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Abstract

An intuitionistic fuzzy rough model is a hybrid model that combines intuitionistic fuzzy sets and rough sets, addressing
soft computing and ambiguity. It uses lower and upper approximation spaces in various fields, including science, technology,
database systems, computer networks, and expert system architecture. The matrix of adjacency of an intuitionistic fuzzy rough
graph is described in the article. The matrix of adjacency also provides the upper and lower bounds for Laplacian energy.
These are used to define the Laplacian energies of intuitionistic fuzzy rough graphs and the weight function of Laplacian
energy within these graphs. The intuitionistic fuzzy rough preference relation method is used to process the intuitionistic
fuzzy rough weighted average. This technique is applied in data visualizations, which make data understandable by displaying
it in a graphical or pictorial style. It supports decision-making and provides factual justification. This approach benefits any
field that needs creative methods for presenting large volumes of complex data. Modern computer graphics have significantly
influenced visualization.

Keywords: Laplacian energy (LE), intuitionistic fuzzy rough graph (IFRG), data visualization, and decision-making

1. Introduction

Graph theory, developed by Euler in 1736, is a versatile tool used in various disciplines, including geom-
etry, transportation, and engineering. Fuzzy sets and fuzzy logic were introduced by Zadeh in 1965 [32],
convey ambiguity and uncertainty, and are studied in various disciplines like medicine, management,
and artificial intelligence. A new degree, known as the degree of non-membership, was introduced to the
fuzzy sets idea by Atanassov [4] in 1986 to resolve the ambiguity and uncertainty around the membership
degree. Rosenfeld [25] pioneered fuzzy graphs, a concept first introduced by Kaufmann [17] in 1973. He
proposed fuzzy relations and developed the basic framework of fuzzy graphs. Atanassov [3] is credited
with the development of intuitionistic fuzzy graphs and fuzzy relations.
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Jamil et al. [16] uses Sombor indices to study intuitionistic fuzzy graphs, which are generalizations of
fuzzy graphs, to assess vaccination centres during the pandemic, highlighting their practical implications
and efficiency. Pawlak’s [21] rough set theory is considered innovative in soft processing tools as it
uniquely addresses ambiguity. Rough set theory uses lower and upper approximation ideas to extract
data from systems of data and represent it as decision rules, addressing ambiguity in the universe. In
Chakrabarty et al. [7], the fuzziness of imperfect sets was explored. The concept of a fuzzy rough
set [11] has been developed to enhance decision-making efficiency. This paper [14] explores rough
graphs for uncertainty problems, class connections, subgraphs, weighted rough graphs, and an algorithm
for exploring class optimal trees in weighted rough graphs.Akram and Arshad [1] introduced fuzzy rough
graphs with application.

Intuitionistic fuzzy rough sets were described by Cornelis et al. [9]. The intuitionistic fuzzy rough
sets model based on operators was investigated by Xu et al. [31]. Types of intuitionistic fuzzy rough
approximation operations are studied by Zhou and Wu [35], while Haq et al. [13] tackle semantic issues
with incomplete information by classifying types, proposing a fuzzy decision table, and developing rule
extraction methods. Zhang and Zhu [34] developed three asymmetric models for resolving uncertain
problems in an intuitionistic fuzzy environment, combining traditional PROMETHEE and TOPSIS pro-
cedures, demonstrating their effectiveness. Tiwari and Lohani [28] introduce a novel Interval-valued in-
tuitionistic fuzzy rough set (IVIFRS) system for conflict analysis in decision-making, utilizing rough set
and interval-valued intuitionistic fuzzy set theories to measure disputes and identify conflicting attributes.
Hussain et al. [15] introduce a TOPSIS method utilizing Dombi operations for aggregating averaging and
geometric operators, specifically for MCGDM, specifically designed for diagnosing severe COVID-19
patients. With an emphasis on fuzzy preference relations for effective alternative assessment, comparison,
selection, and ordering, Borzecka [6] investigates fuzzy multi-criteria decision-making utilizing Zadeh’s
linguistic method. In order to compare criterion significance, prove compositional qualities and novel
relational features, provide consistent choices, and rank options, Peneva and Popchev [22] investigates
the weighted aggregation of fuzzy preference relations for decision-making issues.

Akram et al. [19, 33] introduced several innovative ideas in intuitionistic fuzzy rough graphs for
decision-making. This [2] monograph explores hybrid models, specifically fuzzy digraphs, for complex
problem-solving, highlighting their applications in decision-making and overcoming the uncertainty is-
sues of traditional methods. Mahmood et al. [18] and Mazarbhuiya and Shenify [20] present innovative
techniques for precise disease diagnosis and anomaly detection, combining rough set theory and intu-
itionistic fuzzy set theory for high accuracy rates. Tiwari [29] introduces a novel intuitionistic fuzzy
(IF)-assisted mutual information concept that effectively handles noise, uncertainty, and vagueness in
real-valued datasets, improving phospholipids positive molecule prediction. Salamat et al. [26] describe
the utilization of intuitionistic fuzzy sets and rough sets in informal computing for sparse data, aiming
for accuracy, accessibility, and cost-effectiveness.

Gutman introduced the concept of graph energy in chemistry, discovering lower and upper bounds
on the total electron energy of certain molecules. Chemistry’s relationship between molecular graph en-
ergy and overall electron energy is crucial, as a graph with n nodes has energy 2(n − 1), while a graph
with separated vertices has energy zero. Gutman and Zhou [12] defined the Laplacian energy (LE) of
a graph as the sum of the absolute values of discrepancies between the average vertex degree and its
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Laplacian eigenvalues. Rahimi Sharbaf and Fayazi [24] defined a fuzzy graph’s Laplacian energy. Basha
and Kartheek [5] generalised the Laplacian energy of an intuitionistic fuzzy graph from the Laplacian
energy of a fuzzy graph. Poonia and Bajaj [23] introduce a decision-making methodology for ranking
alternatives in fuzzy graphs or directed graphs for hydropower plant site selection, analyzing its original-
ity, comparative remarks, advantageous features, and limitations. Sarkar introduced advanced software
to the pharmaceutical industry for tasks such as record-keeping, quality control, and clinical trial data
management [27]. Dave et al. provide a concise discussion on data visualization, highlighting various
tools and techniques for effectively communicating insights [10].

1.1. Challenges and Motivation

Based on the overhead review, it can be concluded that an intuitionistic fuzzy rough graph (IFRG) aims
to provide a reliable and adaptable mathematical framework for analyzing systems under imprecision
and uncertainty in practical applications. IFRGs are also often used to reflect uncertainty in decision
problems. Therefore, combinations of this tool with multi-criteria decision-making (MCDM) methods
are continuously being developed. Due to the difficulty of choosing the proper MCDM techniques,
further work on their development should be carried out. Moreover, a frequently addressed issue in
IFRGs is the aggregation of expert knowledge. Numerous aggregation operators need to be continuously
investigated.
Given the above constraints associated with IFRGs, the motivation of this study is as follows:
1. There is a lack of comparative analysis between the results obtained from IFRGs in some works;
2. Specific terms concentrate on a specific purpose that combines domain expertise;
3. Works considering IFRGs in real-life problems are missing;
4. Few studies consider using MCDM techniques in conjunction with IFRGs.

1.2. Contributions and Novelties

This paper focuses on using the Laplacian energy of an intuitionistic fuzzy rough graph approach in a data
visualization problem. Laplacian energy is used to determine decision weights based on decision-maker’s
preferences. Three decision-makers were involved in the whole process and presented their strategies
using intuitionistic fuzzy rough graph. Then, evaluate the aggregated preferences of the decision-makers.
These preferences were also aggregated into four functions.

1.3. Framework of the study

In the research paper, organized as follows: Section 2 contains fundamental concepts related to intu-
itionistic fuzzy rough graphs. In Section 3, we describe an intuitionistic fuzzy rough graph ’s Laplacian
energy with example. In Section 4, the lower and upper bounds for an intuitionistic fuzzy rough graph’s
Laplacian energy are also determined by its properties. The Laplacian energy of an intuitionistic fuzzy
rough digraph is described in Section 5. Data visualization serves as a real-world example, and we use
a comparison study to demonstrate these concepts in Section 6. Finally, Section 7 presents conclusions
and future research directions.
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2. Preliminaries

Definition 1. [1] Considering that F is an ordered tuple (Pi, PiR,Qi, QiS), a non-empty set with a
fuzzy rough graph of G.
1. Pi denotes a fuzzy relation to F ,
2. Qi denotes a fuzzy relation to D ⊆ F × F ,
3. PiR =

(
PiR,PiR

)
denotes a fuzzy rough set to F ,

4. QiS =
(
QiS,QiS

)
denotes a fuzzy rough relation to F .

5. Therefore,G =
((
PiR,PiR

)
,
(
QiS,QiS

))
are lower and upper approximations on fuzzy rough graphs

of G, ∀ c, d ∈ F .(
QiS

)
(cd) ≤ min

{(
PiR

)
(c) ,

(
PiR

)
(d)
}
,
(
QiS

)
(cd) ≤ min

{(
PiR

)
(c) ,

(
PiR

)
(d)
}
.

Definition 2. [2] A four-ordered tuple (Xi, XiU, Yi, YiV ) is an intuitionistic fuzzy rough graph G on
a nonempty set F .
1. Xi represents an intuitionistic fuzzy relation to F ,
2. Yi represents an intuitionistic fuzzy relation to D ⊆ F × F ,
3. XiU =

(
XiU,XiU

)
represents an intuitionistic fuzzy rough set to F ,

4. YiV =
(
YiV, YiV

)
represents an intuitionistic fuzzy rough set to F .

5. Thus G =
(
G,G

)
= (XiU, YiV ) is an intuitionistic fuzzy rough graph. Here G =

(
XiU,XiU

)
and G =(

YiV, YiV
)

are lower and upper approximations of the intuitionistic fuzzy rough graph of G, ∀ l, m ∈ F .(
YiV

)+
(lm) ≤ min

{(
XiU

)+
(l),

(
XiU

)+
(m)

}
,
(
YiV

)−
(lm) ≤ max

{(
XiU

)−
(l),

(
XiU

)−
(m)

}
,

(
YiV

)+
(lm) ≤ min

{(
XiU

)+
(l),

(
XiU

)+
(m)

}
,
(
YiV

)−
(lm) ≤ max

{(
XiU

)−
(l),

(
XiU

)−
(m)

}
.

3. Laplacian energy of an intuitionistic fuzzy rough graph

Definition 3. The matrix of adjacency A(ξ) = (A (µN (pipj)) , A (νN (pipj))) of an IFRG ξ =
(
ξ, ξ
)

=
(M,N) is defined as a square matrix A(ξ) = [aij], where aij = (µN (pipj) , νN (pipj)) .

Here, µN(pipj), νN(pipj) represent the degree of the relationship and degree of non-relationship between
pi and pj , respectively.

Definition 4. Consider pi as a vertex of the intuitionistic fuzzy rough graph ξ = (ξ, ξ) = (M,N). The
degree of u is denoted as dξ(pi) =

∑
pipj∈E(ξ)

µ (pipj).

Definition 5. Let ξ = (ξ, ξ) = (M,N) be an IFRG on n vertices. The degree matrix,
D(ξ) = (D(µN(pipj)), D(νN(pipj))) = [dij], of ξ is a n× n diagonal matrix defined as:

dij =

{
dξ(pi) if i = j;

0 otherwise.

Definition 6. The Laplacian matrix of an IFRG ξ = (ξ, ξ) = (M,N) is defined as
L(ξ) = (L(µN(pipj)), L(νN(pipj))) = D(ξ) − A(ξ), where A(ξ) is an adjacency matrix and D(ξ) is a
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degree matrix of an IFRG ξ.

Definition 7. The Laplacian matrix of spectrum of an IFRG L(ξ) is denoted by (RL, SL), here RL =
L(µN(pipj)) and SL = L(νN(pipj)) are the sets of Laplacian eigenvalues.

Definition 8. The Laplacian energy of an IFRG ξ = (ξ, ξ) = (M,N) is defined as:

LE(ξ) = (LE(µN(pipj)), LE(νN(pipj))) =

(
n∑
i=1

∣∣ρi∣∣ , n∑
i=1

∣∣σi∣∣) ,
LE(ξ) = (LE(µN(pipj)), LE(µN(pipj))) =

(
n∑
i=1

|ρi| ,
n∑
i=1

|σi|

)
.

Here:

ρi = φi −
2

∑
1≤i<j≤n

µN(pipj)

n
, σi = ψi −

2
∑

1≤i<j≤n
νN(pipj)

n
,

ρi = φi −
2

∑
1≤i<j≤n

µN (pipj)

n
, σi = ψi −

2
∑

1≤i<j≤n
νN (pipj)

n
.

Definition 9. If the weight wr =
(
wr, wr

)
of a wide range of Laplacian energy of an intuitionistic fuzzy

rough graph is calculated using the formula below.
For lower,

wr =
((
wµ

)
r
,
(
wν
)
r

)
=

LE
((
Dµ

)
r

)
S∑
i=1

LE
(
Dµ

)
i

,
LE

((
Dν

)
r

)
S∑
i=1

LE
(
Dν

)
i

 ,

For upper,

wr =
(
(wµ)r , (wν)r

)
=

 LE
((
Dµ

)
r

)
S∑
i=1

LE
(
Dµ

)
i

,
LE

((
Dν

)
r

)
S∑
i=1

LE
(
Dν

)
i

 ,

r = 1, 2, . . . , s.

Example 1. Let a graph G = (V,E). where V = {p1, p2, p3, p4, p5} and
E = {p1p2, p2p3, p3p4, p4p5, p5p1, p1p3, p1p4, p2p4, p2p5}. Let ξ = (ξ, ξ) = (M,N) be an IFRG on V as
show in Figure (1).

The adjacency matrix, degree matrix and Laplacian matrix of a lower IFRG shown in Figure (1a)) are
as follows:

A(ξ) =


(0.0, 0.0) (0.4, 0.2) (0.3, 0.2) (0.4, 0.2) (0.3, 0.2)

(0.4, 0.2) (0.0, 0.0) (0.3, 0.2) (0.4, 0.2) (0.3, 0.2)

(0.3, 0.2) (0.3, 0.2) (0.0, 0.0) (0.4, 0.1) (0.3, 0.2)

(0.4, 0.2) (0.4, 0.2) (0.4, 0.1) (0.0, 0.0) (0.3, 0.2)

(0.3, 0.2) (0.3, 0.2) (0.3, 0.2) (0.3, 0.2) (0.0, 0.0)


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a). Lower intuitionistic fuzzy rough graph b). Upper intuitionistic fuzzy rough graph

Figure 1. Intuitionistic fuzzy rough graph

D(ξ) =


(1.4, 0.8) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (1.4, 0.8) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (1.3, 0.7) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.5, 0.7) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.2, 0.8)



L(ξ) =


(1.4, 0.8) (−0.4,−0.2) (−0.3,−0.2) (−0.4,−0.2) (−0.3,−0.2)

(−0.4,−0.2) (1.4, 0.8) (−0.3,−0.2) (−0.4,−0.2) (−0.3,−0.2)
(−0.3,−0.2) (−0.3,−0.2) (1.3, 0.7) (−0.4,−0.1) (−0.3,−0.2)
(−0.4,−0.2) (−0.4,−0.2) (−0.4,−0.1) (1.5, 0.7) (−0.3,−0.2)
(−0.3,−0.2) (−0.3,−0.2) (−0.3,−0.2) (−0.3,−0.2) (1.2, 0.8)


The Laplacian spectrum and the Laplacian energy of a lower IFRG ξ

Laplacian Spec (µN(pipj)) = (0.0000, 1.5000, 1.6000, 1.8000, 1.9000),

Laplacian Spec (νN(pipj)) = (0.0000, 0.8000, 1.0000, 1.0000, 1.0000).

Therefore,

Laplacian Spec (ξ) = ((0, 0), (1.5000, 0.8000), (1.6000, 1.0000), (1.8000, 1.0000), (1.9000, 1.0000)).

Now,
LE(ξ) = (LE(µN(pipj)), LE(νN(pipj))) = (2.7200, 1.5200).

The adjacency matrix, degree matrix and Laplacian matrix of an upper IFRG shown in Figure (1b))
are as follows:
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A(ξ) =


(0.0, 0.0) (0.4, 0.0) (0.5, 0.0) (0.6, 0.0) (0.6, 0.0)

(0.4, 0.0) (0.0, 0.0) (0.4, 0.6) (0.5, 0.2) (0.5, 0.1)

(0.5, 0.0) (0.4, 0.6) (0.0, 0.0) (0.6, 0.0) (0.6, 0.0)

(0.6, 0.0) (0.5, 0.2) (0.6, 0.0) (0.0, 0.0) (0.5, 0.1)

(0.6, 0.0) (0.5, 0.1) (0.6, 0.0) (0.5, 0.1) (0.0, 0.0)



D(ξ) =


(2.1, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (1.8, 0.9) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (2.1, 0.6) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (2.2, 0.3) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (2.2, 0.2)



L(ξ) =


(2.1, 0.0) (−0.4,−0.0) (−0.5,−0.0) (−0.6,−0.0) (−0.6,−0.0)

(−0.4,−0.0) (1.8, 0.9) (−0.4,−0.6) (−0.5,−0.2) (−0.5,−0.1)
(−0.5,−0.0) (−0.4,−0.6) (2.1, 0.6) (−0.6,−0.0) (−0.6,−0.0)
(−0.6,−0.0) (−0.5,−0.2) (−0.6,−0.0) (2.2, 0.3) (−0.5,−0.1)
(−0.6,−0.0) (−0.5,−0.1) (−0.6,−0.0) (−0.5,−0.1) (2.2, 0.2)


The Laplacian spectrum and the Laplacian energy of an upper IFRG ξ

Laplacian Spec (µN(pipj)) = (0.0000, 2.2298, 2.6000, 2.7000, 2.8702),

Laplacian Spec (νN(pipj)) = (0.0000, 0.0000, 0.2284, 0.3766, 1.3950).

Therefore,

Laplacian Spec (ξ) = ((0, 0), (2.2298, 0.0000), (2.6000, 0.2284), (2.7000, 0.3766), (2.8702, 1.3950)).

Now,
LE(ξ) = (LE(µN(pipj)), LE(νN(pipj))) = (4.1600, 1.9900).

The Laplacian energy of an intuitionistic fuzzy rough graph is

LE(ξ) = (LE(ξ), LE(ξ)) = ((2.7200, 1.5200), (4.1600, 1.9900)).

4. Results

Theorem 1. Let ξ = (ξ, ξ) = (M,N) be an IFRG, and let L(ξ) be the Laplacian matrix ξ. If η1 ≥ η2 ≥
η3 ≥ · · · ≥ ηn and θ1 ≥ θ2 ≥ θ3 ≥ · · · ≥ θn are the eigenvalues of L(µN(pipj)) and L(νN(pipj)),
respectively, then:

(i)
n∑

i=1,ηi∈RL

ηi = 2
∑

1≤i<j≤n

µN(pipj);
n∑

i=1,θi∈SL

θi = 2
∑

1≤i<j≤n

νN(pipj).

(ii)
n∑

i=1,ηi∈RL

ηi
2 = 2

∑
1≤i<j≤n

(µN(pipj))
2 +

n∑
i=1

d2µN (pipj)
(pi) ;
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n∑
i=1,θi∈SL

θi
2 = 2

∑
1≤i<j≤n

(νN(pipj))
2 +

n∑
i=1

d2νN (pipj)
(pi).

Proof. (i) Since L(ξ) contains non-negative Laplacian eigenvalues and is a symmetric matrix, such
that:

n∑
i=1,ηi∈RL

ηi = tr(L(ξ)) =
n∑
i=1

dµN(pipj)
(pi) =2

∑
1≤i<j≤n

µN(pipj).

So,
n∑

i=1,ηi∈RL

ηi = 2
∑

1≤i<j≤n

µN(pipj).

Similarly, we have to prove
n∑

i=1,θi∈SL

θi = 2
∑

1≤i<j≤n

νN(pipj) .

(ii) According to the definition of a Laplacian matrix, we have:

L(µN(pipj)) =


dµN (pipj)(p1) −µN(p1p2) · · ·
−µN(p2p1) dµN (pipj)(p2) · · ·

...
−µN(pnp1)

...
−µN(pnp2)

. . .
. . .

−µN(p1pn)
−µN(p2pn)

...
dµN (pipj)(pn)


According to the trace properties of a matrix, we have:

tr((L (µN(pipj)))
2) =

n∑
i=1,ηi∈RL

η2i .

Where:

tr((L (µN(pipj)))
2) = (d2µN(pipj)

(p1) + µ2
N(p1p2) + · · · + µ2

N(p1pn)) + (µ2
N(p2p1) + d2µN(pipj)

(p2) +

· · · + µ2
N(p2pn)) + · · · + ( (µ2

N(pnp1) + µ2
N(pnp2) + · · · + d2µN(pipj)

(pn)). = 2
∑

1≤i<j≤n
(µN(pipj))

2 +

n∑
i=1

d2µN (pipj)
(pi).

Therefore,
n∑

i=1,ηi∈RL

ηi
2 = 2

∑
1≤i<j≤n

(µN(pipj))
2 +

n∑
i=1

d2µN (pipj)
(pi),

Likewise, we have to prove that

n∑
i=1,θi∈SL

θi
2 = 2

∑
1≤i<j≤n

(νN(pipj))
2 +

n∑
i=1

d2νN (pipj)
(pi).

�

Theorem 2. Let ξ =(ξ, ξ) = (M,N) be an IFRG, and let L(ξ) be the Laplacian matrix of ξ. If η1 ≥
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η2 ≥ η3 ≥ · · · ≥ ηn and θ1 ≥ θ2 ≥ θ3 ≥ · · · ≥ θn are the eigenvalues of L(µN(pipj)) and L(νN(pipj))

respectively, and ρi = ηi −
2

∑
1≤i<j≤n

µN (pipj)

n
, σi = θi −

2
∑

1≤i<j≤n
νN (pipj)

n
, then:

(i)
n∑
i=1

ρi = 0,
n∑
i=1

σi = 0;

(ii)
n∑
i=1

ρi
2 = 2Pµ,

n∑
i=1

σi
2 = 2Pν .

Where:

Pµ =
∑

1≤i<j≤n

(µN (pipj))
2 +

1

2

n∑
i=1

dµN (pipj)(pi)−
2

∑
1≤i<j≤n

µN(pipj)

n

2

,

Pν =
∑

1≤i<j≤n

(νN (pipj))
2 +

1

2

n∑
i=1

dνN (pipj)(pi)−
2

∑
1≤i<j≤n

νN(pipj)

n

2

.

Example 1. Consider IFRG, ξ =(ξ, ξ) = (M,N) and V = {p1, p2, p3, p4, p5} as shown in Figure (1).
Then:

From theorem (2), we have lower approximations as follows:

(i)
5∑
i=1

ρi = 0,
5∑
i=1

σi = 0.

(ii)
5∑
i=1

ρi
2 = 2.4120 = 2(1.2060) = 2Pµ,

5∑
i=1

σi
2 = 0.7520 = 2(0.3760) = 2Pν .

From theorem (2), we have upper approximations as follows:

(i)
5∑
i=1

ρi = 0,
5∑
i=1

σi = 0.

(ii)
5∑
i=1

ρi2 = 5.6280 = 2(2.8140) = 2Pµ,
5∑
i=1

σi2 = 1.3400 = 2(0.6700) = 2Pν .

Theorem 3. Let ξ =(ξ, ξ) = (M,N) be an IFRG on n vertices, let L(ξ) = (L(µN(pipj)), L(νN(pipj)))

be the Laplacian matrix of ξ. Then,

(i)LE(µN(pipj)), LE(µN(pipj)) ≤

√√√√√2n
∑

1≤i<j≤n

(µN(pipj))
2 + n

n∑
i=1

dµN (pipj)(pi)−
2

∑
1≤i<j≤n

µN(pipj)

n

2

,
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(ii)LE(νN(pipj)), LE(νN(pipj)) ≤

√√√√√2n
∑

1≤i<j≤n

(νN(pipj))
2 + n

n∑
i=1

dνN (pipj)(pi)−
2

∑
1≤i<j≤n

νN(pipj)

n

2

.

Proof. Apply Cauchy-Schwarz inequality to n numbers (1, 1, . . . , 1) and (|ρ1| , |ρ2| , . . . , |ρn|),

n∑
i=1

|ρi| ≤
√
n

√√√√ n∑
i=1

|ρi|2

LE(µN(pipj)) ≤
√
n
√
2Pµ =

√
2nPµ.

Since

Pµ =
∑

1≤i<j≤n

(µN(pipj))
2 +

1

2

n∑
i=1

dµN (pipj)(pi)−
2

∑
1≤i<j≤n

µN(pipj)

n

2

,

Therefore,

LE(µN(pipj)) ≤

√√√√√2n
∑

1≤i<j≤n

(µN(pipj))
2 + n

n∑
i=1

dµN (pipj)(pi)−
2

∑
1≤i<j≤n

µN(pipj)

n

2

.

Similarly, we have to prove LE(µN(pipj)), LE(νN(pipj)), LE(νN(pipj)). �

Example 2. Consider IFRG, ξ =(ξ, ξ) = (M,N) and V = {p1, p2, p3, p4, p5} as shown in Figure (1).
Then:

From theorem (3), we have a lower approximation as follows:

LE(µN(pipj)) ≤
√

2(5)(1.1800) + 5(0.0520) implies 2.7200 ≤ 3.4728.

LE(νN(pipj)) ≤
√

2(5)(0.3700) + 5(0.0120) implies 1.5200 ≤ 1.9391.

From theorem (3), we have an upper approximation as follows:

LE(µN(pipj)) ≤
√

2(5)(2.7600) + 5(0.1080) implies 4.1600 ≤ 5.3047.

LE(νN(pipj)) ≤
√

2(5)(0.4200) + 5(0.5000) implies 1.9900 ≤ 2.5884.

Theorem 4. Let ξ =(ξ, ξ) = (M,N) be an IFRG on n vertices, let L(ξ) = (L(µN(pipj)), L(νN(pipj)))

be the Laplacian matrix of ξ. Then:

(i)LE(µN(pipj)), LE(µN(pipj)) ≥ 2

√√√√√ ∑
1≤i<j≤n

(µN(pipj))
2 +

1

2

n∑
i=1

dµN (pipj)(pi)−
2

∑
1≤i<j≤n

µN(pipj)

n

2

,
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(ii)LE(νN(pipj)), LE(νN(pipj)) ≥ 2

√√√√√ ∑
1≤i<j≤n

(νN(pipj))
2 +

1

2

n∑
i=1

dνN (pipj)(pi)−
2

∑
1≤i<j≤n

νN(pipj)

n

2

.

Proof. (
n∑
i=1

|ρi|

)2

=
n∑
i=1

|ρi|2 + 2
∑

1≤i<j≤n

|ρi| |ρi| ≥ 4Pµ

LE(µN(pipj)) ≥ 2
√
Pµ

Since

Pµ =
∑

1≤i<j≤n

(µN(pipj))
2 +

1

2

n∑
i=1

dµN (pipj)(pi)−
2

∑
1≤i<j≤n

µN(pipj)

n

2

.

Therefore,

LE(µN(pipj)) ≥ 2

√√√√√ ∑
1≤i<j≤n

(µN(pipj))
2 +

1

2

n∑
i=1

dµN (pipj)(pi)−
2

∑
1≤i<j≤n

µN(pipj)

n

2

.

Similarly, we have to show that LE(µN(pipj)), LE(νN(pipj)), LE(νN(pipj)). �

Example 3. Consider IFRG, ξ =(ξ, ξ) = (M,N) and V = {p1, p2, p3, p4, p5} as shown in Figure (1).
Then:

From theorem (4), we have lower approximations as follows:

LE(µN(pipj)) ≥ 2

√
1.1800 +

1

2
(0.0520) implies 2.7200 ≥ 2.1964.

LE(νN(pipj)) ≥ 2

√
0.3700 +

1

2
(0.0120) implies 1.5200 ≥ 1.2264.

From theorem (4), we have upper approximations as follows:

LE(µN(pipj)) ≥ 2

√
2.7600 +

1

2
(0.1080) implies 4.1600 ≥ 3.3550.

LE(νN(pipj)) ≥ 2

√
0.4200 +

1

2
(0.5000) implies 1.9900 ≥ 1.6371.

Theorem 5. Let ξ =(ξ, ξ) = (M,N) be an IFRG on n vertices, and letL(ξ) = (L(µN(pipj)), L(νN(pipj)))
be the Laplacian matrix of ξ. Then:

(i)LE(µN (pipj)), LE(µN (pipj)) ≤ |ρ1|+

√√√√√√(n− 1)

2
∑

1≤i<j≤n

(µN (pipj))
2 +

n∑
i=1

dµN (pipj)(pi)−
2

∑
1≤i<j≤n

µN (pipj)

n


2

− ρ21

,

(ii)LE(νN (pipj)), LE(νN (pipj)) ≤ |σ1|+

√√√√√√(n− 1)

2
∑

1≤i<j≤n

(νN (pipj))
2 +

n∑
i=1

dνN (pipj)(pi)−
2

∑
1≤i<j≤n

νN (pipj)

n


2

− σ2
1

.
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Proof. Apply Cauchy-Schwarz inequality to (1, 1, . . . , 1) and (|ρ1| , |ρ2| , . . . , |ρn|), we get:

n∑
i=1

|ρi| ≤

√√√√n
n∑
i=1

|ρi|2

n∑
i=2

|ρi| ≤

√√√√(n− 1)
n∑
i=2

|ρi|2

LE(µN(pipj)) ≤ |ρ1|+
√

(n− 1)(2Pµ − ρ21)

Since,

Pµ =
∑

1≤i<j≤n

(µN (pipj))
2 +

1

2

n∑
i=1

dµN (pipj) (pi)−
2

∑
1≤i<j≤n

µN (pipj)

n

2

.

Therefore,

LE(µN (pipj)) ≤ |ρ1|+

√√√√√√(n− 1)

2
∑

1≤i<j≤n

(µN (pipj))
2 +

n∑
i=1

dµN (pipj)(pi)−
2

∑
1≤i<j≤n

µN (pipj)

n


2

− ρ21

.

Similarly, we have to prove LE(µN(pipj)), LE(νN(pipj)), LE(νN(pipj)). �

Example 4. Consider IFRG, ξ =(ξ, ξ) = (M,N) and V = {p1, p2, p3, p4, p5} as shown in Figure (1).
Then:

From theorem (5), we have a lower approximation bound as follows:

LE(µN(pipj)) ≤ 1.36 +
√
(5− 1)(2.3600 + 0.0520− 1.8496) implies 2.7200 ≤ 2.8599.

LE(νN(pipj)) ≤ 0.76 +
√

(5− 1)(0.7400 + 0.0120− 0.5776) implies 1.5200 ≤ 1.5952.

From theorem (5), we have an upper approximation bound as follows:

LE(µN(pipj)) ≤ 2.08 +
√
(5− 1)(5.5200 + 0.1080− 4.3264) implies 4.1600 ≤ 4.3618.

LE(νN(pipj)) ≤ 0.40 +
√

(5− 1)(0.8400 + 0.5000− 0.1600) implies 1.9900 ≤ 2.5726.

Theorem 6. If the IFRG ξ =(ξ, ξ) = (M,N) is regular, then:

(i)LE(µN(pipj)), LE(µN(pipj)) ≤ |ρ1|+

√√√√(n− 1)

(
2
∑

1≤i<j≤n

(µN(pipj))
2 − ρ2i

)
,

(ii)LE(νN(pipj)), LE(νN(pipj)) ≤ |σ1|+

√√√√(n− 1)

(
2
∑

1≤i<j≤n

(νN(pipj))
2 − σ2

i

)
.

Proof. Let ξ be a regular intuitionistic fuzzy rough graph and dµN (pipj)(pi) =
2

∑
1≤i<j≤n

µN (pipj)

n
.
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Substitute this value in the theorem (5), and we get

LE(µN(pipj)) ≤ |ρ1|+

√√√√(n− 1)

(
2
∑

1≤i<j≤n

(µN(pipj))
2 − ρ2i

)
.

Similarly, we have to show that LE(µN(pipj)), LE(νN(pipj)), LE(νN(pipj)). �

Example 5. Consider IFRG, ξ =(ξ, ξ) = (M,N) and V = {p1, p2, p3, p4, p5} as shown in Figure (1).
Then:

From theorem (6), we have lower approximations as follows:

LE(µN(pipj)) ≤ 1.36 +
√

(5− 1)(2.3600− 1.8496) implies 2.7200 ≤ 2.7888.

LE(νN(pipj)) ≤ 0.76 +
√

(5− 1)(0.7400− 0.5776) implies 1.5200 ≤ 1.5660.

From theorem (6), we have upper approximations as follows:

LE(µN(pipj)) ≤ 2.08 +
√

(5− 1)(5.5200− 4.3264) implies 4.1600 ≤ 4.2650.

LE(νN(pipj)) ≤ 0.40 +
√

(5− 1)(0.8400− 0.1600) implies 1.9900 ≤ 2.0492.

Their Figure (2) represent the lower and upper approximation of Laplacian energy of membership and
non-membership of lower bound and upper bound of an intuitionistic fuzzy rough graph.
For lower approximation membership of Laplacian energy = 2.7200. its lower bound = 2.1964 and upper
bound = 3.4728.
For lower approximation non-membership of Laplacian energy = 1.5200. its lower bound = 1.2264 and
upper bound = 1.9391.
For upper approximation membership of Laplacian energy = 4.1600. its lower bound = 3.3550 and upper
bound = 5.3047.
For upper approximation non-membership of Laplacian energy = 1.9900. its lower bound = 1.6371 and
upper bound = 2.5884.

5. Laplacian energy of intuitionistic fuzzy rough digraph

Definition 10. Let ξ = (ξ, ξ) = (M, ~N) be an intuitionistic fuzzy rough digraph (IFRDG) on n vertices.
The out-degree matrix, Dout(ξ) = (D(µ ~N(pipj)), D(ν ~N(pipj)) = [dij] of ξ is a n × n diagonal matrix

defined as: dij =

{
doutξ (pi) if i = j;

0 otherwise.

Definition 11. The Laplacian matrix of an IFRDG ξ = (ξ, ξ) = (M, ~N) is defined as
L(ξ) = (L(µ ~N(pipj)), L(ν ~N(pipj)) = Dout(ξ)− A(ξ), where A(ξ) is an adjacency matrix and Dout(ξ) is
an out degree matrix of an IFRDG of D.
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Figure 2. Laplacian energy of intuitionistic fuzzy rough graph

Definition 12. The Laplacian matrix of spectrum of an IFRG L(ξ) is denoted by (RL, SL), here RL =
L(µ ~N(pipj)) and SL = L(ν ~N(pipj)) are the sets of Laplacian eigenvalues.

Definition 13. The Laplacian energy of an IFRG ξ = (ξ, ξ) = (M, ~N) is defined as:

LE(ξ) = (LE(µ ~N(pipj)), LE(µ ~N(pipj))) =

(
n∑
i=1

∣∣ρi∣∣ , n∑
i=1

∣∣σi∣∣) ,
LE(ξ) = (LE(µ ~N(pipj)), LE(µ ~N(pipj))) =

(
n∑
i=1

|ρi| ,
n∑
i=1

|σi|

)
.

Here:

ρi = φi −
2

∑
1≤i<j≤n

µ ~N(pipj)

n
, σi = ψi −

2
∑

1≤i<j≤n
ν ~N(pipj)

n
,

ρi = φi −
2

∑
1≤i<j≤n

µ ~N(pipj)

n
, σi = ψi −

2
∑

1≤i<j≤n
ν ~N(pipj)

n
.

Example 1. Consider an IFRDG ξ = (ξ, ξ) = (M, ~N) on V = {p1, p2, p3, p4, p5} and
~E = {p1p2, p2p5, p5p4, p4p3, p3p1}, as show in Figure (3).

From Figure (3a)), the adjacency matrix, out degree matrix and Laplacian matrix of the lower IFRDG
are as follows:

A(ξ) =


(0.0, 0.0) (0.1, 0.2) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.1, 0.1)

(0.1, 0.2) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.1, 0.1) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.1, 0.1) (0.0, 0.0)


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a). Lower intuitionistic fuzzy rough digraph b). Upper intuitionistic fuzzy rough digraph

Figure 3. Intuitionistic fuzzy rough digraph

Dout(ξ) =


(0.1, 0.2) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.1, 0.1) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.1, 0.2) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.1, 0.1) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.1, 0.1)



L(ξ) =


(0.1, 0.2) (−0.1,−0.2) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.1, 0.1) (0.0, 0.0) (0.0, 0.0) (−0.1,−0.1)
(−0.1,−0.2) (0.0, 0.0) (0.1, 0.2) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (−0.1,−0.1) (0.1, 0.1) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (−0.1,−0.1) (0.1, 0.1)


The Laplacian spectrum and the Laplacian energy of an IFRDG for lower are shown in Figure (3a)),

as follows:

Laplacian Spec (µ ~N(pipj)) = (0.0000, 0.0691+0.0951i, 0.0691−0.0951i, 0.1809+0.0588i, 0.1809−0.0588i),

Laplacian Spec (ν ~N(pipj)) = (0.2545+0.0716i, 0.2545−0.0716i, 0.0955+0.1174i, 0.0955−0.1174i, 0.0000).

The calculation of the components for Laplacian energy of an intuitionistic fuzzy rough digraph for lower
ξ is LE(ξ) = (0.5000, 0.6612).

From Figure (3b)), the adjacency matrix, out degree and Laplacian matrix of the upper IFRDG are as
follows:
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A(ξ) =


(0.0, 0.0) (0.3, 0.1) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.1)

(0.3, 0.1) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.3, 0.1) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.1) (0.0, 0.0)



Dout(ξ) =


(0.3, 0.1) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.2, 0.1) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.3, 0.1) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.3, 0.1) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.1)



L(ξ) =


(0.3, 0.1) (−0.3,−0.1) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.2, 0.1) (0.0, 0.0) (0.0, 0.0) (−0.2,−0.1)
(−0.3,−0.1) (0.0, 0.0) (0.3, 0.1) (0.0, 0.0) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (−0.3,−0.1) (0.3, 0.1) (0.0, 0.0)

(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (−0.2,−0.1) (0.2, 0.1)


The Laplacian spectrum and the Laplacian energy of an IFRDG for upper are shown in Figure (3b)),

as follows:

Laplacian Spec (µ ~N(pipj)) = (0.4701+0.1474i, 0.4701−0.1474i, 0.1799+0.2380i, 0.1799−0.2380i, 0.0000),

Laplacian Spec (ν ~N(pipj)) = (0.0000, 0.0691+0.0951i, 0.0691−0.0951i, 0.1809+0.0588i, 0.1809−0.0588i).

The calculation of the components for Laplacian energy of an intuitionistic fuzzy rough digraph for upper
ξ is LE(ξ) = (1.2754, 0.5000).

Hence, the Laplacian energy of an intuitionistic fuzzy rough digraph ξ is

LE(ξ) = (LE(ξ), LE(ξ)) = ((0.5000, 0.6612), (1.2754, 0.5000)).

5.1. Intuitionistic fuzzy rough preference relation (IFRPR)

In this part, we present a group decision-making method with intuitionistic fuzzy rough preference rela-
tion. Let C = {c1, c2, . . . , cn} be a set of n alternatives, which is evaluated by a set e = {e1, e2, . . . , em}
of decision-makers. Without loss of the generality, assume that the measures e1, e2, . . . , ek are an ad-
vantage, while rules ek+1, ek+2, . . . , em are a disadvantage. Furthermore, let Rk =

(
r
(k)
ij

)
n×n

be an

intuitionistic fuzzy rough preference relation, where k = 1, 2, . . . , p. Weight wr are assigned to the mea-

surements er so that
n∑
r=1

wr = 1. It is necessary to select the most optimal alternative.

For IFRGs, the cumulative grid may be obtained by intuitionistic fuzzy rough weighted averaging
(IFRWA) [8], as shown below.
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IFRWA
(
R

(1)
ij , R

(2)
ij , . . . , R

(n)
ij

)
=

(
1−

s∏
r=1

(
1− µ(r)

jk

)wr
,

s∏
r=1

(
ν
(r)
jk

)wr)
.

Where wr be the weight function, R(1)
ij , R

(2)
ij , . . . , R

(n)
ij be an individual intuitionistic fuzzy rough pref-

erence relation (IFRPR), µjk be the membership value, νjk be the non-membership value.
Here wr are weight of n number of Laplacian energies calculating by using following formula.
For lower,

wr =
((
wµ

)
r
,
(
wν
)
r

)
=

LE
((
Dµ

)
r

)
S∑
i=1

LE
(
Dµ

)
i

,
LE

((
Dν

)
r

)
S∑
i=1

LE
(
Dν

)
i

 ,

For upper,

wr =
(
(wµ)r , (wν)r

)
=

 LE
((
Dµ

)
r

)
S∑
i=1

LE
(
Dµ

)
i

,
LE

((
Dµ

)
r

)
S∑
i=1

LE
(
Dν

)
i

 ,

r = 1, 2, . . . , s.

5.2. Algorithm

The algorithm for the selection of the most significant data visualization.

INPUT: A set of alternatives C = {c1, c2, . . . , cn}, a set of experts e = {e1, e2, . . . , em} and build of
intuitionistic fuzzy rough preference relation for lower and upper of Rk =

(
r
(k)
ij

)
n×n

for each expert k.

OUTPUT: The process of selecting the best visualization.

1. Start

2. Determine the Laplacian energy of every IFRDG Ck, k = 1, 2, . . . , n.

For lower, LE
(
ξ
)
=

∣∣∣∣∣∣φi −
2

∑
1≤i<j≤n

µ ~N (pipj)

n

∣∣∣∣∣∣ , LE (ξ) =
∣∣∣∣∣∣ψi −

2
∑

1≤i<j≤n
ν ~N (pipj)

n

∣∣∣∣∣∣ ,
For upper, LE(ξ) =

∣∣∣∣∣∣φi −
2

∑
1≤i<j≤n

µ ~N(pipj)

n

∣∣∣∣∣∣ , LE(ξ) =
∣∣∣∣∣∣ψi −

2
∑

1≤i<j≤n
ν ~N(pipj)

n

∣∣∣∣∣∣ .
(1)

3. Compute the weight vector for specialists based on the Laplacian energy of IFRDG, by utilizing
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For lower, wr =
((
wµ

)
r
,
(
wν
)
r

)
=

LE
((
Dµ

)
r

)
S∑
i=1

LE
(
Dµ

)
i

,
LE

((
Dν

)
r

)
S∑
i=1

LE
(
Dν

)
i

 ,

For upper, wr =
(
(wµ)r , (wν)r

)
=

 LE
((
Dµ

)
r

)
S∑
i=1

LE
(
Dµ

)
i

,
LE

((
Dν

)
r

)
S∑
i=1

LE
(
Dν

)
i

 .

r = 1, 2, . . . , s.

(2)

4. Compute the intuitionistic fuzzy rough weighted averaging by utilizing

IFRWA
(
R

(1)
ij , R

(2)
ij , . . . , R

(n)
ij

)
=

(
1−

s∏
r=1

(
1− µ(r)

jk

)wr
,

s∏
r=1

(
ν
(r)
jk

)wr)
. (3)

5. Utilize the IFRWA operator to fuse all the individuals IFRPRs Rk =
(
r
(k)
ij

)
n×n

(k = 1, 2, . . . , p)

into the collective IFRPR R = (rij)n×n .

6. Calculate their scores using the score function

sij = µij − νij. (4)

7. Determine the net degree of preference of visualization ci over the other schemes by utilizing:

σ (ci) =
n∑
r=1

wr

(
n∑

j=1,j 6=i

(
r
(r)
ij − r

(r)
ji

))
, i = 1, 2, . . . , n. (5)

8. Rank all the visualization ci (i = 1, 2, . . . , n) according to σ (ci) (i = 1, 2, . . . , n).

9. output the best data visualization.

10. Stop

6. Application of Laplacian energy from an IFRDG in decision-
making

Group decision-making is a crucial method for identifying the best option from finite alternatives, play-
ing a significant role in societal development and problem-solving.

This section contains, to demonstrate our proposed ideas of the intuitionistic fuzzy rough graph in
decision-making, we utilise a practical example: the design of a data visualization technique.
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6.1. The selection of data visualization for sales performance analysis

Study case: This section examines a case study involving the proposed Laplacian Energy of the IFRDG,
applied to a real-world problem of selecting data visualization techniques for sales performance analy-
sis. As mentioned in the introduction, data visualization for sales performance often presents a complex
challenge, necessitating the selection of the most reliable strategy from various options.

The preference relation technique is extensively used to rank alternatives, with decision-makers pro-
viding their preferences regarding the available alternatives or criteria. When the information in the
preference relation is expressed as intuitionistic fuzzy rough number (IFRNs), the concept of the intu-
itionistic fuzzy rough preference relation (IFRPR) can be redefined analogously.

Data visualization: Data visualization [10] may significantly improve communication and compre-
hension of data. When data is presented in numerical or textual representations, people may not instantly
see patterns, trends, or outliers. However, effective visualization approaches may help people do just
that. Visualizing data helps you comprehend and analyse it. By visualizing simplifies raw data in charts,
graphs, and maps, trends, patterns, and insights may be shown. Data visualization simplifies complicated
information, and clarifies results, making it crucial in corporate analysis and scientific investigation.

A company wants to analyze the sales performance of its products over the past year to make informed
decisions on marketing strategies, inventory management, and product development. By employing these
data visualization techniques, decision-makers can quickly and intuitively grasp the key insights from the
sales data, leading to more informed decisions regarding marketing strategies, inventory management,
and product development. There are four different data visualizations ci (i = 1, 2, 3, 4) to select from
c1, c2, c3, c4. Therefore, monthly sales data for each product category, regional sales breakdown, seasonal
trends, and promotions data, only the best of these would be chosen. To conduct the evaluation process
based on the opinions of three independently appointed experts (e)k, (k = 1, 2, 3). Their comparative
opinions, derived from their experience, were represented using intuitionistic fuzzy rough numbers. Ad-
ditionally, intuitionistic fuzzy rough preference relations were organized into matrices as the initial step
for selecting data visualization. With the proposed Laplacian energy of IFRDG utilizing these prefer-
ence relations, we offer an algorithm to solve the stated visualization problem, as illustrated in Figure (4)
below:

For lower approximation: The experts compare the involved factors among themselves and provide
the initial information for computing in the form of lower intuitionistic fuzzy rough reference relations.
These are represented as matrices Rk =

(
r
(k)
ij

)
4×4

(k = 1, 2, 3, . . . , p) as shown in Figure (5) and de-

scribed below:

R1 =


(0.0, 0.0) (0.1, 0.3) (0.1, 0.3) (0.1, 0.3)

(0.3, 0.3) (0.0, 0.0) (0.1, 0.3) (0.1, 0.3)

(0.1, 0.3) (0.2, 0.3) (0.0, 0.0) (0.1, 0.3)

(0.2, 0.3) (0.2, 0.3) (0.2, 0.3) (0.0, 0.0)


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Figure 4. The procedure of ranking the alternatives for decision-making assessment

R2 =


(0.0, 0.0) (0.4, 0.2) (0.3, 0.2) (0.3, 0.2)

(0.4, 0.2) (0.0, 0.0) (0.3, 0.2) (0.4, 0.2)

(0.3, 0.2) (0.3, 0.2) (0.0, 0.0) (0.4, 0.2)

(0.4, 0.2) (0.3, 0.2) (0.4, 0.1) (0.0, 0.0)



R3 =


(0.0, 0.0) (0.4, 0.0) (0.4, 0.3) (0.5, 0.2)

(0.6, 0.1) (0.0, 0.0) (0.4, 0.3) (0.4, 0.3)

(0.2, 0.1) (0.2, 0.1) (0.0, 0.0) (0.1, 0.6)

(0.4, 0.3) (0.5, 0.2) (0.3, 0.4) (0.0, 0.0)


The IFRDG for lower Ck corresponding to IFRPRs in matrices Rk, k = 1, 2, 3.

The Laplacian energy of each IFRDG for lower is calculated by using equation (1) as:

LE(R1) = (0.9000, 1.8000), LE(R2) = (2.6725, 1.1500), LE(R3) = (2.6985, 1.6191).
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a). G1 b). G2 c). G3

Figure 5. Intuitionistic fuzzy rough graph for lower

Then, the weight of each expert can be calculated by using equation (2) as:

w1 = (0.1435, 0.3940), w2 = (0.4262, 0.2517), w3 = (0.4303, 0.3544).

Hence, the experts weight vector ek k = 1, 2, 3 is calculated as:

w = ((0.1435, 0.3940), (0.4262, 0.2517), (0.4303, 0.3544)).

Utilize the aggregation operator to fuse all the individual IFRPRs Rk =
(
r
(k)
ij

)
4×4

(k = 1, 2, 3, 4) into the

collective IFRPR R = (rij)4×4 . Here, we apply the lower approximation of intuitionistic fuzzy rough
weighted averaging (IFRWA) operator [8] to fuse the individual lower IFRPR. Thus, we have by using
equation (3) as:

R =


(0.0000, 0.0000) (0.3641, 0.0000) (0.3209, 0.2709) (0.3721, 0.2346)

(0.4848, 0.1835) (0.0000, 0.0000) (0.3209, 0.2709) (0.3641, 0.2709)

(0.2314, 0.1835) (0.2443, 0.1835) (0.0000, 0.0000) (0.2428, 0.3463)

(0.3747, 0.2709) (0.3826, 0.2346) (0.3318, 0.2519) (0.0000, 0.0000)


Calculate their scores function by using equation (4) as:

sij =


0.0000 0.3641 0.0500 0.1375

0.3013 0.0000 0.0500 0.0932

0.0479 0.0608 0.0000 −0.1035
0.1038 0.1480 0.0799 0.0000


The net flow of ci [30], i.e., the net degree of preference of ci over the other schemes by using equa-

tion (5). Therefore, the net flows of the four schemes are:

σ (c1) = 0.0986, σ (c2) = −0.1284, σ (c3) = −0.1747, σ (c4) = 0.2045.

Which gives the ranking of c4 � c1 � c2 � c3. Thus, the best visualization is c4.

For upper approximation: The experts compare the involved factors among themselves and provide
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the initial information for computing in the form of upper intuitionistic fuzzy rough reference relations.
These are represented as matrices Rk =

(
r
(k)
ij

)
4×4

(k = 1, 2, 3, . . . , p) as shown in Figure (6) and de-

scribed below:

R1 =


(0.0, 0.0) (0.4, 0.1) (0.4, 0.1) (0.6, 0.1)

(0.6, 0.2) (0.0, 0.0) (0.5, 0.1) (0.5, 0.1)

(0.6, 0.1) (0.5, 0.2) (0.0, 0.0) (0.5, 0.1)

(0.6, 0.1) (0.5, 0.1) (0.6, 0.1) (0.0, 0.0)



R2 =


(0.0, 0.0) (0.4, 0.0) (0.5, 0.1) (0.6, 0.0)

(0.5, 0.0) (0.0, 0.0) (0.5, 0.3) (0.5, 0.2)

(0.6, 0.0) (0.5, 0.3) (0.0, 0.0) (0.6, 0.0)

(0.6, 0.1) (0.5, 0.1) (0.6, 0.1) (0.0, 0.0)



R3 =


(0.0, 0.0) (0.6, 0.2) (0.3, 0.3) (0.4, 0.1)

(0.7, 0.1) (0.0, 0.0) (0.3, 0.5) (0.4, 0.1)

(0.4, 0.5) (0.4, 0.5) (0.0, 0.0) (0.3, 0.5)

(0.4, 0.2) (0.4, 0.2) (0.2, 0.4) (0.0, 0.0)


The IFRDG for upper Ck corresponding to IFRPRs in matrices Rk, k = 1, 2, 3.

a). G1 b). G2 c). G3

Figure 6. Intuitionistic fuzzy rough graph for upper

The Laplacian energy of each IFRDG for upper is calculated by using equation (1) as:

LE(R1) = (3.1500, 0.7000), LE(R2) = (3.2000, 0.9168), LE(R3) = (2.4000, 2.0000).

Then, the weight of each expert can be calculated by using equation (2) as:

w1 = (0.3600, 0.1935), w2 = (0.3657, 0.2535), w3 = (0.2743, 0.5530).

Hence, the experts weight vector ek k = 1, 2, 3 is calculated as:

w = ((0.3600, 0.1935), (0.3657, 0.2535), (0.2743, 0.5530)).

Utilize the aggregation operator to fuse all the individual IFRPRs Rk =
(
r
(k)
ij

)
4×4

(k = 1, 2, 3, 4) into the

collective IFRPR R = (rij)4×4 . Here, we apply the lower approximation of intuitionistic fuzzy rough
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weighted averaging (IFRWA) operator [8] to fuse the individual upper IFRPR. Thus, we have by using
equation (3) as:

R =


(0.0000, 0.0000) (0.4632, 0.0000) (0.4145, 0.1836) (0.5529, 0.0000)

(0.5989, 0.0000) (0.0000, 0.0000) (0.4517, 0.3217) (0.4744, 0.1192)

(0.5529, 0.0000) (0.4744, 0.3679) (0.0000, 0.0000) (0.4946, 0.0000)

(0.5529, 0.1467) (0.4744, 0.1467) (0.5162, 0.2152) (0.0000, 0.0000)


Calculate their scores function by using equation (4) as:

sij =


0.0000 0.4632 0.2309 0.5529

0.5989 0.0000 0.1300 0.3552

0.5529 0.1065 0.0000 0.4946

0.4062 0.3277 0.3010 0.0000


The net flow of ci [30], i.e., the net degree of preference of ci over the other schemes by using equa-

tion (5). Therefore, the net flows of the four schemes are:

σ (c1) = −0.3110, σ (c2) = 0.1867, σ (c3) = 0.4921, σ (c4) = −0.3678.

Which gives the ranking of c3 � c2 � c1 � c4. Thus, the best visualization is c3.

6.2. Comparative Analysis

This section provides a comparative analysis of selected methods for evaluating data visualization, in-
cluding an intuitionistic fuzzy rough geometric aggregation function chosen for comparison. The aggre-
gation matrices used were R1, R2, R3 and the weights w1, w2, w3 as determined in equation (3) from the
previous section. The aggregation was performed using the following approaches:
Intuitionistic fuzzy rough geometric aggregation operator [8]:

IFRGA
(
R

(1)
ij , R

(2)
ij , . . . , R

(n)
ij

)
=

(
s∏
r=1

(
µ
(r)
jk

)wr
, 1−

s∏
r=1

(
1− ν(r)jk

)wr)
. (6)

After aggregating the matrices, the resulting matrices were evaluated using the net degree approach.
The evaluations for lower IFRG are σ (c1) = −0.1175, σ (c2) = −0.1497, σ (c3) = −0.2440, σ (c4) =

0.3194, ranking the alternatives as c4 � c1 � c2 � c3. For the upper IFRG, the evaluations were σ (c1) =
−0.1649, σ (c2) = −0.1641, σ (c3) = −0.0094, σ (c4) = −0.1798, ranking order c3 � c2 � c1 � c4.
Both aggregating orders are same order in lower and upper approximation.When the lower and upper
approximation order differ, the lower approximation order is considered the best because it provides a
precise approximation based on the decision criteria. As a result, alternative c4 was identified as the
optimal choice, while alternative c3 received the lowest rating and was ranked last. Thus, alternatives c1
and c2 have distinct rankings.

The study results clearly indicate that the developed technique, based on Laplacian energy, is more
flexible and reasonable for decision making analysis problems. In conclusion, our research introduces the
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concept of the Laplacian energy of an intuitionistic fuzzy rough graph and demonstrates its application in
decision-making. The findings contribute to the existing knowledge in uncertainty modelling and offer a
valuable framework for addressing complex problems across various domains.

7. Conclusion & scope for future work

Rough set theory is a mathematical method for handling ambiguous and incomplete data. Intuitionistic
fuzzy set theory addresses understanding and utilizing incomplete knowledge. Recent research suggests
that integrating these two concepts can create a more expressive and adaptable framework for represent-
ing and processing incomplete information in information systems.

This paper presents a study on evaluating strategies for data visualizations. Due to the current un-
certainties related to decision-makers’ preferences, the intuitionistic fuzzy rough graph was chosen. The
study employs the Laplacian energy of the intuitionistic fuzzy rough digraph and performs a compara-
tive analysis using two methods for evaluating alternative strategies and four functions for aggregating
intuitionistic fuzzy rough decision matrices. The results demonstrate the approach’s applicability to
real-world data visualization problems. The intuitionistic fuzzy rough digraph effectively captures the
decision-makers’ preferences, yielding credible and reliable results, unlike other directed graphs that do
not account for the degree of refusal.

From the study, it is evident that the intuitionistic fuzzy rough decision matrix aggregation functions
are effective. This research characterizes the Laplacian energy of an intuitionistic fuzzy rough graph us-
ing the adjacency matrix and calculates the lower and upper bounds on this energy. The Laplacian energy
of the intuitionistic fuzzy rough digraph is also discussed. Future work could extend these deliberations
to obtain the Laplacian energy of intuitionistic fuzzy rough hypergraphs, with appropriate comparative
analyses.
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