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Abstract

There is a large literature on agent-based models (ABMs) to study the diffusion of alternative fuel vehicles (AFVs). Potentially,
ABMs could be used to design policies that effectively promote AFVs. Unfortunately, ABMs have several drawbacks related
to their complexity - models that are too simple are unrealistic, and models that are too complicated are difficult to describe,
verify, and validate. Here we investigate what level of complexity is needed. We focus on the issue of heterogeneity because
it is one of the biggest advantages of ABMs, but also one of the main sources of complexity. We begin with a brief review of
ABMs for AFV diffusion. We then generalize an empirically grounded ABM of AFVs to analyze the role of different types
of heterogeneity related to individual characteristics and social network structure. We show that most of these heterogeneities
do not affect the outcome of the model. To facilitate replication of our results, we describe the model and its calibration to
empirical data in detail. We also provide a link to a public GitHub repository where the code files, empirical data, and scripts
uploaded to analyze the results.

Keywords: agent-based model, alternative fuel vehicles, battery electric vehicles, plug-in electric vehicles, hybrid electric
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1. Introduction

Transport is a major source of greenhouse gases and local air pollutants. The health, economic, and social
costs of local air pollution are significant, ranging from reduced life expectancy and increased infant
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mortality to far-reaching economic consequences such as job losses or reduced consumer spending [15,
54]. The European Low-Emission Mobility Strategy emphasizes the need to decarbonize the transport
sector and to reduce emissions in this sector, especially in urban areas.

The European Green Deal aims to reduce green house gas emissions by 90% by 2050. Moving to
more sustainable transport means putting users first and providing them with more affordable, accessible,
healthier, and cleaner alternatives [23]. A key goal is to significantly increase the use of alternative fuel
vehicles (AFVs). Among most popular alternatives for conventional cars running on petrol or diesel,
classic hybrid electric vehicles (HEVs), plug-in electric vehicles (PHEVs), and battery electric vehicles
(BEVs) or hydrogen fuel cell vehicles (HFCVs) are included [49]. While the AFV market share continues
to grow worldwide, its smooth diffusion faces many barriers, including a lack of sufficient charging
infrastructure, high prices, limited range of batteries, and security issues [24, 52, 57, 58, 89].

In order to accelerate diffusion and increase social acceptance and market share, certain political and
strategic actions are needed. This topic has been recently widely researched by means of various methods
such as an analysis of the market data [28, 41, 63, 65], stated preference methods, for example, discrete
choice experiments [11, 33, 34, 47, 53], or conjoint analysis [25, 46, 50, 95]. Most of these studies
investigate consumers’ preferences towards AFVs and explore the potential incentives and barriers of
further market grow.

Although these studies shed some significant light on identification of factors responsible for further
AFV market penetration, they do not allow us to study how social influence and various external factors,
like education, marketing campaigns, or political tools, can enhance the diffusion. For such a what-
if analysis, agent-based models (ABMs) seem to be a particularly useful tool. ABMs can be defined as
models where individuals or agents are described as unique and autonomous entities that usually interact
with each other and their environment locally [67]. They are often treated as a computational laboratory
because they allow us to simulate some changes at the macroscopic level as a result of the interactions
between the heterogeneous agents (e.g., consumers, households, producers, etc.) at the microscopic level
[81]. ABMs have been used in various aspects of marketing, e.g., consumer choices [48], supply-side
diffusion in industries [18], diffusion of innovation [20], etc. In this paper, we focus on the consumer
choices related to AFVs.

According to [22, 81], the best ABMs are based on real-world data sets, which allow us to derive
real-world agent attributes and calibrate the entire model setup. We want to emphasize that this should be
treated as one of the opinions in the world of agent-based modeling enthusiasts, rather than as a general
belief. Which type of model is best depends mainly on the purpose of the model. Simple, theoretical
ABMs are very useful for facilitating theory building, exploring general questions, serving as illustrative
examples and narratives, and discovering general rules about causal relationships [85]. On the other
hand, empirically based ABMs are better suited for case-specific analysis and decision support because
they can be tailored to specific problems and stakeholders. However, the problem is how to incorporate
empirical data into such models, in our case, ABMs of AFV diffusion. As recently noted, most of the
literature does not specify in detail how to incorporate individual user behavior into an ABM [29]. This
is a particularly relevant issue in the context of ABMs, as they are often criticized for not being a rigorous
research tool [9, 68].

One of the main problems associated with ABMs is the widespread lack of a sufficiently detailed
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model description to allow re-implementation and subsequent replication of results by other researchers
[31]. Another problem is the lack of rigorous sensitivity analysis of such models [9], i.e. what if the
empirical data used are inaccurate and our model is extremely sensitive to their change? Both of these
problems are directly related to the complexity of the model. For simpler models, both description and
sensitivity analysis are easier. On the other hand, simpler models may be unrealistic. Finding the optimal
level of complexity is a fundamental problem [32]. Therefore, the goal of this paper is to show how to
rigorously determine whether a given level of model complexity at the microscopic level (agents) adds
anything new to the model in the context of macroscopic results (level of adoption in society, market
share, etc.). We will focus on the issue of heterogeneity because the ability to account for heterogeneity
is one of the major advantages of ABM.

It is obvious that any social system, including the market for AFVs, is heterogeneous in many ways.
Each consumer has certain unique preferences. The social network of consumers is also heterogeneous.
But do these various heterogeneities affect the macroscopic behavior of the system? This question was
the direct inspiration for this work. We are not the first to ask this question. A systematic analysis of the
role of heterogeneity has been done previously for the SEIR (Susceptible-Exposed-Infected-Removed)
model [66]. However, to our knowledge, such a question has never been asked for ABMs of AFV
diffusion.

In our previous paper, we proposed an empirically grounded ABM of AFV diffusion [40]. All agents
in this model are identical, i.e. they have no individual characteristics. Furthermore, the model was
considered on the square lattice, meaning that each agent had exactly four neighbors. Thus, the system
was homogeneous in terms of agent characteristics and network structure. In this work, we generalize the
model so that we can analyze the role of different types of heterogeneity, such as individual susceptibility
to marketing, local and global social influence, or an individual driving pattern. We estimate the values of
all these individual characteristics based on survey responses previously used for conjoint analysis [50].
We also apply the model to several different networks, ranging from homogeneous to heterogeneous.
We systematically compare the homogeneous and heterogeneous versions of the model. As a result, we
determine which types of heterogeneity affect the model’s results.

The remainder of the paper is organized as follows. In Section 2, we briefly review the goals of
AFV diffusion ABMs and outline the obstacles that may hinder the achievement of these goals. In
Section 3, we describe possible sources of heterogeneity in ABMs and briefly review what types of
heterogeneity can be found in ABMs of AFV diffusion. In Section 4 we describe our model and the
calibration procedure in detail. We also provide a link to a public GitHub repository where the code files,
data, and the scripts used to analyze the results are uploaded. All this should facilitate the replication of
our results, which is a key of the scientific approach [31, 67]. In Section 5 we describe the results and
finally, we conclude our work in Section 6.

2. Purpose of agent-based modeling of AFV diffusion

ABMs of AFV diffusion have been already reviewed in several articles. For example, ABMs focusing on
market forecasts in the field of electric mobility have been reviewed in [2]. The comparison of various
research methods and their outcomes let the authors conclude that modeling of AFV market penetration
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rate should combine consumer surveys with modeling of producers’ decisions regarding the type and
amount of cars they want to supply as well as with modeling of governmental policies with its effect on
the supply side of the market. The review of Bustos & Turu (2013) classifies models according to their
spatial and temporal scale, agents’ attributes and behavior, and focus areas (e.g., market, planning and
operation, etc.) [13]. Next, Gnann & Ploetz (2015) reviewed combined models for market diffusion of
AFV and their refueling infrastructure [28]. The work of Zhang & Vorobeychik (2017) does not refer
directly to AFV diffusion models, but the outcomes of the analysis are valid for AFV market penetration
models. The authors pay main attention to various calibration and parameterization techniques used in
agent-based modeling of innovation diffusion. Finally, the empirically grounded ABMs of innovation
diffusion have been recently reviewed in [73] and [94]. The latter has categorized ABMs along two
dimensions: methodology and application. Therefore, we do not provide a regular review in this paper.
Instead, we focus on reviewing the purposes of ABMs of AFV diffusion (see also Tab. 1) and describing
the obstacles that may hinder the achievement of these goals.

Majority of ABMs explore AFV diffusion under various scenarios and measure the adoption rate at
the macro-level. Some studies investigate multiple categories of AFVs, such as HEVs, PHEVs, or BEVs
[40, 45], whereas others focus on PHEVs separately [17, 26] or together with BEVs [10, 28, 36, 46, 76]
or investigate BEVs specifically [16, 55, 60]. Most of the studies include also conventional vehicles
(CVs) in the trade-off that consumers face.

Such models simulate under various conditions whether agents decide to shift to alternative vehicles
or continue buying an ordinary (i.e., conventional) car [80]. In [80], an ABM is also used to explore the
effectiveness of policy options on the diffusion of vehicles fueled by natural gas (NGVs). At the same
time, the examination of fuel cell hydro vehicles (FCHVs) by means of ABMs is still rare [62, 96].

Sometimes the attention of researchers is focused not only on AFV diffusion, but on the development
of charging stations as a necessary part of the infrastructure needed for the successful diffusion of AFVs
[51, 91]. Such ABMs explore roll-out strategies of charging stations and their impact on further BEV
diffusion. Many studies include scenario analysis to compare the results dependent on some internal or
external parameters.

For example, in [91], different scenarios related to the type of charging infrastructure and the intensity
of rollout are explored. In [51], the authors aim to identify the impact of BEVs on the local grids.

Their ABM is built based on the real data, which include consumers’ charging behavior and its impact
on the peak demand. Other models focus on the market acceptance of AFVs under various scenarios [36]
or consumers buying behaviors [46].

In the variety of ABMs exploring the market of AFVs, generic models applicable for any country or
region [36] or specific models, which are designed and calibrated for a given part of the world, can be
found. For example, the models of [12, 28, 45] propose simulations for Germany, whereas the model of
[60, 80] are built for the Indonesian automotive market. An ABM proposed by [42] is designed for the
Dutch market. Other models explore automotive markets in South Korea [17], the USA [10, 26, 79, 87,
95], Ireland [55], Iceland [76], or China [36]. Other models present the conditions for a specific city like
Amsterdam [91], New York [1], or Berlin [92].

A lot of research focuses on the impact of governmental policies, such as subsidies or tax exemption,
and their interaction with consumer behavior over a long time period [12, 36, 42, 80, 91, 92]. . In partic-
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ular, authors want to verify which policies most effectively facilitate the transition from conventional into
electric vehicles and what combinations of policy measures, strategies, and targets are the most effective
in facilitating adoption of BEVs and lowering the emissions [12, 42]. Other models explore the effect of
different policy interventions on the adoption and diffusion of a given alternative fuel vehicle (such as
NGVs in [80] or BEVs in [12, 92]).

Many models investigate various scenarios differing by monetary or non-monetary incentive, like
in [36], where the authors explore how to promote conversion from CVs to BEVs through a scenario-
response method. Sometimes different policy scenarios are simulated against a business as usual scenario
[12]. The work of [76] forecasts the differences in BEV diffusion under different pricing regimes. The
developed ABM in [91] is used to evaluate three case studies designed and calibrated for the city of
Amsterdam, which address prominent questions by policy makers, referring to charging infrastructure
deployment (that is, how many and which type of charging stations should be placed where). The Inno-
Mind model of [92] simulates effects of policy interventions and social influence on consumers’ transport
mode preferences.

Considering all of the above objectives, ABMs of AFVs could be and sometimes are recommended as
a decision support tool to evaluate potential policy recommendations [80]. The results and conclusions
may give some guidelines how to promote AFVs effectively as well as how many of the charging stations
and where should be installed [91]. Unfortunately, there are several obstacles that may hinder the usage
of ABMs as a scientific tool. In the context of social ABMs, the necessity for verification, validation, or
sensitivity analysis is often reported [2, 9, 68]. However, something that absolutely discredits the model
as a scientific method is the inability of other researchers to replicate the results [31, 67]. Most of the
literature does not describe neither the model nor the calibration method in detail [29]. This is not very
surprising, as ABMs are often very complicated and thus difficult to describe in sufficient detail. While
the Overview, Design concepts and Details (ODD) protocol for describing ABMs has been proposed and
widely accepted, it it has some limitations [31]. What would definitely facilitate both the description and
the other elements of a rigorous approach would be to simplify the model. However, there is a concern
that simplification comes at the cost of making the results less realistic. Therefore, it is desirable to
build models in so-called Medawar zone, which is the region of maximum usefulness as a function of
model’s complexity [32, 85]. One of the main sources of an ABM’s complexity is heterogeneity, which
can appear on different levels. Hence, the next section is devoted to heterogeneity in ABMs of AFV
adoption.

3. Heterogeneity in ABMs of AFV adoption

According to the definition of an ABM quoted in the Introduction, agents are unique and autonomous
entities that interact locally with each other and with their environment. Being unique means that agents
can differ from each other in many ways, such as personal characteristics, preferences, location, etc.
Being autonomous means that agents make decisions and independent of each other. Finally, interacting
locally means that agents often do not interact with all other agents, but only with their neighbors in
some kind of space (geographic or/and social) [67]. Heterogeneity can be introduced in all three aspects
of ABMs.
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Table 1. Purpose and usage of empirical data of the chosen ABM for AFV diffusion.

Purpose Source of data/ Method used References
To explore how policies may interact with
consumer behavior over a long time period

Detailed data of N=1795 respondents have
been used to parameterise the agents and
to addresses different consumer needs and
decision strategies

[42]

To explore effectiveness of roll-out strate-
gies of charging stations in the context of
BEV diffusion

Empirically observed charging patterns be-
haviors and 2 million actual charging ses-
sions from the city of Amsterdam are used

[91]

To replicate real-life BEV use and its im-
pact on network demands

Consumers’ patterns of charging behaviour
and its impact on the peak demand are in-
cluded in the ABM calibtration

[51]

To investigate the effect of agents’
decision-making processes at the mi-
crolevel into the number of adopted BEV
at the macrolevel.

Twitter data analytics are used to inves-
tigate information engagement coefficient
based on agents’ locations

[60]

To investigate consumers’ behaviors re-
garding BEV and PHEV under various sce-
narios

Data derived from a choice-based conjoint
study

[46]

To simulate market acceptance of BEV un-
der multi policy scenarious

Parametrization is based on the literature
review

[36]

To understand the consumers’ adoption
decision-making and to explore potential
policy interventions favoring the uptake of
NGVs

Calibration of the adoption threshold and
propensity to media influence is based on
real data from a field survey

[80]

To simulate the effects of policy interven-
tions and social influence on consumers’
transport mode preferences

Attributes of the agents are derived and cal-
ibrated from the survey

[92]

To calculate time-dependent market share
of each AFV technology, taking into con-
sideration the utility of each type of a car
and WTP of the consumers

Real-world, individual driving data are
used instead of average driving patterns

[65]

The ability to account for heterogeneity among agents, allowing for the representation of different
preferences, constraints, and behaviors, is often considered one of the most important features of agent-
based models, distinguishing them from approaches based on differential equations [30, 66]. This can
be particularly important in the context of AFV diffusion, as different types of consumers may have dif-
ferent motivations and barriers to adoption. For example, some consumers may prioritize environmental
concerns, while others may be more influenced by economic factors or convenience. By introducing het-
erogeneity into agent-based models, researchers can better understand the complex processes that drive
AFV adoption and identify potential leverage points for promoting the diffusion of this technology.

A popular approach is to individualize the agents themselves, giving them different socio-demographic
characteristics such as age, income, and affinity for innovation [12, 26, 76]. In [28, 64], the authors inves-
tigated the impact of individual driving patterns, modeling customers with different transportation needs.
An interesting personal trait, named level of rationality, was introduced in [26]. It determined the ability
of an agent to estimate fuel cost saving while choosing a new vehicle.

One could also heterogenize the vehicle space, allowing agents to choose not only from broad cat-
egories such as CVs, PHEVs, BEVs, etc., but also from different segments [19], size classes [28, 64],
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engine parameters [19] with different fuel economy, depreciation value [42], and so on. This is most
often used in conjunction with heterogeneous agents, resulting in models with multiple levels of hetero-
geneity. Going even further, in [91], authors try to capture consumer behavior with respect to charging
infrastructure, which may be different for residents, visitors, taxis, and shared vehicles.

In order to ground the models in reality and set realistic values of parameters, the usually employed ap-
proach is to precede ABM simulations with an empirical study, which will provide the data necessary for
setting the parameters of the model. Afterwards, researchers can either use the aggregated attributes [55],
or create one-to-one correspondence between survey respondents and agents in the simulation [42, 92].

While it is argued that this approach allows for more realistic simulations and can provide valuable
insights [5, 66, 88], it also introduces new challenges and limitations. One potential danger is the in-
evitable increase in the number of parameters and the risk of overfitting [84]. The model becomes too
complex and difficult to interpret. This can happen if too many agent characteristics are included in the
model, resulting in a large number of parameters (each requiring an empirical distribution) that may be
difficult to estimate or justify. Overfitting can also lead to unstable or unreliable results as the model
becomes sensitive to small changes in the input data [82]. This in turn makes proper validation, calibra-
tion, and interpretation difficult. On the other hand, a complete lack of heterogeneity creates the risk of
oversimplification, which can occur if the model includes only a limited set of agent characteristics or
behaviors, or if it assumes that all agents are homogeneous in their behavior. In such cases, the simula-
tion may not accurately reflect the diversity and variability of real-world agents, leading to misleading
conclusions [84].

Another type of heterogeneity concerns the space (geographic and/or social) in which agents interact.
Typically, this space takes the form of a graph. Most models assume that each agent (i.e., a consumer) is
part of its social network, where it is connected to other agents who live nearby and/or some agents who
are more distant but have similar attributes (e.g., income [80] or environmental attitudes) or belong to a
similar group of vehicle owners (i.e., BEV owners). For example, in [36], the Watts-Strogatz (WS) small-
world graph was used to describe the structure of the consumer interaction network. In [40], a square
lattice with periodic boundary conditions was used, which can be interpreted as a geographic space. In
such a graph, each agent has exactly four neighbors, as opposed to a WS network where the number of
neighbors can vary for each agent. However, even in such a regular graph, there is heterogeneity in space
because each agent has different neighbors. For example, one agent may have only HEV consumers in
the neighborhood, while others may have only PHEV consumers, which can have a significant impact on
a consumer’s decision.

4. Model description and setup

Our agent-based model represents an automotive market with three categories of alternative fuel vehicles:
HEVs, PHEVs and BEVs. Agents are consumers, they can mutually interact via links in a social network;
see Section 4.1. Vehicle purchase decisions are governed by a discrete choice model, which relies on
utility theory [2]; see Section 4.2. Additionally, the model takes into account three important factors that
impact the diffusion of eco-innovations: marketing, social influence, and external barriers [14, 63].

We set the model parameters based on the empirical data derived from a survey and a conjoint study



Acc
ep

ted
man

us
cri

pt

8 A. Jędrzejewski et al.

β
β = 0

(a)

β = 0.3

(b)

β = 1

(c)

Figure 1. Illustration of Watts and Strogatz networks with N = 12 nodes, 〈k〉 = 4, and three different values of β. The very
left structure (β = 0) is a regular graph, whereas the very right represents a random graph (β = 1).

[50]; see Section 4.3. The simulation code and the empirical data used in the simulations are publicly
available; see Section 4.4. The procedure for calibrating the model is described in Section 4.5.

4.1. Social network
We consider a population ofN agents (consumers) placed in the nodes of a given network. In general, our
model can run on any network. However, we use two structures, a square lattice with periodic boundary
conditions and the Watts-Strogatz (WS) network [90]. A square lattice serves as a reference point since
it was used in the original study [40]. This structure can also represent the geographic space. In such a
network, each consumer is directly connected to four others, which means that the degree of each node
is equal to four. On the other hand, the WS graph allows us to model a wider range of structures. This
network is parameterized by the average node degree 〈k〉 and the rewiring probability β, which describes
the level of randomness. By changing the rewiring probability β, networks of different characteristics
can be constructed, from regular lattices (β = 0) to random graphs (β = 1), see Fig. 1. Small-world
networks, which share some features with the real social networks, fall between these two extremes [3].

4.2. Discrete choice model
Each agent can have a car. However, agents start the simulation without cars. At each time step, a
randomly selected agent buys a car chosen from the set of alternative fuel vehicles that is taken from the
conjoint analysis [50] of data collected between January and April 2020. The vehicles are characterized
by five attributes, each of which can take five different values. Therefore, we have 25 variants of cars
in each of the three categories: HEV, PHEV, and BEV, for a total of 75 variants of cars labeled by
j ∈ {1, 2, ..., 75}. For the sake of brevity, we will use an interchangeable variant of a car, or just a
car. However, it is important to remember that we are considering not just 75 cars, but 75 variants of
cars. According to Ref. [50], for HEV, the attributes are safety level, purchase price, access to service,
functionality level, and car type, whereas for PHEV and BEV, these are safety level, purchase price,
access to service, access to charging, and range. Tables with profiles of all cars were presented in [50].
We have also included them in Appendix A (Tabs. 5–7 ) of this paper for convenience.

Each attribute contributes to the total utility that comes from purchasing a given car. To obtain the
total utility of the car j, we sum the partial utilities associated with the attributes of this car:

Uj =
5∑

n=1
PUj,n, (1)
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where PUj,n is the partial utility of the n-th attribute of a variant j. Partial utilities were estimated based
on the conjoint analysis of consumers’ preferences, see Tab. 14 in [50] for the exact values. We have also
included this data in Appendix A (Tab. 8) for convenience.

In addition to the total utility, we consider three environmental factors that impact the agents’ buying
decision: marketing, social influence, and the availability of recharging facilities. To connect these factors
with the probability of choosing a car over all alternatives, we use a discrete choice model based on a
multinomial logit function [2]. In studies on AFV diffusion, logit models are not only incorporated into
agent-based simulations as discrete choice models [2, 61, 77, 83, 93, 95], but are also commonly used to
estimate consumers’ preferences based on survey data [7, 11, 33, 63, 72, 95]. Following previous studies
[40, 59, 75, 76], the probability that agent i ∈ {1, ..., N} buys a car j has the following form:

Pi,j = Wi,f(j) ·RFEi,f(j) · exp (Uj)∑75
k=1 Wi,f(k) ·RFEi,f(k) · exp (Uk)

, (2)

where function

f(j) =


HEV if the j-th car is HEV,

PHEV if the j-th car is PHEV,

BEV if the j-th car is BEV,

(3)

returns the category of a car, whereas Wi,f(j) and RFEi,f(j) are variables associated with agent i that
reflect its willingness to buy a car of a given category and the refueling effect, respectively.

The idea of willingness appears in [43, 44, 61, 77, 83] where the system dynamics approach [78]
is used to study the adoption of AFVs. Therefore, the willingness, which depends on the marketing
and social exposure to the product, is modeled as a set of differential equations. Recently, we have
adapted this idea to agent-based modeling [40]. In our approach, the willingness to buy a given car also
arises from marketing and social influence, but it does not have a differential form. Furthermore, since
empirical studies show that the strength of social influence between people depends on their proximity
in the social network [63], we distinguish between two types of social influence, local and global one
[38, 40, 55, 56]. Local social influence corresponds to word-of-mouth marketing, e.g., recommendations
from friends who have already purchased an AFV. On the other hand, global social influence reflects
the tendency of agents to adhere to social norms, e.g., following the trend seen on the streets. Thus, the
adoption of AFVs increases along with more evidence that other people have adopted them [63]. How
much these factors influence the willingness depends on individual traits of agents. Let padv

i,f(j), p
local
i,f(j), and

pglobal
i,f(j) denote the susceptibilities of agent i to advertisement (or other types of marketing), local influence,

and global influence related to a given type of vehicle. Since we consider three vehicle types, each agent
is characterized by 9 susceptibilities, which are set at the beginning of the simulation. The willingness of
agent i to buy a car of type f(j) is expressed by the following formula:

Wi,f(j) = padv
i,f(j) · hf(j)︸ ︷︷ ︸

marketing

+ plocal
i,f(j) · ki,f(j)/ki︸ ︷︷ ︸

local influence

+ pglobal
i,f(j) ·Nf(j)/N︸ ︷︷ ︸

global influence

+ 1︸︷︷︸
independence

, (4)

where hf(j) reflects the strength of marketing for vehicle type f(j), ki,f(j) is the number of neighbors of
agent i that already possesses vehicles of type f(j), ki is the total number of neighbors of agent i, and
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Table 2. Summary statistics for the susceptibilities associated with different vehicle types. The summary includes the mean,
the standard deviation (SD), and the number of cases (N).

HEV PHEV BEV
Mean SD N Mean SD N Mean SD N

Marketing 2.14 1.35 641 2.07 1.38 451 2.09 1.30 650
Local influence 2.86 1.25 283 2.58 1.43 119 2.59 1.56 180
Global influence 1.96 1.42 593 1.81 1.39 366 1.98 1.39 560

Nf(j) is the total number of agents in the system that have vehicles of type f(j). The first term in the
above formula captures the influence of advertisements and promotions. The second one reflects the local
influence by which an agent is more likely to buy a car of a given type if a greater fraction of his neighbors
have already adopted it. The third term corresponds to the global influence by which an agent is more
likely to buy a car of a given type if greater fraction of the population has already adopted it. Finally, the
last term accounts for independent behavior since when all susceptibilities are zero, Wi,f(j) = 1, so the
decision is made only based on the car utilities and the refueling effect, see Eq. (2).

The refueling effect captures agents’ concerns about low ranges of some AFVs and the availability of
recharging facilities. We include this effect in a functional form taken from previous studies [40, 59, 74–
76]:

RFEi,f(j) =


1 if the j-th car is HEV,

1−DPi · e−αPHEVNPHEV/N if the j-th car is PHEV,

1−DPi · e−αBEVNBEV/N if the j-th car is BEV,

(5)

where DPi is an individual driving pattern of agent i, NPHEV and NBEV are the numbers of agents that
have already adopted PHEVs and BEVs, while αPHEV and αBEV are scaling parameters used to calibrate
the model. Driving patterns vary between 0 (short trips) and 1 (distant trips) [74]. Note that RFEi,f(j)

for electric vehicles (PHEV and BEV) depends on the number of adopted agents—the more agents adopt
electric vehicles, the greater the RFEi,f(j) becomes. This describes the situation where more agents
using electric vehicles leads to an increase in the number of charging stations. Therefore, the assumption
of the refueling effect allows us to at least partially account for infrastructure progress.

4.3. Setting susceptibilities and driving patters
We estimate values of susceptibilities and driving patterns based on survey responses, which were also
used for the conjoint analysis [50]. In the survey, respondents were asked how much different sources
of information influence their opinions on HEVs, PHEVs, and BEVs. The responses were reported in a
5-level scale from 0 (no influence) to 4 (great influence). We relate susceptibilities to marketing, padv

i,f(j),
local influence, plocal

i,f(j), and global influence, pglobal
i,f(j), with responses to the questions about the following

sources of information: “I have seen, read, or heard about this car type in media”, “I have talked with
the owner of this car type”, and “I have seen this car type on the street”, respectively. Fig. 2 presents the
frequency histograms of collected responses, whereas Tab. 2 includes the related summary statistics. As
seen, direct recommendation from the car owner (i.e., local influence) is considered the most influential.

In the same survey, respondents reported how many kilometers they plan to drive with a car on average
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per year. Fig. 3 presents a box-plot [21] displaying the reported data. The box is drawn from the 1st

quartile (Q1) to the 3rd quartile (Q3), and the horizontal line inside the box denotes the median. The
whiskers are drawn based on the 1.5 · IQR value, where IQR is the interquartile range, i.e., IQR =
Q3 − Q1. Up from Q3, a distance of 1.5 · IQR is measured out, and the upper whisker extends to the
largest observation that lies within this distance. Similarly, a distance of 1.5 · IQR is measured down from
Q1, and the lower whisker extends to the smallest observation that falls within this distance. All data
outside the whiskers are considered outliers [21]; see the red cross marks in Fig. 3(a). In our case, there
are 47 responses that are classified as outliers since they lie above the limit of the upper whisker, which
is 60 000 km. The summary statistics related to this data is presented in Tab. 3.

To obtain the distribution of driving patterns, we have to transform all the responses into a range
from 0 (short trips) to 1 (distant journeys); see Section 4.2. In [74], based on the observation that the
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Figure 2. Frequency histograms of the servery responses to the question how much different sources of information (i.e.,
marketing, local influence, and global influence) impact the opinions of HEVs, PHEVs, and BEVs. The answers were

reported in 5-level scale from 0 (no influence) to 4 (great influence). Vertical, red lines indicate the mean values. The related
summary statistics are presented in Tab. 2.

Table 3. Summary statistics for the average annual driving distance reported in the survey and the driving pattern obtained.
The summary includes the minimum value (Min.), the 1st quartile (Q1), the median, the mean, the 3rd quartile (Q3), the

maximum value (Max.), the standard deviation (SD), and the number of cases (N).

Min. Q1 Median Mean Q3 Max. SD N
Driving distance [km] 200 10 000 20 000 29 638 30 000 999 000 59 779

671
Driving pattern 0.003 0.167 0.333 0.378 0.500 1.000 0.265
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Figure 3. (a) Boxplot of the yearly average driving distances reported in the survey and (b) the histogram of driving patterns
used in the simulations. In panel (a), red cross marks indicate the outliers. In panel (b), the vertical, red line indicates the

mean value. The related summary statistics are presented in Tab. 3.

yearly average driving distance in Germany follows a positively skewed distribution, a lognormal distri-
bution with mean −0.85 and standard deviation 0.65 of the underlying normal distribution was chosen
for driving patterns with the restriction that the values obtained do not exceed 1. However, the exact
estimation procedure is not reported. Later works used different scaling strategies to adapt the German
driving pattern to other countries such as Iceland [76] or the USA [59, 75]. Some studies use only one
driving pattern for all agents and system replications [40, 76], others randomly select it in each system
replication [59, 75]. Not having found an objective and well-described procedure to transform yearly
average driving distances to driving patterns, we propose a non-parametric procedure based on a box
plot. In our method, all outliers above the upper whisker are considered distant journeys, and they are
transformed into driving patterns of value 1. The rest of the reported yearly average driving distances are
divided by the limit of the upper whisker, which is 60 000 km in our case. The resulting distribution of
driving patterns is presented in Fig. 3. By this procedure, we get the average driving pattern for Poland
of around 0.38. For comparison, the average driving pattern is estimated to be 0.49 for Germany [74],
0.78 for Iceland [76], and 0.60 for the USA [59, 75].

We use either heterogeneous or homogeneous conditions to initialize the susceptibilities and driving
patterns. In the heterogeneous case, given parameters of agents are drawn randomly from the correspond-
ing empirical distributions, which are presented in Figs. 2 and 3(b). In this scenario, the agents have
characteristic personal traits and differ from each other. On the other hand, the homogeneous conditions
imply that given agents’ parameters take the mean values of the corresponding empirical distributions.
These means are depicted as vertical red lines in Figs. 2 and 3(b). In this case, all agents have the same
values of the parameters. We consider four different combinations of initialization conditions since the
susceptibilities and driving patterns can be initialized independently in a heterogeneous or homogeneous
way.
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4.4. Simulation code and algorithm
We implemented the model in C++ with the support of the object-oriented programming paradigm.
Python was used to run the simulations, calibrate the model, and analyze the data. The codes for this
project are maintained on GitHub. The release of the software used for this publication is archived on
Zenodo under the following links:

• arkadiusz-jedrzejewski/alternative-fuel-vehicle-abm,

• arkadiusz-jedrzejewski/alternative-fuel-vehicle-abm-py.

Each Zenodo archive includes a link to the corresponding repository on GitHub, where you can find
the latest version of the software. The algorithm to simulate our model is presented below, see also a
flowchart in Fig. 4. The procedure for initializing the system is as follows:

1. Choose the network structure and the relevant network parameters, for example, the number of
nodes in the network, N .

2. Set other model parameters: αPHEV, αBEV, hHEV, hPHEV, hBEV, and the time horizon of the simulation,
T .

3. Place an agent without a car at each node i ∈ {1, ..., N} of the network.

4. Assign susceptibilities and driving patterns to agents. For each agent i ∈ {1, ..., N}, choose the
values of:

• the susceptibilities related to hybrid electric vehicles: padv
i,HEV, plocal

i,HEV, pglobal
i,HEV,

• the susceptibilities related to plug-in hybrid electric vehicles: padv
i,PHEV, plocal

i,PHEV, pglobal
i,PHEV,

• the susceptibilities related to battery electric vehicles: padv
i,BEV, plocal

i,BEV, pglobal
i,BEV,

• and the driving pattern: DPi.

If heterogeneous conditions are used, randomly draw these values from the corresponding empirical
distributions, see Figs. 2 and 3(b). If homogeneous conditions are used, set these values to the
corresponding means of susceptibilities and driving patterns from Tabs. 2 and 3.

After the system is initialized, the simulation is performed in the following way.

1. Count the number of agents in the system that have cars of each type, i.e., NHEV, NPHEV, and NBEV.

2. Draw the number i from the discrete uniform distribution U{1, N}. The agent i is selected to buy a
car.

3. Calculate the refueling effect for agent i from Eq. (5) for PHEVs and BEVs, i.e. RFEi,PHEV and
RFEi,BEV.

4. Count the number of neighbors of agent i that have cars of each type, that is, ki,HEV, ki,PHEV, and
ki,BEV.

5. Calculate the willingness of agent i to buy a car of each type from Eq. (4), i.e., Wi,HEV, Wi,PHEV, and
Wi,BEV.

https://doi.org/10.5281/zenodo.12935296
https://doi.org/10.5281/zenodo.12935546
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Set network structure and its parameters.

Set parameters of the model αPHEV,
αBEV, hHEV, hPHEV, hBEV and simula-

tion time T . Set the loop variable t = 0.

Place an agent without a car
at each node i ∈ {1, . . . , N}.

Set agents’ susceptibilities and driving
pattern phi,HEV, pli,HEV, pgi,HEV, phi,PHEV,
pli,PHEV, pgi,PHEV, phi,BEV, pli,BEV, pgi,BEV,

and DPi. For each i ∈ {1, . . . , N}:

DPi and all pi’s equal
to a mean value.

DPi and all pi’s
drawn from a dis-
tribution of choice.

DPi equal to a
mean value and
pi’s drawn from a

distribution of choice.

DPi drawn from
a distribution of

choice and pi’s equal
to a mean value.

Count the number of agents
in the system that have
cars of each type, i.e.

NHEV, NPHEV, and NBEV.

Select agent i ∼ U{1, N}.

Calculate the refuel-
ing effect for agent i, i.e.

RFEi,PHEV, and RFEi,BEV.

Count the number of neighbors of
agent i having cars of each type,
i.e. ki,HEV, ki,PHEV, and ki,BEV.

Calculate the willingness of agent
i to buy a car of each type, i.e.
Wi,HEV, Wi,PHEV, and Wi,BEV.

For each j ∈ {1, 2, ..., 75},
calculate the probability that
agent i buys car j, i.e. Pi,j .

Draw number u ∼ U [0, 1].

Find index m such that∑m−1
j=1 Pi,j ≤ u <

∑m
j=1 Pi,j .

Agent i buys car m.

t = t+ 1
N

Is t < T?End of simulation.

Initialization Simulation

both homogeneous both heterogeneous

homogeneous DP
heterogeneous suscept.

heterogeneous DP
homogeneous suscept.

No
Yes

Figure 4. Flowchart of the simulation algorithm. The crucial part of the initialization phase, i.e. the choice between
homogeneity and heterogeneity of both driving patterns and susceptibilities, is marked with red arrows.

6. For each j ∈ {1, 2, ..., 75}, calculate the probability that agent i buys a car j, i.e., Pi,j from Eq. (2).

7. Draw the number u from the uniform continuous distribution U [0, 1].

8. Find an index m such that
∑m−1
j=1 Pi,j ≤ u <

∑m
j=1 Pi,j . Agent i buys car m.

9. Update time t→ t+ 1/N . If t < T , go to point 1.

The time in our simulations is measured in Monte Carlo steps (MCS). In one Monte Carlo step, N agents
are randomly selected to purchase a car. The agents are chosen with repetition.

4.5. Model calibration procedures
We use the tree-structured Parzen estimator algorithm implemented in Hyperopt Python library to cal-
ibrate the model. The tree-structured Parzen estimator algorithm is a Bayesian optimization method,
which can more efficiently explore the parameter space compared to the simple grid-search method [8].
This algorithm iteratively searches for the optimal parameters by creating a probabilistic model based on

http://hyperopt.github.io/hyperopt/
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HEV

PHEV

BEV

19.2%

31.9%

48.9%

Figure 5. Pie chart showing the percentage of respondents who would hypothetically purchase an alternative fuel vehicle in
a given category. The chart is plotted based on the data taken from Tab. 8 in [50]. This data is used to calibrate the model.

the history of evaluated parameters. The model is then used to select next set of parameters to evaluate.
We define the parameter search space as αPHEV ∈ [0, 14], αBEV ∈ [0, 1.5], and hHEV, hPHEV, hBEV ∈ [0, 4].
These regions of the parameter search space were chosen based on an initial rough grid search calibration
presented in Appendix B.

The loss function is the mean square error (MSE) between the adoption levels estimated in the survey
and the stationary adoption levels obtained from 500 independent simulations:

MSE = 1
500

500∑
i=1

1
3

[(
x*

HEV − xst
HEV,i

)2
+
(
x*

PHEV − xst
PHEV,i

)2
+
(
x*

BEV − xst
BEV,i

)2
]
, (6)

where x*
HEV, x*

PHEV, and x*
BEV are the adoption levels estimated in the survey and xst

HEV,i, x
st
PHEV,i, and

xst
BEV,i are the stationary adoption levels in the i-th simulation.

According to the survey data presented in Tab. 8 in [50], around 48.9% of the respondents would buy
a HEV, 31.9% a PHEV, and 19.2% a BEV. Thus, we set x*

HEV = 0.489, x*
PHEV = 0.319, and x*

BEV = 0.192
in Eq. (6). Fig. 5 illustrates these results in the form of a pie chart. Keep in mind that consumers may
react differently to hypothetical questionnaires and real market choices [11]. Thus, the survey results
correspond only to hypothetical purchases, not to actual market shares.

The calibration of the model is performed separately for each simulation setting. First, we choose the
network (see Section 4.1) and assign susceptibilities and driving patterns to agents using heterogeneous
or homogeneous conditions (see Section 4.3). Next, we perform the calibration process—calibrated
parameters, αPHEV, αBEV, hHEV, hPHEV, and hBEV are those that minimize the mean square error, see
Tab. 4. To obtain the dependence between the model parameters and the adoption levels, we use the
warm-up period prior to data collection, in line with good simulation practice, see for example [69]. As
shown in Fig. 6, the adoption levels settle down very quickly, so we choose a warm-up period of 20 MCS,
which is more than enough.

All statistical measures are calculated based on the ensemble of 500 independent simulations.

5. Results

We study our model on 3 networks with the same number of agents, N = 1024, and the average degree,
〈k〉 = 4: a square lattice (32×32 agents), Watts-Strogatz network with β = 0, and Watts-Strogatz
network with β = 1, see Section 4.1.

It can be argued that the parameters we have chosen are not very realistic, as for example β = 0 and
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Table 4. Parameters αPHEV, αBEV, hHEV, hPHEV, and hBEV obtained form the calibration procedure based on the
tree-structured Parzen estimator algorithm for different model setups with the corresponding mean square errors (MSE).

Heterogeneous
αPHEV αBEV hHEV hPHEV hBEV MSE

Susceptibilities Driving patterns
Square lattice with N = 1024 agents (32× 32)

no no 1,749 0,753 3,718 3,664 2,063 0,000248
no yes 11,076 0,513 3,827 2,785 2,330 0,000241
yes no 8,363 1,312 3,355 2,310 1,514 0,000271
yes yes 7,951 0,032 3,845 2,707 2,331 0,000246

Watts-Strogatz network with N = 1024 agents, 〈k〉 = 4, and β = 0
no no 10,328 1,176 3,711 2,635 1,946 0,000249
no yes 8,180 1,028 3,515 2,628 2,063 0,000255
yes no 7,337 0,543 3,856 2,717 1,962 0,000248
yes yes 7,391 1,077 3,999 2,873 2,030 0,000271

Watts-Strogatz network with N = 1024 agents, 〈k〉 = 4, and β = 1
no no 9,156 0,834 3,736 2,682 2,088 0,000240
no yes 12,170 0,165 3,740 2,711 2,484 0,000240
yes no 3,566 1,200 3,837 3,072 1,751 0,000269
yes yes 10,465 0,858 3,675 2,539 1,903 0,000267

β = 1 do not reflect the properties of real social networks. We agree with this potential criticism—it
would be more realistic to consider β ∈ (0.01, 0.1) [90]. However, we wanted to see if the structure of
the network mattered at all for our model, so we chose the extreme values of β. It turned out that the
structure of the network does not really affect the results. One may also wonder why we use such a small
system, i.e., N = 1024. This size was dictated by the number of people who participated in the empirical
studies described in Ref. [50] from which we took the empirical data to calibrate the model.

We consider 4 different combinations of initialization conditions: the susceptibilities and the driving
patterns can be initialized independently in a heterogeneous or homogeneous way, see Section 4.3. Tak-
ing into account these 4 combinations of initialization conditions and 3 different network structures, we
consider a total of 12 models.

5.1. Results of the model calibration
We calibrate parameters for all considered models—the results are given in Tab. 4. As seen, αBEV is
around one order of magnitude smaller than αPHEV in most of the cases. Interestingly, completely different
calibration procedure, so-called grid-search calibration (see Appendix B), gives qualitatively the same
result, which suggests that the refueling effect could have a greater impact on the diffusion of BEVs.
This is consistent with the literature, which identifies the limiting cruising range as a major barrier to the
widespread adoption of electric vehicles [46].

The second outcome from the calibration is that for all the models, hHEV > hPHEV > hBEV, which
means that HEVs are advertised the most, whereas BEVs are advertised the least. Assessing the realism
of this result is challenging. HEVs, which have been on the market longer than PHEVs and BEVs, are
more familiar to consumers and may have received more advertising in the past. Unfortunately, we were
unable to find rigorous data to confirm this. However, some recent marketing reports [4, 37, 71] suggest
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Figure 6. Time evolution of the adoption levels of AFVs for the models on a square lattice of N = 1024 agents (32×32) for
optimal values of αPHEV, αBEV, hHEV, hPHEV, and hBEV, see Tab. 4, obtained for different combinations of heterogeneous and

homogeneous conditions: (a) homogeneous susceptibilities and driving patterns, (b) homogeneous susceptibilities and
heterogeneous driving patterns, (c) heterogeneous susceptibilities and homogeneous driving patterns, and (d) heterogeneous

susceptibilities and driving patterns. Symbols represent the average (mean) trajectory, and the error bars, representing the
standard error of the mean (SEM), are of the order of the symbol size. Horizontal, continuous lines correspond to the

percentages estimated in the survey [50]; see Fig. 5. NONE represents the fraction of agents without a car.

that this result may be accurate, which will be discussed in the conclusions.
We would also like to comment on the calibration results presented in Fig. 6. We included this figure

mainly to show that all models can be calibrated, behave very similarly to each other, and that the warm-
up time needed to reach stabilized values is short. We did not want to draw any deep conclusions about
the temporal behavior of the system, since we did not define how to scale our simulation time to the
real one. However, it is tempting to make at least one suggestion regarding the temporal behavior of
adopted. According to Rogers’ theory [70], one might expect the s-shaped curve that is not observed in
Fig. 6. Traditionally, diffusion curves (i.e., plots of the number of individuals observed to have performed
a particular behavior versus time) have been assumed to be s-shaped in the case of social learning and
r-shaped (as in Fig. 6) in the case of asocial learning [35]. Therefore, our results could be interpreted as
indicating that asocial learning dominates in AFV adoption. This finding is surprisingly consistent with
the results on the role of marketing presented in the next section.
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5.2. The role of the marketing
After calibrating the model, we examine how the strength of marketing affects the steady-state adoption
levels of different AFVs. We compare the models calibrated to different networks and to different com-
binations of heterogeneous and homogeneous initial conditions. Each panel of Figs. 7–9 illustrates the
results for the systems where we vary the marketing strength for only one vehicle category, and the rest
of the marketing strengths are set to the calibrated values presented in Tab. 4. These figures consist of 9
panels arranged in 3 columns and 3 rows: each column corresponds to a different network structure and
each row corresponds to a different vehicle category.

As expected, when only HEVs are advertised more, see the results in Fig. 7, adoption increases for
HEVs while it decreases for the other two vehicle categories. Unexpectedly, the type of network and
the method used to initialize driving patterns do not significantly affect the results. Similar results are
obtained when only PHEVs (see Fig. 8) or BEVs (see Fig. 9) are advertised more. In all three cases,
the largest differences between the models are seen on the square lattice, which corresponds to the left
columns of Figs. 7-9. These differences are rather small, but still we find this result interesting because
the square lattice best reflects the physical space of all the network structures we considered. Taking
physical space into account seems to be important, as a study by Generation180 from 2023 showed that
people are more likely to drive electric vehicles if their neighbors also drive them [27].

Although we observe some differences between the models on the square lattice, these differences are
very small. What has by far the greatest impact on the level of adoption is the strength of marketing. This
is also consistent with our discussion on asocial learning—marketing seems to be more important than
peer pressure in this case. We find this result particularly interesting in light of recent market trends. In
2023, Ireland significantly reduces subsidies for PHEVs, and Germany eliminates them altogether. Soon,
in 2024, for the first time since 2018, there is a decline in electric car sales in Europe [37]. We do not
claim that the reduction of subsidies was the only reason for this decline, but it was probably one of the
main reasons.

6. Conclusions

According to the International Energy Agency’s (IEA’s) Global EV Outlook 2024, electric vehicle reg-
istrations and sales grew monotonically from 2018 to 2023 [37]. However, already in 2023 this growth
slowed down significantly in Europe and even declined in 2024: the share of battery electric cars de-
creased from 13.9% in 2023 to 13% in 2024, while the share of hybrid electric cars increased from
24.4% to 29% [71]. Was this expected? On the contrary. Most forecasts, including those from reputable
sources such as the IEA, typically predict continued growth, especially for BEVs. So what could be the
reason? There could be many, including a reduction in government incentives, a shift in consumer pref-
erences, etc. For example, Germany has decided to end subsidies for PHEVs in 2023 [37]. In addition,
according to the AlixPartners 2024 International Electric Vehicle Consumer-Sentiment Survey, concerns
about charging infrastructure and range are causing BEV intenders in the U.S. and Europe to shift their
interest to PHEVs [4]. The survey also notes that while BEV loyalty has increased, BEV intentions
among consumers of traditional (internal combustion engine) vehicles have stagnated, suggesting a near-
term preference shift toward hybrids as an alternative to BEVs. This is particularly striking in light of



Acc
ep

ted
man

us
cri

pt

The role of heterogenity in agent-based models 19

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
(a)

A
do

pt
io

n
le

ve
lf

or
H

E
V

s

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
(b)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
(c)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
(d)

A
do

pt
io

n
le

ve
lf

or
PH

E
V

s

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
(e)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
(f)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
(g)

hHEV

A
do

pt
io

n
le

ve
lf

or
B

E
V

s

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
(h)

hHEV

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
(i)

hHEV

Sus. DP
no no
no yes
yes no
yes yes

Heterogeneous

Figure 7. Dependence between the stationary adoption levels and the marketing strength of HEV. Each column corresponds
to a different network structure and each row corresponds to a different vehicle category:(a-c) HEVs, (d-f) PHEVs, and (g-i) BEVs obtained for the models with different combinations of initialization conditions.

Networks: (left column) square lattice with N = 1024 agents (32× 32); (middle column) Watts-Strogatz network with
N = 1024 agents, 〈k〉 = 4, and β = 0; (right column) Watts-Strogatz network with N = 1024 agents, 〈k〉 = 4, and β = 1.
Only the marketing strength for HEVs is varied, the rest of the marketing strengths are set to the calibrated values presented

in Tab. 4. Horizontal, continuous lines correspond to the percentages estimated in the survey [50]; see Fig. 5. The error
(SEM) bars are of the order of the symbol size.

our findings, which we summarize below.
First, our calibration showed that the αBEV < αPHEV, meaning that the refueling effect could have a

greater impact on BEV penetration. This result was robust and repeated within both calibration methods,
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Figure 8. Dependence between the stationary adoption levels and the marketing strength of PHEV. Each column
corresponds to a different network structure and each row corresponds to a different vehicle category:(a-c) HEVs, (d-f) PHEVs, and (g-i) BEVs obtained for the models with different combinations of initialization conditions.

Networks: (left column) square lattice with N = 1024 agents (32× 32); (middle column) Watts-Strogatz network with
N = 1024 agents, 〈k〉 = 4, and β = 0; (right column) Watts-Strogatz network with N = 1024 agents, 〈k〉 = 4, and β = 1.

Only the marketing strength for PHEVs is varied, the rest of the marketing strengths are set to the calibrated values presented
in Tab. 4. Horizontal, continuous lines correspond to the percentages estimated in the survey [50]; see Fig. 5. The error

(SEM) bars are of the order of the symbol size.

across all 12 models we analyzed, as shown in Tabs. 4 and 9. This result validates the model, as limited
driving range has been identified as a major barrier to the widespread adoption of electric vehicles [46].

The second result of the calibration is that the marketing strength for HEVs, given by hHEV, is the
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Figure 9. Dependence between the stationary adoption levels and the marketing strength of BEV. Each column corresponds
to a different network structure and each row corresponds to a different vehicle category:(a-c) HEVs, (d-f) PHEVs, and (g-i) BEVs obtained for the models with different combinations of initialization conditions.

Networks: (left column) square lattice with N = 1024 agents (32× 32); (middle column) Watts-Strogatz network with
N = 1024 agents, 〈k〉 = 4, and β = 0; (right column) Watts-Strogatz network with N = 1024 agents, 〈k〉 = 4, and β = 1.
Only the marketing strength for BEVs is varied, the rest of the marketing strengths are set to the calibrated values presented

in Tab. 4. Horizontal, continuous lines correspond to the percentages estimated in the survey [50]; see Fig. 5. The error
(SEM) bars are of the order of the symbol size.

largest among all alternative fuel vehicles. This result was also very robust and repeated across all 12
models we analyzed. Although not very surprising, given that we calibrated the model to the empirical
data showing HEVs to be the most popular, it is still interesting when compared to recent market trends,
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described above, and serves as a second validation of our model.
Third, we show that heterogeneity in individual consumer characteristics (susceptibilities and driving

patterns) plays a minor role compared to marketing strength. At this point, we would like to emphasize
that in our model, marketing strength describes all factors that are global, i.e., that affect all agents, and
does not depend on the number of adopted agents, so in fact it may represent asocial learning. This
means that marketing strength can describe subsidies, advertising, awareness campaigns, etc. This shows
the importance of government incentives, which is also confirmed by recent market trends showing the
decline in AFV sales after the reduction of subsidies. Although we are not sure whether the reduction
of subsidies actually led to a decrease in the number of electric cars purchased, it seems to be one of the
important reasons.

Fourth, although heterogeneity in individual consumer characteristics does not significantly affect the
results in any of the networks considered, it definitely affects the results the most in the square lattice.
This result is also interesting given that the square lattice may be the most appropriate to study the
diffusion of AFVs because it reflects physical space. This seems important given that people are more
likely to drive electric vehicles if their neighbors do [27].

All of the above results validate our model. However, creating a realistic model with predictive power
was not the primary goal of this work. As mentioned in the introduction, the main goal was to test how
different heterogeneities affect the macroscopic behavior of the system. We considered heterogeneity
related to the personal characteristics of the agents (susceptibilities and driving patterns) and network
heterogeneity, which is more subtle and will be discussed later. Consequently, we analyzed 12 versions
of the model: four combinations of heterogeneity in terms of susceptibilities and driving patterns across
three types of networks.

We start the discussion with the heterogeneity related to the personal characteristics of the agents. In
the heterogeneous conditions, the susceptibilities and driving patterns of the agents were randomly drawn
from the corresponding empirical distributions shown in Figs. 2 and 3. In the homogeneous conditions,
all agents had the same values of susceptibilities and driving patterns, which is an expected value from
the same empirical distributions. This means that the expected value of the susceptibilities and driving
patterns were the same in the heterogeneous and homogeneous conditions.

We were able to calibrate all of these models to the macroscopic empirical data on the percentage of
respondents who would hypothetically purchase an alternative fuel vehicle of a given category, shown
in Fig. 5. Moreover, all of these calibrations produced qualitatively similar results, as discussed above,
although the specific values of the calibrated parameters were slightly different. Since we do not know
what the real values of these parameters are, we cannot evaluate which of the models is the most ap-
propriate. Moreover, qualitatively, all the models gave almost identical results. Of course, this result is
not universal—heterogeneity can play an important role [6]. In one of our previous papers, we showed
that whether heterogeneity is needed depends on the model itself and on the network on which it is
considered—in some cases, homogeneous and heterogeneous features of agents can lead to the same
result at the macroscopic scale, but sometimes they are significantly different [39].

The similar result we observe in our model—as long as we consider the model on WS network,
heterogeneity of individual preferences are not needed, in a sense that including heterogeneity does not
influence results on the macroscopic level. However, they start to become more important, although not
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very important on the square lattice. And so we reach the issue of heterogeneity related to the structure of
the network. At first glance, the square lattice appears to be as regular as possible. It is true that in such
a network each agent has the same degree, i.e., the same number of nearest neighbors (separation degree
1), next nearest neighbors (separation degree 2), and so on. Moreover, the distance in physical space is
the same to all neighbors with a given degree of separation. However, it is in such a network that the
strongest spatial heterogeneity in consumer preferences appears, which is caused by local interactions
with neighbors. In some areas the concentration of adopters is low and in others it is high [86]. This
behavior is also observed empirically in real systems [27].

In summary, there are two main messages that we want the reader to take away. The first is that what
appears homogeneous at first glance may not be so in ABM. Interactions between agents can produce
spatial heterogeneity that would not exist without those interactions, and the square lattice is a very good
example of such “hidden” heterogeneity. The second and main message of this paper is that although
real social systems are heterogeneous in many ways, not all heterogeneity affects the outcome at the
macroscopic level. Therefore, it is always worth to verify if heterogeneity has an impact on the model
performance and in case it does not, rely on the simpler, homogeneous simulation setup. To our mind,
it does not make sense to complicate the model unless it allows us to observe some additional aspects of
the examined system.
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Appendix

A. Car attributes and partial utilities

In this Appendix, we present the following data previously shown in Ref. [50]: profiles of 25 HEVs in
Tab. 5, PHEVs in Tab. 6 and BEVs in Tab. 7, as well as attributes of vehicles together with their corre-
sponding partial utilities in Tab. 8. We provide them here for convenience and to facilitate understanding
of the model.

B. Grid-search calibration

B.1. Procedure
We run the simulations for αPHEV ∈ {4, 5, ..., 14} and αBEV ∈ {0, 0.1, ..., 1.5} and choose such a com-
bination that minimizes the mean square error, given by Eq. (6). Since the survey does not provide any
data to estimate the strengths of marketing for different vehicle types, we set hHEV = 0, hPHEV = 0,
and hBEV = 0, which corresponds to a scenario without marketing influence. Note, however, that the
strengths of marketing can be included into the calibration procedure. Then, instead of setting them to
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Table 5. Profiles of 25 HEVs considered in the simulations. The same car profiles were used in the conjoint analysis in
Ref. [50].

ID Safety level Purchase price Access to service Functionality level Car type

1 Low 150 000 zł 130 km Low Urban

2 Very high 300 000 zł 40 km Very high Urban

3 Medium 250 000 zł 130 km Very low Compact

4 Very high 150 000 zł 100 km Very low Sedan

5 Very low 300 000 zł 130 km Medium VAN

6 Very high 200 000 zł 130 km High SUV

7 Low 100 000 zł 100 km High VAN

8 Medium 150 000 zł 70 km Very high VAN

9 Medium 100 000 zł 40 km Low SUV

10 Very low 100 000 zł 10 km Very low Urban

11 High 100 000 zł 130 km Very High Sedan

12 High 150 000 zł 10 km Medium SUV

13 Low 300 000 zł 70 km Very low SUV

14 Very low 250 000 zł 100 km Very high SUV

15 Very high 100 000 zł 70 km Medium Compact

16 Medium 200 000 zł 100 km Medium Urban

17 High 250 000 zł 70 km High Urban

18 Very low 200 000 zł 70 km Low Sedan

19 Medium 300 000 zł 10 km High Sedan

20 Very low 150 000 zł 40 km High Compact

21 Low 250 000 zł 40 km Medium Sedan

22 High 200 000 zł 40 km Very low VAN

23 Low 200 000 zł 10 km Very High Compact

24 Very high 250 000 zł 10 km Low VAN

25 High 300 000 zł 100 km Low Compact

zero, they become additional calibration parameters, which are estimated during the calibration process.
However, optimizing five parameters using the grid search algorithm can be time-consuming. Therefore,
we employ an alternative calibration algorithm for this purpose: the tree-structured Parzen estimator
algorithm presented in the main text.

B.2. Results
Fig. 11 illustrates the calibration procedure conducted for all the models: columns correspond to different
networks, whereas rows to different initialization conditions. In each subplot, a red dot indicates values
of αPHEV and αBEV that minimize the mean square error (MSE). These values are presented in Tab. 9,
and they are used in the further simulations. The MSE landscapes in Fig. 11 are similar for the same
initialization conditions regardless of the network structure. The calibration parameter αBEV is around
one order of magnitude smaller than αPHEV, which is consistent with the calibration based on the tree-
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Table 6. Profiles of 25 PHEVs considered in the simulations. The same car profiles were used in the conjoint analysis in
Ref. [50].

ID Safety level Purchase price Access to service Access to charging Range

1 Medium 300 000 zł 70 km 40 km 60 km

2 Very high 150 000 zł 70 km 100 km 20 km

3 Very high 250 000 zł 130 km 70 km 100 km

4 Very low 150 000 zł 40 km 70 km 60 km

5 Low 200 000 zł 40 km 100 km 40 km

6 Medium 250 000 zł 40 km 130 km 20 km

7 Medium 200 000 zł 10 km 70 km 80 km

8 Very high 200 000 zł 100 km 10 km 60 km

9 Low 300 000 zł 100 km 70 km 20 km

10 Low 250 000 zł 70 km 10 km 80 km

11 Low 100 000 zł 130 km 130 km 60 km

12 Medium 150 000 zł 130 km 10 km 40 km

13 Very high 300 000 zł 10 km 130 km 40 km

14 High 300 000 zł 40 km 10 km 100 km

15 Medium 100 000 zł 100 km 100 km 100 km

16 High 100 000 zł 70 km 70 km 40 km

17 Very low 100 000 zł 10 km 10 km 20 km

18 Very high 100 000 zł 40 km 40 km 80 km

19 Very low 250 000 zł 100 km 40 km 40 km

20 High 200 000 zł 130 km 40 km 20 km

21 High 150 000 zł 100 km 130 km 80 km

22 High 250 000 zł 10 km 100 km 60 km

23 Very low 300 000 zł 130 km 100 km 80 km

24 Very low 200 000 zł 70 km 130 km 100 km

25 Low 150 000 zł 10 km 40 km 100 km

structured Parzen estimator algorithm, presented in the main paper. Fig. 10 presents the time evolution
of the calibrated models on a square lattice.Just after around five Monte Carlo steps, the simulated adop-
tion levels (represented by symbols) start closely approximating the estimated adoption levels from the
surveys (represented by horizontal solid lines), which is also consistent with the results based on the the
tree-structured Parzen estimator algorithm. Similar situation takes place in the case of the Watts-Strogatz
networks.

After calibrating the model, we examine how the strength of marketing affects the steady-state adop-
tion levels of different AFVs. We compare the models calibrated to different networks and to different
combinations of heterogeneous and homogeneous initial conditions.

Each panel of Figs. 12-14 illustrates the results for the systems where we vary the marketing strength
only for one vehicle type, and the marketing strengths for the remaining two types are set to zero. When
all three marketing strengths are equal to zero, hHEV = 0, hPHEV = 0, and hBEV = 0, all the models
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Table 7. Profiles of 25 BEVs considered in the simulations. The same car profiles were used in the conjoint analysis in
Ref. [50].

ID Safety level Purchase price Access to service Access to charging Range

1 Very low 250 000 zł 100 km 100 km 500 km

2 Medium 300 000 zł 40 km 100 km 700 km

3 Very high 300 000 zł 100 km 70 km 100 km

4 Very high 250 000 zł 70 km 40 km 300 km

5 High 250 000 zł 40 km 130 km 100 km

6 Low 150 000 zł 70 km 100 km 100 km

7 Low 100 000 zł 40 km 70 km 300 km

8 Very low 150 000 zł 40 km 40 km 900 km

9 Low 250 000 zł 130 km 10 km 700 km

10 Medium 150 000 zł 100 km 10 km 300 km

11 Low 300 000 zł 10 km 40 km 500 km

12 Low 200 000 zł 100 km 130 km 900 km

13 High 300 000 zł 70 km 10 km 900 km

14 High 200 000 zł 10 km 100 km 300 km

15 Very low 100 000 zł 10 km 10 km 100 km

16 Very low 200 000 zł 70 km 70 km 700 km

17 Medium 250 000 zł 10 km 70 km 900 km

18 Very high 150 000 zł 10 km 130 km 700 km

19 Very high 200 000 zł 40 km 10 km 500 km

20 Medium 100 000 zł 70 km 130 km 500 km

21 High 100 000 zł 100 km 40 km 700 km

22 Very high 100 000 zł 130 km 100 km 900 km

23 High 150 000 zł 130 km 70 km 500 km

24 Medium 200 000 zł 130 km 40 km 100 km

25 Very low 300 000 zł 130 km 130 km 300 km

produce very similar results since they were calibrated under such conditions. However, as the values of
these parameters increase, we observe an increase in the divergence of adoption levels. Again, as with
the results from the tree-structured Parzen estimator algorithm, marketing strength is the most important
factor influencing adoption in the given vehicle category. Again, at the macro level, the differences
between the 12 models are not significant. The main difference between these results and those presented
in the main paper concerns the role of the network. Here we see no significant difference between the
square lattice and other networks.
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Figure 13. Comparison between the stationary adoption levels for (a-c) HEVs, (d-f) PHEVs, and (g-i) BEVs obtained for
the models with different combinations of initialization conditions. Networks: (left column) square lattice with N = 1024

agents (32× 32); (middle column) Watts-Strogatz network with N = 1024 agents, 〈k〉 = 4, and β = 0; (right column)
Watts-Strogatz network with N = 1024 agents, 〈k〉 = 4, and β = 1. Only the marketing strength for PHEVs is varied, the

rest of the marketing strengths are set to 0, i.e., hHEV = 0 and hBEV = 0. Horizontal, continuous lines correspond to the
percentages estimated in the survey [50]; see Fig. 5. The error (SEM) bars are of the order of the symbol size.
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percentages estimated in the survey [50]; see Fig. 5. The error (SEM) bars are of the order of the symbol size.
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Table 8. Attributes of vehicles together with their corresponding partial utilities estimated through the conjoint analysis of
consumers’ preferences conducted in Ref. [50].

Engine types Attributes Levels and partial utilities

HEV Safety level Very low Low Medium High Very high

−0.834 −0.591 0.175 0.577 0.672
Purchase price 100 000 zł 150 000 zł 200 000 zł 250 000 zł 300 000 zł

0.782 0.382 −0.018 −0.392 −0.753
Access to service 10 km 40 km 70 km 100 km 130 km

0.166 −0.037 0.197 −0.281 −0.045
Functionality level Very low Low Medium High Very high

−0.345 −0.237 0.307 0.061 0.214
Car type Urban Compact Sedan SUV VAN

−0.247 0.047 −0.105 0.324 −0.018
PHEV Safety level Very low Low Medium High Very high

−0.706 −0.366 0.077 0.341 0.653
Purchase price 100 000 zł 150 000 zł 200 000 zł 250 000 zł 300 000 zł

0.694 0.257 0.014 −0.353 −0.612
Access to service 10 km 40 km 70 km 100 km 130 km

−0.055 0.247 −0.078 0.056 −0.17
Access to charging 10 km 40 km 70 km 100 km 130 km

0.223 0.283 0.076 −0.194 −0.388
Range 20 km 40 km 60 km 80 km 100 km

−0.524 −0.254 −0.058 0.365 0.47
BEV Safety level Very low Low Medium High Very high

−0.927 −0.644 0.039 0.722 0.81
Purchase price 100 000 zł 150 000 zł 200 000 zł 250 000 zł 300 000 zł

0.741 0.463 −0.049 −0.361 −0.795
Access to service 10 km 40 km 70 km 100 km 130 km

0.068 0.034 −0.19 0.039 0.049
Access to charging 10 km 40 km 70 km 100 km 130 km

0.039 0.049 0.098 0.039 −0.224
Range 100 km 300 km 500 km 700 km 900 km

−0.663 −0.098 0.171 0.283 0.307
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Table 9. Parameters αPHEV and αBEV obtained form the calibration procedure based on the grid search for different model
setups with the corresponding mean square errors (MSE).

Heterogeneous
αPHEV αBEV MSE

Susceptibilities Driving patterns
Square lattice with N = 1024 agents (32× 32)

no no 8 0.7 0.000556
no yes 8 0.8 0.000532
yes no 6 0.1 0.000479
yes yes 7 0.8 0.000533

Watts-Strogatz network with N = 1024 agents, 〈k〉 = 4, and β = 0
no no 7 0.7 0.000523
no yes 8 0.7 0.000561
yes no 6 0.1 0.000528
yes yes 7 0.4 0.000506

Watts-Strogatz network with N = 1024 agents, 〈k〉 = 4, and β = 1
no no 8 0.6 0.000555
no yes 8 0.8 0.000515
yes no 6 0.2 0.000519
yes yes 6 0.6 0.000528
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