkQ\{k})

n!
is the probability that a given coalition S = hkQ will form. i.e., the prob-

ability that S is the head of player on position k in a queue, see also Felsenthal and Machover (1998)
[4]. Note that, in the Shapley value, the full worth of a marginal contribution v(hkQ) − v(hkQ\{k}) is
assigned to one player, k, whose joining constitutes coalition hkQ, whereas in the Solidarity value, this
amount is divided equally among all members of hkQ. So, each member of hkQ obtains
v(hkQ)− v(hkQ\{k})

|hkQ|
and the remaining players in Q obtain zero.

Note that Malawski, in 2013 [13], using a slightly different notation, provided a general formula
for procedural values, where changing a coefficient results in a different procedural value. Specifically,
Procedure 4 leads to the calculation of the Solidarity value according to formula (4) as well.

In the next section, using a combinatorial approach, we demonstrate that calculations of the Solidarity
value according to formulas (3) and (4) lead to the same results, as seen in Proposition 1. The rationale
for presenting the demonstration in Section 2.2, rather than immediately, is that the considerations in the
proof become clearer after the presentation of the Solidarity value calculation in Example 1. Example 1
is provided there, in Section 2.2.

2.2. The Shapley and Solidarity values in comparison

In this section, we calculate and compare the Shapley and Solidarity values in Example 1 proposed below.
The calculations for both values are based on the queue bargaining models, i.e., using formulas (2)
and (4). The reason for this is to facilitate a better understanding of the differences between them and
their sub-coalitional egalitarian versions defined in Section 3.

Example 1. Let us consider a three-player cooperative game given by the following characteristic
form: v(∅) = 0, v({1}) = 1, v({2}) = v({3}) = 0, v({1, 2}) = 4, v({1, 3}) = 3, v({2, 3}) = 2,
v({1, 2, 3}) = 5.

Table 1 shows the Shapley value calculations in Example 1. The first column, in Table 1 and 2,
provides the order in which players join in forming the grand coalition N . The last three columns in
Table 1 provide, for each order and for each player, the amounts contributed to the value of the coalition
by the players’ joining the group.

Table 2 provides the Solidarity value calculations according to the queue bargaining model in Ex-
ample 1. In Table 2 we can find, for each player in each order of formation grand coalition, all sum
components of the average marginal contribution of a coalition member, see formula (4).

In Example 1, we can observe that the Solidarity value is solidaric with weaker players. Player 1 is
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Table 1. The Shapley value calculation according to the queue model in Example 1.

Q = Order of players Coalitions S = hiQ in Q, i = 1, 2, 3 Player i’s marginal contributions to coalition S
i = 1 i = 2 i = 3

(1, 2, 3) {1}, {1, 2}, {1, 2, 3} 1 3 1
(1, 3, 2) {1}, {1, 3}, {1, 2, 3} 1 2 2
(2, 1, 3) {2}, {1, 2}, {1, 2, 3} 4 0 1
(2, 3, 1) {2}, {2, 3}, {1, 2, 3} 3 0 2
(3, 1, 2) {3}, {1, 3}, {1, 2, 3} 3 2 0
(3, 2, 1) {3}, {2, 3}, {1, 2, 3} 3 2 0

Total 15 9 6
Shapley value 15/6 = 2.5 9/6 = 1.5 6/6 = 1

Table 2. The Solidarity value calculation according to the queue model in Example 1.

Q = Order of players Coalitions S = hiQ in Q, i = 1, 2, 3 Sum of fractions/summands of average marginal
contributions Av(S) assigned to player i
i = 1 i = 2 i = 3

(1, 2, 3) {1}, {1, 2}, {1, 2, 3} 1 + 3/2 + 1/3 3/2 + 1/3 1/3
(1, 3, 2) {1}, {1, 3}, {1, 2, 3} 1 + 1 + 2/3 2/3 1 + 2/3
(2, 1, 3) {2}, {1, 2}, {1, 2, 3} 2 + 1/3 0 + 2 + 1/3 1/3
(2, 3, 1) {2}, {2, 3}, {1, 2, 3} 1 0 + 1 + 1 1 + 1
(3, 1, 2) {3}, {1, 3}, {1, 2, 3} 3/2 + 2/3 2/3 0 + 3/2 + 2/3
(3, 2, 1) {3}, {2, 3}, {1, 2, 3} 1 1 + 1 0 + 1 + 1

Total 12 19/2 17/2
Solidarity value 12/6 = 2 19/12 = 1.58(3) 17/12 = 1.41(6)

the strongest player, and Player 3 is the weakest one, according to both the characteristic function and
the Shapley value, see Table 1. By the definition of the Solidarity value, players who contribute to a
coalition S more than the average marginal contribution, in some sense, support the “weaker” partners in
S, as shown in formula (3). As a result, Player 1 helps both Players 2 and 3, but offers more support to
Player 3.

Before we demonstrate that the Solidarity value can be calculate following formula (4), we present
calculations of this value according to original formula (3) in Example 1, see Table 3.

Table 3. The Solidarity value calculation according to original formula (3) in Example 1.

Coalition S Av(S) v(S)− v(S\{i}) Coefficient Av(S) assigned to a player and shown
with summands that it consists of

i = 1 i = 2 i = 3 (n− s)!(s− 1)! i = 1 i = 2 i = 3

{1} 1 1 2 1
{2} 0 0 2 0
{3} 0 0 2 0

{1, 2} 7/2 4 3 1 (4 + 3)/2 (4 + 3)/2
{1, 3} 5/2 3 2 1 (3 + 2)/2 (3 + 2)/2
{2, 3} 4/2 2 2 1 (2 + 2)/2 (2 + 2)/2

{1, 2, 3} 6/3 3 2 1 2 (3+2+1)/3 (3+2+1)/3 (3+2+1)/3
Total (considering multiplication by a coefficient) 12 19/2 17/2

Solidarity value 12/6 19/12 17/12

As we can observe, the payoff assigned to players by formulas (3) and (4) of the Solidarity value in
Example 1 is the same (see Tables 2 and 3).

Now, let us present a demonstration that the Solidarity value, calculated according to the queue bar-
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gaining model—formula (4) —yields the same results as those calculated by formula (3) in the general
case.

Proposition 1. For each game (N, v) and player i in N , the value obtained by the queue bargaining
model—formula (4)— is the Solidarity value defined by formula (3).

Proof. Let fix a game (N, v). Let denote by Avi (S) =
v(S)− v(S\{i})

s
the player i’s contribution

to the average marginal contribution Av(S), i ∈ S ⊆ N . Observe, that by the definition, the average
marginal contribution to coalition S ⊆ N , Av(S), is calculated as the sum of the marginal contribution of
players divided by the cardinality of S. So, Av(S) =

∑
i∈S

Avi (S). For example, for coalition S = {1, 2, 3},

s = 3, Av(S) =
(v(S)− v(S\{1}))

3
+

(v(S)− v(S\{2}))
3

+
(v(S)− v(S\{3}))

3
, what in Example 1 is

equal to Av(N) =
3

3
+

2

3
+

1

3
. The contribution of Player 1 to average marginal contribution to coalition

N is Avi (N) =
v(N)− v({2, 3})

3
=

3

3
, Av2(N) =

2

3
, and Av3(N) =

1

3
, see Table 3.

Hence, when calculating the Solidarity value for a player i ∈ N by formula (3), for every coalition
S 3 i and each of its members k ∈ S, Avk(S) appears (n− s)!(s− 1)! times (as a component of Av(S)),
as the formula itself indicates.

So, in order to prove Proposition 1, it is sufficient to show that, using the queue bargaining model and
Malawski’s Procedure 4 [13], for player i ∈ N and all coalitions S ⊆ N with him, i ∈ S, the number of
all parts assigned to player i, i.e., Avk(S), where S = hkQ, k ∈ tiQ, over all orders of players Q ∈ Q(N),
is equal to (n− s)!(s− 1)!

Here below, step by step, we give all observations that helps to prove Proposition 1.

i. When we calculate the value using formula (4), we regard all possible permutations of players. For
|N | = n, we have n! permutations—queues of players.

ii. For each permutation (order of players), we consider formation of n coalitions. We start with empty
coalitions, then the first player arrives forming a coalition of size 1. Subsequently, the second player
joins the first one, forming a coalition of size 2, and so on, until the last player joins the previous
players, in the order, forming coalitions of size n, denoted as N .

iii. The above implies that, if n > 2, then each non-empty coalition S ⊆ N appears more than one time
considering all possible queues of players—permutations. In particular, each coalition S (of size s)
is considered (n− s)!s! times over all n! queues of players, which is not difficult to show. Namely,
when we choose s players, these s players can form s! queues/orders, then the remaining players
can create (n − s)! orders. For example, coalition {1, 2} is regarded (n − s)!s! = (3 − 2)!2! = 2

times, in Example 1. Specifically, {1, 2} appears, for the first time, considering permutation (1, 2, 3)

and, for the second57 time, considering permutation (2, 1, 3), see second column in Tables 1 and 2.

iv. For each coalition S = hiQ, formed by the addition of player i ∈ N , in formula (4), the marginal

contribution
v(hiQ)− v(hkQ\{i})

|hiQ|
is calculated only for one player—the last player in the queue/order

that constituted coalition S—i. This contribution is nothing more than the contribution Avi (S) =
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v(S)− v(S\{i})
s

to the average marginal contribution Av(S). For example, in queue (1, 2, 3) when

Player 2 joins Player 1 coalition {1, 2} is formed and we calculate the average contribution of
Player 2 only, which is equal to (4 − 1)/2 = 3/2 = Av2({1, 2}), see Table 2. Then, this value is
assigned to all members of S. Hence, also Player 1 obtains this value—Av2({1, 2}). In permutation
(2, 1, 3), when Player 1 joins Player 2, a coalition {1, 2} is formed and we calculate the average
marginal contribution of Player 1 only, (4 − 0)/2 = 4/2 = 2 = Av1({1, 2}), see Table 2. Conclud-
ing, fixing a coalition S of size s, this coalition appears (n − s)!s! times in all permutations and
each time a marginal contribution is calculated for one player only. Then, this marginal contribution
is divided by s and the result (Avk(S)) is assigned to all members of S. In all (n − s)!s! cases, the
marginal contribution of a particular member of S is considered only (n−s)!s!/s = (n−s)!(s−1)!

times, as the number (n − s)!(s − 1)! indicates the number of times that a chosen player is on
the last position in the queue constituting coalition S. Thus, in total, each member of S obtains
(n− s)!(s− 1)!

∑
k∈S

Avk(S) = (n− s)!(s− 1)!Av(S).

Thus, starting from formula (4) we have

ψi(v) =
1

n!

∑
Q∈Q(N)

∑
k∈tiQ

v(hkQ)− v(hkQ\{k})
|hkQ|

=
1

n!

∑
S3i

(n− s)!(s− 1)!
∑
k∈S3i

Avk(S) =
∑
S3i

(n− s)!(s− 1)!

n!
Av(S).

This ends the proof. The method of calculation bases on the queue bargaining model—formula (4)—
leads to formula (3) of the Solidarity value. �

2.3. Sub-coalitional approach to values based on ordered partitions

There are two types of the sub-coalitional values introduced in Stach (2017) [20]. One group of sub-
coalitional values bases on ordered partitions of grand coalition N and the second group bases on par-
titions of N . The sub-coalitional approach of first group assumes that all ordered partitions of N are
possible, and the grand coalition is formed by joining of individual and group of players. Below we
provide the formal definition of the ordered partition of the grand coalition.

An ordered partition π = (S1, . . . , Sk) of grand coalition N into k groups (i.e., blocs of players
called by us sub-coalitions) where 2 ≤ k ≤ n is any permutation of k non-empty subsets Sj ⊂ N ,
j ∈ {1, 2, . . . , k} such that every member of N belongs to one and only one of these subsets. In other
words, permutation (S1, . . . , Sk), is an ordered partition of N if the following holds:

1) Sj 6= ∅ for all 1 ≤ j ≤ k;

2) S1 ∪ S2 ∪ . . . ∪ Sk = N ;

3) Si ∩ Sn = ∅ for i 6= j and i, j ∈ {1, 2, . . . , k}.

Of course, the arrangement of blocs Sj ∈ (2N\∅) for all 1 ≤ j ≤ k in (S1, . . . , Sk) is important. The
number of ways to arrange a set of sub-coalitions {S1, . . . , Sk} in a specific order is equal to k!
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By Πk(N) we denote the set of all ordered partitions of N into k blocs and by Π(N) the set of all
possible ordered partitions of N . If |N | = n, then the number of all possible ordered partitions of N is
equal to

|Π(N)| =
n∑
k=2

|Πk(N)| .

So, for n = 2, we have two different ordered partitions: ({1}, {2}) and ({2}, {1}).
For n = 3, there is twelve ordered partitions. In particular, |Π2(N)| = |Π3(N)| = 6 and Π(N) =

{({1}, {2}, {3}), ({1}, {3}, {2}), ({2}, {1}, {3}), ({2}, {3}, {1}), ({3}, {1}, {2}), ({3}, {2}, {1}),
({1}, {2, 3}), ({2, 3}, {1}), ({2}, {1, 3}), ({1, 3}, {2}), ({3}, {1, 2}), ({1, 2}, {3})}.

In general, the number of ways to partition a set of n elements into k non-empty subsets is given by so-

called Stirling number of the second kind and expressed by the formula S(n, k) =
1

k!

k∑
j=0

(−1)j
(
k
j

)
(k−j)n

(see, for example, [1, pp. 824–825]). Thus, |Πk(N)| = k!S(n, k). Because for j = k and n ≥ 2

(k − j)n = 0, we have

|Πk(N)| =
k−1∑
j=0

(−1)j
(
k

j

)
(k − j)n

and

|Π(N)| =
n∑
k=2

k−1∑
j=0

(−1)j
(
k

j

)
(k − j)n.

3. Sub-coalitional egalitarian values

In this section, we revisit the procedure of the Sub-coalitional Egalitarian Shapley value introduced by
Stach (2017) [20]. We then provide a formula for this value, which represents a novel contribution of this
paper (see Section 3.1).

Section 3.2 introduces a new value as a modification/extension of the Solidarity value introduced by
Nowak and Radzik (1994) [16]. Specifically, we outline a three-step procedure to calculate this value
and subsequently propose a formula for what we have named the Sub-Coalitional Egalitarian Solidarity
value.

Let us introduce the notation necessary in Sections 3.1 and 3.2 to define both sub-coalitional values
just mentioned. Let us fix a game (N, v), an ordered partition of N , π = (S1, . . . , Sk) ∈ Π(N) where
2 ≤ k ≤ n, and a player i ∈ N . We denote the place of a bloc S in π by pSπ. Let us denote the place
of the bloc with player i in π by πi. Thus, pSπiπ = πi. For not create so many levels in describing the
place of bloc with player i, we shortly denote the bloc with i by iS. A coalition—hSπ—is called a head

of bloc S in an ordered partition π = (S1, . . . , Sk), where 2 ≤ k ≤ n, if hSπ = {j ∈ N : j ∈
pSπ⋃
l=1

Sl,

π = (S1, . . . , Sk), 2 ≤ k ≤ n}. This coalition consists of members of bloc S and members of those
blocs in π placed ahead of bloc S in π. A tail of a bloc S in an ordered partition π = (S1, . . . Sk), where

2 ≤ k ≤ n, is defined as follows tSπ = {j ∈ N : j ∈
k⋃

l=pSπ

Sl, π = (S1, . . . , Sk), 2 ≤ k ≤ n}. The tSπ

coalition consists of those blocs in π placed behind of S.
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3.1. The Sub-Coalitional Egalitarian Shapley value

The following three-steps algorithm calculates the Sub-coalitional Egalitarian Shapley value.

Step 0. Select a player i ∈ N .

Step 1. For each ordered partition of N—π = (S1, . . . , Sk)—that consists of k blocs of players
(k = 2, . . . , n) fix the bloc with player i in π by iS.

Step 2. Calculate the marginal contribution of a bloc selected in step 1 (bloc iS): v(hiSπ)−v(hiSπ\iS).
Then divide equally the marginal contribution of bloc iS among its members. Then, assign to player i

the following amount
v(hiSπ)− v(hiSπ\iS)

|iS|
.

Step 3. Sum up all values assigned to player i over all ordered partitions and then divide the result by
|Π(N)| to get the Sub-Coalitional Egalitarian Shapley value of player i.

Proposition 2. The Sub-Coalitional Egalitarian Shapley value (σe) for each cooperative game (N, v)

and a player i ∈ N is given as follows:

σei (v) =
∑

π∈Π(N)

(
v(hiSπ)− v(hiSπ\iS)
|Π(N)| · |iS|

)
(5)

Proof. From the three-step algorithm given above, we immediately obtain (5), which is what is needed
to be proven. �

3.2. The Sub-Coalitional Egalitarian Solidarity value

The following three-step algorithm calculates the Sub-coalitional Egalitarian Solidarity value.

Step 0. Select a player i ∈ N .

Step 1. For each ordered partition of N—π = (S1, . . . , Sk)—that consists of k blocs of players
(k = 2, . . . , n) fix the bloc with player i in π—iS.

Step 2. Starting from bloc iS to Sk, i.e., for each bloc T in tail of iS (T ∈ tiSπ), calculate the
marginal contribution of a bloc selected, v(hTπ) − v(hTπ\T ), and distribute this value equally among
the blocs placed ahead of bloc T in π, i.e., among blocs in head of T (hTπ). So, the bloc with player

i obtains
v(hTπ)− v(hTπ\T )

pTπ
as iS belongs to this group of blocs. Then, the amount assigned to iS

is distributed equally among its members. Total all values assigned to player i over all blocs in tiSπ:∑
T∈tiSπ

v(hTπ)− v(hTπ\T )
pTπ · |iS|

.

Step 3. Sum up all values assigned to player i over all ordered partitions and the amount obtain divide
by |Π(N)|. The value obtained is the Sub-Coalitional Solidarity Egalitarian value of player i.

Proposition 3. The Sub-coalitional Egalitarian Solidarity value (ψe) for each cooperative game (N, v)
and a player i ∈ N is given as follows:

ψei (v) =
∑

π∈Π(N)

∑
T∈tiSπ

v(hTπ)− v(hTπ\T )
|Π(N)| · pTπ · |iS|

. (6)
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Proof. From the three-steps algorithm given above, we immediately obtain (6), which is what needs
to be proven. �

4. Comparison of sub-coalitional egalitarian values

Let us start with comparison of both sub-coalitional values considered in Section 3, i.e., the Sub-coalitional
Egalitarian Shapley value and the Sub-coalitional Egalitarian Solidarity value in Example 1. Tables 4
and 5 present their calculations in Example 1.

Table 4. The Sub-coalitional Egalitarian Shapley value calculation in Example 1.

π = Ordered partition Part of contribution of iS to hiSπ assigned to player i
i = 1 i = 2 i = 3

({1}, {2}, {3}) 1 3 1
({1}, {3}, {2}) 1 2 2
({2}, {1}, {3}) 4 0 1
({2}, {3}, {1}) 3 0 2
({3}, {1}, {2}) 3 2 0
({3}, {2}, {1}) 3 2 0
({1}, {2, 3}) 1 2 2
({2, 3}, {1}) 3 1 1
({2}, {1, 3}) 5/2 0 5/2
({1, 3}, {2}) 3/2 2 3/2
({3}, {1, 2}) 5/2 5/2 0
({1, 2}, {3}) 2 2 1

Total 55/2 37/2 28/2
σe 55/24 = 2.29167 37/24 = 1.54167 28/24 = 1.16667

Table 5 provides the Sub-coalitional Egalitarian Solidarity value calculations according to the queue
bargaining model in Example 1. In particular, we can find, for each player in each ordered partition of
grand coalition, all sum components of average marginal contributions assigned to each player, see also
formula (6).

Table 5. The Sub-coalitional Egalitarian Solidarity value calculation in Example 1.

π = Ordered partition Sum of fractions/summands of average marginal contributions Av(S) assigned to player i
i = 1 i = 2 i = 3

({1}, {2}, {3}) 1 + 3/2 + 1/3 3/2 + 1/3 1/3
({1}, {3}, {2}) 1 + 1 + 2/3 2/3 1 + 2/3
({2}, {1}, {3}) 2 + 1/3 0 + 2 + 1/3 1/3
({2}, {3}, {1}) 1 0 + 1 + 1 1 + 1
({3}, {1}, {2}) 3/2 + 2/3 2/3 0 + 3/2 + 2/3
({3}, {2}, {1}) 1 1 + 1 0 + 1 + 1
({1}, {2, 3}) 1 + 2 1 1
({2, 3}, {1}) 3/2 1 + 3/4 1 + 3/4
({2}, {1, 3}) 5/4 0 + 5/2 5/4
({1, 3}, {2}) 3/2 + 1/2 1 3/2 + 1/2
({3}, {1, 2}) 5/4 5/4 0 + 5/2
({1, 2}, {3}) 2 + 1/4 2 + 1/4 1/2

Total 23.25 19.25 17.50
ψe 1.9375 1.6042 1.4583

In Example 1, we can observe that both sub-coalitional egalitarian values are more solidaric with



Acc
ep

ted
man

us
cri

pt

12 I. Stach and C. Bertini

weaker players than the original values, see Table 1, 2, 4, and 5. This result was expected, as in both
cases an egalitarian division was used to distribute the sub-coalition’s contributions.

In Stach (2017) [20], two other examples of games are considered in order to compare the sub-
coalitional values there introduced. We recall these examples here, see Example 2 and 3, to add ob-
servations about the new sub-coalitional value introduced in this paper— ψe.

Example 2. Let us consider a three-player cooperative game given by the following characteristic form:
v(∅) = 0, v({1}) = v({1, 3}) = 1, v({2}) = v({3}) = v({2, 3}) = 0, v({1, 2}) = v({1, 2, 3}) = 4.

In Example 2, Player 3 is a null player. The Sub-Coalitional Egalitarian Shapley value is equal to σe =
(53/24, 35/24, 8/24), while the Sub-Coalitional Egalitarian Solidarity value is equal ψe = (245/144,
197/144, 67/72), see Table 6, where these results are compared with the Shapley and Solidarity values.

Table 6. Sub-coalitional and classical values in Example 2.

Value Player payoff
1 2 3

The Shapley value 2.500 1.500 0
The Solidarity value 1.778 1.361 0.861
The Sub-Coalitional Egalitarian Shapley value 2.208 1.458 0.333
The Sub-Coalitional Egalitarian Solidarity value 1.701 1.368 0.931

Example 3. Let us consider a three-player cooperative game given by the following characteris-
tic form: v(∅) = 0, v({1}) = v({1, 3}) = 1, v({2}) = v({3}) = v({2, 3}) = 0, v({1, 2}) =

v({1, 2, 3}) = 1.

In Example 3, Player 1 is a necessary member to make a coalition win 1. Players 2 and 3 contribute
nothing to any coalition, so they position in each coalition is symmetric and null. The Sub-Coalitional
Egalitarian Shapley value is equal to σe = (10/12, 1/12, 1/12), while the Sub-Coalitional Egalitarian
Solidarity value is equal ψe = (20/36, 8/36, 8/38), see Table 7. Table 7 also includes calculations of the
Shapley and Solidarity values to facilitate a comparison of all values considered in this paper.

Table 7. Sub-coalitional and classical values in Example 3 .

Value Player payoff
1 2 3

The Shapley value 1 0 0
The Solidarity value 0.611 0.194 0.194
The Sub-coalitional Egalitarian Shapley value 0.833 0.083 0.083
The Sub-coalitional Egalitarian Solidarity value 0.556 0.222 0.222

Both sub-coalitional egalitarian values considered in this paper (i.e., σe and ψe) satisfy the symmetry
and efficiency properties by definition, but do not satisfy the null player property, as the Solidarity value,
see Examples 2 and 3 and Tables 6 and 7. Moreover, in comparing with the Shapley value, the individual
rationality property is violated for both sub-coalitional values, σe and ψe , and for the Solidarity values
as well, see Example 3 and Table 7.
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5. Conclusions

One of the novel contributions of this paper is the proposal of a new sub-coalitional value with a formula
for its calculation. Specifically, the paper introduces the Sub-Coalitional Egalitarian Solidarity value ψe

as a modification of the Solidarity value, proposed by Nowak and Radzik (1994) [16], and offers an
application of the egalitarian value for the division of marginal contributions of blocs of players—see
Section 3.2 and formula (6).

We also present a new formula for the Sub-Coalitional Egalitarian Shapley value following the queue
bargaining model proposed by Shapley and Shubik (1954) [19], see Section 3.1 and formula (5).

Another novel contribution is a demonstration, using the combinatorial approach, that formula (4)
leads to the calculation of the Solidarity value—formula (3).

An interesting issue that could be explore more deeply in further research are the advantages and
disadvantages of the two proposed sub-coalitional values (ψe and σe) in real-life applications compared
to each other and other solidarity measures. Now, basing on the results obtain in this paper, we can
suggest some directions for further developments in this regard.

Stach and Bertini (2022) [23], in paper devoted to some solidarity measures for sharing (public) goods
among members with different participation quotas in a binary decision-making process, compare them
considering some properties in simple games. Among these measures the Solidarity value [16] was re-
garded as well. It would be interesting to extend this comparison to the new sub-coalitional values ψe

and σe and observe which of the considered properties in [23] are satisfied and which are lost by them
compared to the original values ψ and σ. It could serve to better understanding the advantages and
disadvantages of the proposed values in real-life applications. Certainly, an advantage of the proposed
values in real-life applications is that these new values picture all possible formation of grand coalition
(N) giving the same chance to all possible divisions of N , it means permutations of blocs. So conse-
quently, as also observed in all three examples of this paper, the new sub-coalitional values are more
solidary towards weaker players than their original values. Thus, the potential applications of the two
sub-coalitional values, ψe and σe, could be in the social context where stronger agents donate a portion
of their winnings to weaker ones.
σe loses the dummy player property satisfied by σ. ψ and ψe do not fulfil the dummy player postulate

as well. The portion of win assigned to a dummy/weak player could give idea about a “cost” of keeping
him in blocs/sub-coalitions. Both sub-coalitional values maintain the symmetry and efficiency property
what do not eliminate a lot of possible real-life application of these values.

It would be also worth to express these new sub-coalitional values using the null player free winning
coalitions, as it was made for some solidarity values in simple games in Stach and Bertini (2021) [22].
This also could help with acquisition of knowledge on these sub-coalitional values.

In this paper we concentrate on the formulas and not practical applications. There is still a lot to be
explored in this regard. For example, the disadvantage of the proposed values in real applications is cer-
tainly their calculation in games with a large number of players. According to the sub-coalition approach
considered here, for example, for six players there are 4,682 possibilities to form a grand coalition, see
Section 2.3. So, elaboration of the efficient algorithms would help to facilities the calculation.

The research presented in this paper could be further developed. Below we list some other potential



Acc
ep

ted
man

us
cri

pt

14 I. Stach and C. Bertini

ideas:

• Comparing new proposed sub-coalitional value taking into account some known properties of values
or a priori unions of coalitions (Owen, 1977) [17] and (Calvo and Gutierrez, 2013) [3].

• The formulas for the sub-coalitions proposed in Stach (2017) [20]. In this paper, we proposed the
formulas only for the σe value and the new proposed value—ψe.

• Modification of further values with sub-coalitional approach, e.g., the Public Good Index of Holler
[11, 12].

• Extending sub-coalitional approach to games modelling voting rules with abstention could be a
good idea, see Freixas (2012) [5], Freixas (2020) [6], Freixas and Pons (2021) [7], for example.

• Another very interesting aspect to examine is the sub-coalitional approach to the so-called proba-
bilistic power indices. In particular, take into account that the power of any sub-coalitions could
significantly depends on the size of such a sub-coalition and its internal cohesion (measured by the
probability that a member of the sub-coalition follows the leader). See Gehrlein, Fishburn (1986)
[8], Gehrlein, Ord, Fishburn (1986) [9] and Mercik (2000) [14].

• As it was just mentioned in Stach (2017) [20] and still not done, it would be interesting to study
the relationship between the sub-coalitional values and the interaction index introduced by Grabisch
and Roubens in 1999 [10].

• Regarding the efficient computation of the proposed sub-coalitional values, an approach like the
one introduced by Staudacher et al. in 2021 [27], i.e., applying the dynamic programming, could be
considered.

• With reference to applications of sub-coalitional values, one application could be assessing the
power of firms in complex shareholding structures, i.e., to measure indirect control power, as
indicated, for example in Bertini, Mercik, Stach (2016) [2], Mercik, Stach (2018) [15], Stach
(2017) [21], Stach, Mercik, (2021) [24], Stach, Mercik, Bertini (2020) [25], Stach, Mercik, Bertini,
Gładysz, Staudacher (2023) [26].
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