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Abstract

The beta regression model (BRM) is a well-known approach to modeling a response variable that has a beta distribution.
The maximum likelihood estimator (MLE) does not produce accurate results for the BRM when the data has a high degree
of multicollinearity. We propose a one-parameter beta Liu estimator (OPBLE) for the BRM to tackle the weaknesses of the
available Liu estimator in dealing with the issue of multicollinearity. Using the mean square error (MSE), we analytically show
that the proposed estimator performs more efficiently than the MLE, beta ridge regression estimator (BRRE), and beta Liu
estimator (BLE). We conduct a simulation study and use two practical examples to investigate the performance of the OPBLE.
Using the findings from the simulations and empirical studies, we demonstrate the superiority of the proposed estimator over
the MLE, BRRE, and BLE in the presence of multicollinearity in the regressors.

Keywords: beta regression, mean square error, beta liu estimator, multicollinearity

1. Introduction

The most popular model to model the ratio and rate types response variables that are well fitted to the beta
distribution is the beta regression model (BRM) introduced by Ferrari and Cribari-Neto [12]. The BRM
has various applications, for example, to model the proportion of income spent on food, to model the
level of poverty, to model the proportion of crude oil and many others. The most frequently used method
to estimate the unknown regression parameters of the BRM is the maximum likelihood estimator (MLE).
Like the linear regression model (LRM), the BRM also has the assumption that explanatory variables
are not perfectly linearly correlated [15, 18] but in practice, there are situations where the explanatory
variables are usually correlated, especially in the field of economics, health, and social sciences. The
correlation among explanatory variables is alarming for the MLE and related inferences [15, 18]. This
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situation is particularly called multicollinearity. Due to multicollinearity, the accuracy of the MLE be-
comes doubtful due to the large variance in the regression estimates [20]. To overcome this problem,
many authors developed some biased estimation methods for the LRM, the generalized linear model
(GLM), and the BRM. One of the most well-known and commonly used methods to overcome the effect
of multicollinearity is ridge regression estimation (RRE). Hoerl and Kennard [13] first proposed the RRE
method for the LRM, where the ridge parameter contributes the main role. Many researchers introduced
different methods for finding the best value of biasing parameter k for the RRE [3, 6, 8, 9, 13, 16].

The consequence of multicollinearity on the GLM has also been discussed by numerous researchers
using the ridge regression approach. Schaefer et al.[32] introduced the RRE for the logistic regression
model. For the logistic regression model, several ridge parameters were also proposed by Mansson and
Shukur [24]. Mansson and Shukur [25] developed a Poisson ridge regression (PRR) estimator. The RRE
for the negative binomial regression model was introduced by Mansson [22]. Amin et al. [7] evaluated the
effectiveness of inverse Gaussian ridge regression estimators. Abonazel and Taha[1] introduced several
ridge parameter estimators for the BRM. Amin et al. [5] proposed ridge estimators for the bell regression
model. Qasim et al. [31] developed some ridge parameter estimators for the BRM.

The Liu estimator (LE) [16] is another estimating technique that addresses the multicollinearity issue
in comparison to the RRE. Because it is a linear function of the shrinkage parameter, the LE is chosen
over the RRE. Some researchers developed different methods for the LE in the LRM [15, 18, 29]. For the
GLM, several researchers worked on the LE in contrast to ridge regression [23, 29, 31, 35]. Varathan and
Wijekoon [35] developed LE for the logistic regression model. Some researchers worked on the biased
estimation methods in the BRM to reduce the impact of multicollinearity on the ML estimates. Initially,
the LE for the BRM was considered by Karlsson et al. [15]. Then, Qasim et al. [30] considered the RRE
for the BRM. Algamal and Abonazel [4] introduced the Liu-type estimator for the BRM which was the
combination of ridge and Liu parameters. Abonazel et al. [2] worked on the two-parameter estimator
in the BRM. Abonazel et al. [1] proposed the Dawoud–Kibria estimator for thee BRM. Akram et al.
[3] considered the Kibria–Lukman estimator for the BRM. Mustafa et al.[26] suggested the best ridge
parameter for the BRM with different link functions. The LE has the weakness that it often produces
negative values of the Liu parameter. This limitation greatly disturbs the efficiency and effectiveness
of the LE. To overwhelm this restriction, some researchers suggested adjusted LE (ALE) and Liu-type
estimator (LTE). Some literature is also available on ALE and LTE for the LRM [14, 21].

Various researchers made different modifications to the biased estimators for the LRM and the GLM.
Recently, Seifollahi et al. [33] proposed the jackknife Liu-type estimator for the BRM. Karlsson et al. [15] in-
troduced the BRM’s LE but it has a limitation in that mostly the shrinkage parameter of the LE produces
negative values which affect the estimation procedure. Therefore, the current study introduces a new es-
timator that we call a modified one-parameter LE of the BRM to overcome the limitation of the available
LE. We derive the MSE of the available and proposed estimators. We also give theoretical comparisons
of these estimators under the MSE criterion. The rest of the article follows the methodology of the BRM
with all notations, mathematical formulation of the BRM, its estimation, and proposed estimator is illus-
trated in section 2. In this section, we also covered the theoretical properties of the suggested estimator
and how it stacks up against alternative estimators. In section 3, we give the complete computational
details of biased estimation methods and evaluate the performance of the shrinkage parameter estimators
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using Monte Carlo simulation with different multicollinearity levels, sample sizes, regressors, and dis-
persion. In section 4, two real-world applications are used to assess the effectiveness of the suggested
estimator. The concluding remarks of this study are given in section 5.

2. Methodology

2.1. The BRM

Suppose that y1, y2, . . . , yn are independent random variables with n observations that follow a beta
distribution with parameters u, v > 0, then the probability density function (pdf) of the beta distributions
has the following form

f(y;u, v) =
Γ (u, v)

Γ (u)Γ (v)
yu−1(1− y)v−1, y ∈ (0, 1) (1)

where Γ (·) represents the gamma function. The mean and variance of equation (1) are, respectively,
found to be

E(y) =
u

u+ v
and Var(y) =

uv

(u+ v)2(u+ v + 1)

.
Now suppose that µ =

u

u+ v
and φ = u+ v, and equation (1) is reparametrized by defining u = µφ

and v = φ− φµ, as

f(y;µ, φ) =
Γ (φ)

Γ (µφ)Γ (φ− φµ)
yµφ−1(1− y)φ−φµ−1, y ∈ (0, 1), 0 < µ < 1, φ > 0 (2)

where y ∼ β(µ, φ), µ indicate the mean of the response variable, and the precision parameter is denoted
by φ. According to new parameterization, the mean and variance of the response variable are given as

(y) = µ , Var(y) =
(µ)(1− µ)

(1 + φ)
, respectively.

The value of the dispersion parameter can be obtained by taking the reciprocal of φ which is δ = φ−1.
The link function for the BRM is expressed as

g(µi) = ηi = xtiβ (3)

where xi represents the ith row of X that is a data matrix of p regressors with order n× (p+1) including
intercept, β = (β0, β1, β2, . . . , βp)

t is the vector of regression coefficients with (p+1)× 1 order, g(.) is
the BRM link function and the linear predictor is denoted by ηi. The link function is strictly monotonic
and two times differentiable, i.e., g(.) : (0, 1)→ R. Several link functions are appropriate for fitting the
BRM. Ferrari and Cribari-Neto [11] introduced the logit link function for the BRM and it is the most
widely used link function. It can be expressed as

g(µi) = log

(
µi

1− µi

)
Using the logit link function the conditional mean of the dependent variable can be written as
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µi =
exp(xtiβ)

1 + exp(xtiβ)

where µ is the function of η. To estimate the BRM, first, we consider equation (2)’s log-likelihood
function, that is:

l(β) =
n∑

i=1

li (µi, φ) =
n∑

i=1

{logΓ (φ)− logΓ (µiφ)− logΓ (φ− µiφ)

+ (φµi − 1) log yi + (φ− µiφ− 1) log (1− yi)}

Suppose that the estimated value of β using MLE is β̂. Our main interest in the study is to find
the unknown parameter of a β vector. The estimation method known as MLE is commonly employed
to determine the values of regression coefficients βj that are unknown. The S(β) indicates the score
function of equation (4) and it is given as

S(β) = δX tT (y∗ − µ∗) (4)

where y∗ = log
y

1− y
, µ∗ = ψ(µδ)− ψ ((1− µ)δ) , X is a design matrix with dimension n × (p+ 1),

T = diag

[
1

g′ (µ1)
, . . . ,

1

g′ (µn)

]
, the digamma function denoted as ψ and g(·) is the logit link function.

Let ηi = g (µi) = log

(
µi

1− µi

)
= xtiβ, where xi correspond to the ith row of the data matrix, and repre-

sents the (p+ 1)× 1 vector of regression coefficients with intercept and p+ 1 represents the explanatory
variables including the intercept. Since equation (4) is nonlinear in β, it requires the utilization of an
iterative reweighted method. By the work of Abonazel and Taha [1], the iterative method provides a way
to compute β that is

βr+1 = βr +
{
Iββr

}−1 S (βr) (5)

The iteration denoted by r = 0, 1, 2, . . ., continues until convergence is achieved. In each iteration
Iββr represents the information matrix of β. In the final iteration [1], equation (5) can be expressed as

β̂MLE =
(
X tV̂ X

)−1

X tV̂ z (6)

where V = diag (v, v2, . . . , vn) , vi =
δ
(
ψ

′
(µiδ)− ψ

′
((1− µi) δ)

)
g′2 (µi)

and z = ηV −1T (y∗ − µ∗),

where V and z are measured on the last iteration. Fisher scoring iterative procedure used for the evalua-
tion of V and z. The estimation of the matrix MSE (MMSE) and scalar MSE can be achieved by consid-
ering α = ζtβ̂MLE and Λ = diag(λ1, λ2, . . . , λp+1) which is equal to ζ(X tV̂ X)ζt, where ζ indicates the
orthogonal matrix and whose columns are the eigenvectors ofX tV̂ X; i.e., ζ = (ζ1, ζ2, . . . , ζp+1) , where
ζj represents the jth eigenvectors of X tV̂ X and λ1 ≥ λ2 ≥, . . . , λp+1 ≥ 0 represents the eigenvalues of
the matrix X tV̂ X . Furthermore αj for all j = 1, 2, . . . , p+1 corresponds to the jth element of ζtβ̂MLE.
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Subsequently the covariance and MMSE of the β̂MLE are given by the following expression

Cov
(
β̂MLE

)
= δ̂

(
X tV̂ X

)−1

(7)

MMSE
(
β̂MLE

)
= ζΛ−1ζt (8)

The scalar MSE of the β̂MLE can be expressed as

MSE
(
β̂MLE

)
= E

(
β̂MLE − β

)t (
β̂MLE − β

)
= δ̂

[
tr
(
ζΛ−1ζt

)]
= δ̂

p+1∑
j=1

1

λj
(9)

where λj is the jth eigenvalue of the matrix X tV̂ X .
When the explanatory variables are correlated, then the X tV X matrix becomes ill-conditioned. Due

to this problem, the MSE of the MLE is inflated because of the small eigenvalues. The MLE of the
BRM becomes inflated and convoluted in the presence of multicollinearity, making it difficult to make
a valid inference. To deal with the problem of multicollinearity, some researchers introduced some biased
estimators for the BRM.

2.2. Beta ridge regression estimator

For the BRM, Qasim et al. [31] introduced the mean square error (BRRE) which can be defined as

β̂BRRE = Gkβ̂MLE (10)

where Gk =
(
X tV̂ X + kIp+1

)−1 (
X tV̂ X

)
, k > 0. The shrinkage parameter of the BRRE is denoted

by k and Ip+1 refers to the identity matrix with dimension (p + 1) × (p + 1). When k approaches to 0,
then β̂BRRE = β̂MLE We can express the bias vector and covariance matrix of equation (10) as

Bias
(
β̂BRRE

)
= −kζΛ−1

k β (11)

Cov
(
β̂BRRE

)
= δ̂ζΛ−1

k ΛΛ−1
k ζt (12)

Therefore, the MMSE of the BBRE is defined as

MMSE
(
β̂BRRE

)
= Gk

(
X tV̂ X

)−1

Gt
k + Bias

(
β̂BRRE

)
Bias

(
β̂BRRE

)t
= δ̂ζΛ−1

k ΛΛ−1
k ζt + k2ζΛ−1

k ββtΛ−1
k ζt

(13)

In equation (13), Λk is a diagonal matrix defined as diag (λ1 + k, λ2 + k, . . . , λp+1 + k) , and Λ =

diag (λ1, λ2, . . . , λp+1) which is equal to ζ
(
X tV̂ X

)
ζt, where the orthogonal matrix with its eigen-

vectors columns of X tV̂ X is denoted by ζ. Therefore, we apply the tr(.) operator on equation (13) to
find the scalar MSE of the BRRE as

MSE
(
β̂BRRE

)
= tr

{
MMSE

(
β̂BRRE

)}
= δ̂

p+1∑
j=1

λj

(λj + k)2
+k2

p+1∑
j=1

αj
2

(λj + k)2
, α = ζtβ̂MLE (14)
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2.3. Beta Liu estimator

Another estimator called the beta Liu estimator (BLE) in contrast to BRRE for the BRM was introduced
by Karlsson et al. [15]. It is defined as

β̂BLE = qdβ̂MLE (15)

where qd =
(
X tV̂ X + Ip+1

)−1 (
X tV̂ X + dIp+1

)
and d [0, 1] is a Liu parameter. We can define the

bias vector and covariance matrix of equation (15) as

Bias
(
β̂BLE

)
= ζ(d− 1)Λ−1

I β (16)

Cov
(
β̂BLE

)
= δ̂ζΛ−1

I ΛdΛ
−1ΛdΛ

−1
I ζt (17)

Therefore, the MMSE of the BLE is defined as

MMSE
(
β̂BLE

)
= qd

(
X tV̂ X

)−1

qtd + Bias
(
β̂BLE

)
Bias

(
β̂BLE

)t
= δ̂ζΛ−1

I ΛdΛ
−1ΛdΛ

−1
I ζt + (d− 1)2ζΛ−1

I ββtΛ−1
I ζt

(18)

where ΛI indicates diag (λ1 + I, λ2 + I, . . . , λp+1 + I) , and

Λd = diag (λ1 + d, λ2 + d, . . . , λp+1 + d)

The BLE’s scalar MSE can be expressed as

MSE
(
β̂BLE

)
= tr

{
MMSE

(
β̂BLE

)}
= δ̂

p+1∑
j=1

(λj + d)2

λj (λj + 1)2
+ (d− 1)2

p+1∑
j=1

αj
2

(λj + 1)2
(19)

2.4. Proposed estimator for the BRM

One of the limitations of the shrinkage parameter by Liu [16] is that it can return a negative value most
of the time, affecting the LE’s performance. To deal with this issue, we introduced a one-parameter BLE
(OPBLE) for the BRM as

β̂OPBLE = Bdβ̂MLE (20)

where Bd = (X tV̂ X + Ip+1)
−1
(X tV̂ X − d∗Ip+1) and 0 < d∗ < 1 indicates the Liu parameter of the

OPBLE. We can express the bias, covariance and MMSE of the OPBLE as

Bias
(
β̂OPBLE

)
= − (d∗ − 1)

(
X tV̂ X + Ip+1

)−1

β (21)

Cov
(
β̂OPBLE

)
= δ̂(X tV̂ X + Ip+1)

−1
(X tV̂ X − d∗Ip+1)

(
X tV̂ X

)−1

× (X tV̂ X − d∗Ip+1)
(
X tV̂ X + Ip+1

)−1
(22)
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Now the MMSE of the OPBLE is defined by

MMSE
(
β̂OPBLE

)
= Cov

(
β̂OPBLE

)
+ Bias

(
β̂OPBLE

)
Bias

(
β̂OPBLE

)t
= δ̂Bd

(
X tV̂ X

)−1

Bt
d + (d∗ − 1)2

(
X tV̂ X + Ip+1

)−1

ββt
(
X tV̂ X + Ip+1

)−1
(23)

The scalar MSE of the OPBLE can be written as

MSE
(
β̂OPBLE

)
= tr

{
MMSE

(
β̂OPBLE

)}
= δ̂

p+1∑
j=1

(λj − d∗)2

λj (λj + 1)2
+ (d∗ + 1)2

p+1∑
j=1

αj
2

(λj + 1)2
(24)

2.5. Theoretical comparison of the BRM estimators

Lemma 1 ([11]). Let G be a positive definite matrix, G > 0, and suppose that α specifies several
vectors, then G− ααt ≥ 0 only if αtG−1α ≤ 1.

Lemma 2 ([34]). Assume we have two estimators for the parameter θ denoted as θ̂1 = B1y and
θ̂2 = B2y. It is assumed that D = Cov

(
θ̂1

)
− Cov

(
θ̂2

)
> 0, where Cov

(
θ̂1

)
and Cov

(
θ̂2

)
are,

respectively, the covariance matrices of θ̂1 and θ̂2. Then the condition, MMSE
(
θ̂1

)
−MMSE

(
θ̂2

)
> 0

holds true only when ct2(D + c2c
t
2)

−1
c2 < 1. In this case c2 represent the bias and MMSE

(
θ̂j

)
=

Cov
(
θ̂j

)
+ cjc

t
j, where the bias vector of θ̂j is denoted by cj .

Theorem 1. In the BRM, if d∗ > 0, it indicates that the estimator β̂OPBLE performs superior to β̂MLE,

that is ∆1 = MMSE
(
β̂MLE

)
−MMSE

(
β̂OPBLE

)
> 0 if and only if,

btOPBLE

[(δ̂(X tV̂ X)
−1

− δ̂
(
X tV̂ X + Ip+1

)−1

(X tV̂ X − d∗Ip+1)
(
X tV̂ X

)−1

(X tV̂ X − d∗Ip+1)
(
X tV̂ X + Ip+1

)−1

)

]−1

bOPBLE < 1

where bOPBLE = − (d∗ − 1)
(
X tV̂ X + Ip+1

)−1

β.

Proof. The discrepancy between the MMSE functions of the MLE and the OPBLE is determined by

∆1 =

[δ̂ (X tV̂ X
)−1

− δ̂
(
X tV̂ X + Ip+1

)−1

(X tV̂ X − d∗Ip+1)
(
X tV̂ X

)−1

(X tV̂ X − d∗Ip+1)
(
X tV̂ X + Ip+1

)−1

− bOPBLEbtOPBLE

]
(25)

∆1 = δ̂
(
X tV̂ X

)−1
[Ip+1 −

(
X tV̂ X + Ip+1

)−1 (
X tV̂ X − d0Ip+1

)(
X tV̂ X − d∗Ip+1

)
(
X tV̂ X + Ip+1

)−1

]

− bOPBLEb
t
OPBLE

(26)
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However, the difference of the scalar MSEs for equation (26) can be expressed as

MSE
(
β̂MLE

)
−MSE

(
β̂OPBLE

)
= δ̂ζdiag

{
1

λj
−

(λj − d∗)2

λj (λj + 1)2

}p+1

j=1

ζt − btOPBLEbOPBLE (27)

MSE
(
β̂MLE

)
−MSE

(
β̂OPBLE

)
= δ̂ζdiag

{
(λj + 1)2 − (λj − d∗)2

λj(λj + 1)2

}p+1

j=1

ζt − btOPBLEbOPBLE. (28)

The expression is given in equation (26), that is, Ip+1 −
(
X tV̂ X + Ip+1

)−1

(X tV̂ X − d∗Ip+1)

× (X tV̂ X − d∗Ip+1)
(
X tV̂ X + Ip+1

)−1

is p.d. (λj + 1)2 > (λj − d∗)2 which is further correspond-

ing to 2λj (d
∗ + 1) − d∗2 + 1) > 0. Using MMSE and scalar MSE criteria, it is, therefore sufficient to

prove that OPBLE showed better results than the MLE when 0 < d∗ < 1, ∀j = 1, 2, . . . , p+ 1. □

Theorem 2. In the context of BRM, if d∗ > 0, it implies that the estimator β̂OPBLE is superior to
β̂BRRE, that is ∆2 = MMSE

(
β̂BRRE

)
−MMSE

(
β̂OPBLE

)
> 0 if and only if,

btOPBLE

(δ̂
(
X tV̂ X + kIp+1

)−1 (
X tV̂ X

)(
X tV̂ X + kIp+1

)−1

− δ̂
(
X tV̂ X + Ip+1

)−1

(X tV̂ X − d∗Ip+1)
(
X tV̂ X

)−1

(X tV̂ X − d∗Ip+1)
(
X tV̂ X + Ip+1

)−1

)
−1

×bOPBLE < 1, where bOPBLE = − (d∗ − 1)
(
X tV X + Ip+1

)−1
β.

Proof. We compare the MMSEs of the BRRE and the OPBLE and their MMSEs difference is given as

∆2 =


δ̂
(
X tV̂ X + kIp+1

)−1(
X tV̂ X

)(
X tV̂ X + kIp+1

)−1

−δ̂
(
X tV̂ X + Ip+1

)−1(
X tV̂ X − d∗Ip+1

)
(
X tV̂ X

)−1(
X tV̂ X − d∗Ip+1

)(
X tV̂ X + Ip+1

)−1


+ bBRRE b

t
BRRE − bOPBLE b

t
OPBLE

(29)

where bBRRE = −k
(
X tV̂ X + kIp+1

)−1

. Though, the scalar MSEs difference of equation (29) is

MSE
(
β̂BRRE

)
−MSE

(
β̂OPBLE

)
= δ̂ζdiag

{
λj

(λj + k)2
−

(λj − d∗)2

λj (λj + 1)2

}p+1

j=1

ζt

+ btBRREbBRRE − btOPBLEbOPBLE

(30)

MSE
(
β̂BRRE

)
−MSE

(
β̂OPBLE

)
= δ̂ζdiag

{
λj

2 (λj + 1)2 − (λj − d∗)2(λj + k)2

λj(λj + k)2 (λj + 1)2

}p+1

j=1

ζt

+ btBRREbBRRE − btOPBLEbOPBLE

(31)
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Since btBRREbBRRE in equation (31) is positive definite. So, it is sufficient to demonstrate that

[δ̂ (X tV̂ X + kIp+1

)−1 (
X tV̂ X

)(
X tV̂ X + kIp+1

)−1

− δ̂
(
X tV̂ X + Ip+1

)−1

(X tV̂ X − d∗Ip+1)(
X tV̂ X

)−1

(X tV̂ X − d∗Ip+1)
(
X tV̂ X + Ip+1

)−1

]

+ bBRREb
t
BRRE − bOPBLEb

t
OPBLE

is p.d. if λ2j
(
λ2j + 1 + 2λj

)
>
[
λ2j + d∗2 − 2λjd

∗)(λ2j + k2 + 2λjk)
]
> 0, where j belongs to 1, ...p+1).

At this stage, if k > 0 and 0 < d∗ < 1, the completion of the theorem is achieved with the assistance of
Lemma 1 and Lemma 2. □

Theorem 3. In the BRM, if 0 < d < 1, and 0 < d∗ < 1, this condition implies that the estimator
β̂OPBLE is superior to β̂BLE, that is ∆3 =MMSE

(
β̂BLE

)
−MMSE

(
β̂OPBLE

)
> 0 if and only if,

btOPBLE

ϑ̂


δ̂
(
XtV̂ X + Ip+1

)−1 (
XtV̂ X + kIp+1

)−1 (
XtV̂ X + dIp+1

)(
XtV̂ X

)−1(
XtV̂ X + dIp+1

)(
XtV̂ X + kIp+1

)−1

− δ̂
(
XtV̂ X + Ip+1

)−1 (
XtV̂ X − d∗Ip+1

)
(
XtV̂ X

)−1 (
XtV̂ X − d∗Ip+1

)(
XtV̂ X + Ip+1

)−1

 c1c
t
1


−1

×bOPBLE < 1

where bOPBLE = − (d∗ − 1)
(
X tV X + Ip+1

)−1
β.

Proof. The distinction between MMSEs of the BLE and OPBLE is defined as

∆3 =


δ̂
(
X tV̂ X + Ip+1

)−1 (
X tV̂ X + dIp+1

)(
X tV̂ X

)−1 (
X tV̂ X + dIp+1

)
(
X tV̂ X + Ip+1

)−1

− δ̂
(
X tV̂ X + Ip+1

)−1 (
X tV̂ X − d∗Ip+1

)
(
X tV̂ X

)−1 (
X tV̂ X − d∗Ip+1

)(
X tV̂ X + Ip+1

)−1


+ bBLEb

t
BLE − bOPBLEb

t
OPBLE

(32)

∆3 = δ̂
(
XtV̂ X

)−1

×
[ (

XtV̂ X + Ip+1

)−1(
XtV̂ X + dIp+1

)(
XtV̂ X + dIp+1

)(
XtV̂ X + Ip+1

)−1

−
(
XtV̂ X + Ip+1

)−1(
XtV̂ X − d∗Ip+1

)(
XtV̂ X − d∗Ip+1

)(
XtV̂ X + Ip+1

)−1

]
+ bBLEb

t
BLE − bOPBLEb

t
OPBLE

(33)

where bBLE = (d− 1)
(
X tV̂ X + Ip+1

)−1

β. While the scalar MSEs difference of equation (33) can be
defined as

MSE
(
β̂BLE

)
−MSE

(
β̂OPBLE

)
= δ̂ζdiag

{
(λj + d)2

λj(λj + 1)2
−

(λj − d∗)2

λj (λj + 1)2

}p+1

j=1

ζt

+ btBLEbBLE − btOPBLEbOPBLE

(34)
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MSE
(
β̂BLE

)
−MSE

(
β̂OPBLE

)
= δ̂ζdiag

{
(d2 − d∗2) + 2λj (d+ d∗)

λj (λj + 1)2

}p+1

j=1

ζt + btBLEbBLE − btOPBLEbOPBLE

(35)

By observing that bBLEb
t
BLE is a non-negative definite term in equation (35), it becomes evident that[

δ̂ (X tV X + Ip+1)
−1

(X tV X + dIp+1) (X
tV X + dIp+1) (X

tV X + Ip+1)
−1 − δ̂ (X tV X + Ip+1)

−1

(X tV X − d∗Ip+1) (X tV X − d∗Ip+1) (X tV X + Ip+1)
−1

]
−bOPBLEb

t
OPBLE

is non-negative. Eq (34) is p.d. if (λj + d)2 − (λj − d∗)2 > 0 which is equivalent to

(
d2 − d∗2

)
+ 2λj (d+ d∗) > 0

Thus, if 0 < d < 1 and 0 < d∗ < 1, therefore the theorem is considered to be complete. □

2.6. Selection of the biasing parameter for the OPBLE

The selection of the biasing parameter for the OPBLE is an important issue. Hence, selecting an appro-
priate value for the biasing parameter is imperative to achieve the desired objective. There is no hard and
fast rule for finding the ideal value for the biasing parameter. We select the biasing parameter by follow-
ing the suggestions of Hoerl and Kennard [13], Kibria [17] and some other authors. For comparison, we
choose the following biasing parameter for the BRRE

k =
p+ 1
p+1∑
j=1

α2
j

(36)

We also consider another ridge parameter as given Algamal and Abonazel [4] and we call it the
optimum biased parameter as given by

kopt =
δ̂

p+1∑
j=1

α2
j

(37)

Similarly, we consider the following liu parameter for the BLE

d = max (0,min dj) (38)

where dj =
α2
j − δ̂(
δ̂

λj

)
+ α2

j

. It is possible to determine the optimal value of the biasing parameter for the

OPBLE by taking the partial derivative of equation (24) w.r.t. d∗, equating to zero and obtaining the jth
term as

d∗j =
λj(δ̂ + α2

j )

1 + λjα2
j

(39)
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For this study, we take a minimum value of equation (39) as

d∗ = min
(
d∗j
)

(40)

3. Monte Carlo simulation

A Monte Carlo simulation study will be executed to check the effectiveness of the proposed modified Liu
estimator. The following formula is used to generate the correlated regressors

xij =
(
1− ρ2

)( 1
2) zij + ρzi(j+1), i = 1, 2, . . . , n, j = 1, 2, . . . , p,

where ρ2 represent the level of correlation between predictors and random numbers zij are generated from
the standard normal distribution. Our study is concerned that the dependent variable y follows the beta
distribution which is generated as yi ∼ B(µ(xi), δ), i = 1, 2, . . . , n, where µ (xi) indicates the mean
function of the response variable. The regression parameter values of β are chosen under the common
restriction in the simulation study which is βtβ = 1 [17]. We considered various values for different
factors including sample size, dispersion, level of multicollinearity, and the number of regressors to
assess the performance of the BRM’s estimators. The assumed values of these factors are reported in
Table 1. The generated data is replicated 2000 times. The robust optimization problem is defined as
follows:

Table 1. Summary of Monte Carlo simulation design

Factor Notation Assumed values
Number of regressors p 4, 8, 12
Number of replicates m 2000
Dispersion parameter δ 0.5, 2, 4, 6, 8
Sample size n 25, 50, 100, 200, 300, 500
Degree of correlation ρ 0.8, 0.9, 0.95, 0.99

MSE is employed as the criterion for assessing the performance of the proposed estimator and other
existing estimators of the BRM under different conditions, which is computed as

MSE =

m∑
i=1

(
β̂i − β

)t (
β̂i − β

)
m

where β̂ is the estimator of β and m is the number of replications used in the Monte Carlo simulation
study. All the calculations are performed using R software. We also used the R package betareg() for the
support of numerical evaluation.

3.1. Results and discussion

Tables 2–16 provide the estimated MSEs for various conditions of the MLE, BRRE, BLE, and proposed
OPBLE. We noticed that the multicollinearity affects the simulated MSEs of the biased estimators. An
increase in correlation also increases the MSEs of the MLE, BRRE, BLE, and OPBLE. This is not true
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for smaller sample sizes, i.e., n = 25 and dispersion 0.5. When we increase the collinearity from 0.8 to
0.99, the results of the simulation show a direct relationship between MSEs and multicollinearity. We
also observed that the proposed OPBLE performed more efficiently than other estimators because it has
less MSE.

To check the influence of sample size on the MSEs of the MLE, BRRE, BLE, and OPBLE, we run
a simulation using sample sizes n = 25, 50, 100, 200, 300 and 500 while other factors remain fixed.
The simulated results while other factors remain fixed at δ = 0.5, p = 4, 8, 12 are presented in Tables
2, 7, and 12. The sample size has an inverse impact on the MSEs of the MLE as well as other estimators.
The MSEs of all estimators decreased mostly when we increased the sample size from 25 to 200. For
δ > 1, p = 4, 8, 12, the MSEs of all estimators are given in Tables 3–6, 8–11, and 13–16. It can be
noticed that as the sample size increases, the MSEs of the MLE, BRRE and BLE decrease. While the
MSE of our proposed estimator for these simulation conditions a little bit increases with the sample sizes
but is not larger than the MSEs of all other estimators. Moreover, the behavior of our proposed estimator
is more consistent than other considered estimators. In general, for most of the cases, the proposed
OPBLE shows a better performance than the MLE, BRRE, and BLE.

Table 2. Estimated MSEs for p = 4 and δ = 0.5.

n ρ MLE
BRRE BLE OPBLE

k1 kopt d d∗
25 0.8 1.6267 1.4242 1.5424 1.538 1.2809

0.9 2.3371 1.9417 2.167 2.1735 1.5665
0.95 4.116 3.274 3.7377 3.8725 2.187
0.99 16.4548 12.2894 14.5023 6.2118 3.7447

50 0.8 0.8545 0.8177 0.8414 0.8153 0.8055
0.9 1.0963 0.9974 1.0642 1.0614 0.9632
0.95 1.695 1.4735 1.6229 1.6414 1.331
0.99 6.2032 4.9659 5.7697 5.4936 2.5118

100 0.8 0.5466 0.5416 0.5448 0.5421 0.54
0.9 0.682 0.6566 0.6748 0.6768 0.6545
0.95 0.9191 0.857 0.9022 0.9115 0.845
0.99 2.8285 2.3508 2.6883 2.8027 1.8328

200 0.8 0.5133 0.5119 0.5128 0.5132 0.5115
0.9 0.6116 0.6027 0.6093 0.6081 0.603
0.95 0.7505 0.7302 0.7454 0.7449 0.7297
0.99 1.8719 1.7071 1.8285 1.8553 1.5889

300 0.8 0.4482 0.4475 0.448 0.4481 0.4473
0.9 0.529 0.5241 0.5278 0.5271 0.5244
0.95 0.6491 0.6379 0.6464 0.6461 0.6383
0.99 1.5292 1.4321 1.5046 1.5218 1.3843

500 0.8 0.4148 0.4145 0.4147 0.4147 0.4145
0.9 0.475 0.4727 0.4744 0.4741 0.473
0.95 0.5769 0.5716 0.5756 0.5754 0.572
0.99 1.1595 1.1124 1.1479 1.1563 1.1002
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Results also demonstrate that increasing the number of explanatory variables has a direct impact on
the simulated MSEs of all estimators. Tables 2–16 show that if we increase the number of regressors
while holding all the other factors fixed including dispersion parameter, multicollinearity, and sample
size, then the MSEs increase for the MLE, BRRE, BLE, and OPBLE. From these tables, it also observed
that the proposed estimator for the BRM outperforms other estimators for all conditions.

When the level of dispersion is increased, most often increases the MSEs of all estimators in the
BRM. This suggests a direct correlation between the MSEs of estimators and the dispersion parameter.
Furthermore, in most of the situations, the proposed OPBLE exhibits superior performance compared to
the other estimators being compared.

Table 3. Estimated MSEs for p = 4 and δ = 2

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 5.6727 4.3963 4.4811 3.6722 2.5208
0.9 6.6938 5.0402 5.1576 4.5585 3.0298
0.95 7.8123 5.4778 5.675 5.7851 3.4965
0.99 17.4372 8.4249 9.2387 8.4085 4.1447

50 0.8 4.6691 4.1156 4.2446 3.6365 2.9453
0.9 5.1195 4.4935 4.6294 4.0129 3.2971
0.95 5.5564 4.7533 4.9378 4.4522 3.5604
0.99 9.0352 5.985 6.4775 7.7683 4.0575

100 0.8 3.9845 3.7545 3.8283 3.5449 3.2927
0.9 4.3575 4.1084 4.1865 3.8922 3.593
0.95 4.7215 4.4132 4.5063 4.2407 3.8113
0.99 6.2113 5.0902 5.3458 5.6983 4.0462

200 0.8 4.1118 3.9951 4.0376 3.8853 3.7353
0.9 4.4874 4.364 4.4092 4.2493 4.0727
0.95 4.7409 4.5991 4.6509 4.4978 4.2621
0.99 5.5914 5.1224 5.2716 5.3315 4.3712

300 0.8 4.0358 3.9581 3.9871 3.8846 3.7807
0.9 4.333 4.2526 4.2832 4.1782 4.0692
0.95 4.5576 4.4678 4.5017 4.3982 4.2572
0.99 5.2307 4.9395 5.0404 5.0629 4.4437

500 0.8 3.9603 3.9155 3.9328 3.8708 3.8151
0.9 4.2459 4.2001 4.2181 4.1549 4.0971
0.95 4.4295 4.3796 4.3991 4.3367 4.2698
0.99 4.9205 4.7718 4.8267 4.8245 4.4982

4. Applications

In this section, we assess the performance of the proposed estimator and compare its performance with
the available estimators using two real-life applications. The BRM’s coefficients using MLE, BRRE,
BLE, and OPBLE are obtained using equations (6), (10), (15), and (20), respectively. The scalar MSEs
of MLE, BRRE, BLE, and OPBLE are obtained using equation (9), (14), (19), and (24). The value of the
ridge parameter of the BRRE is estimated using equation (36), the value of the BLE’s Liu parameter is
estimated using equation (38), and the value of the modified Liu parameter for the OPBLE is computed
using equation (40).
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Table 4. Estimated MSEs for p = 4 and δ = 4

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 10.9029 8.313 7.0937 5.6152 3.8426
0.9 12.085 9.1487 7.994 6.7026 4.9833

0.95 13.061 9.4236 8.426 8.0954 5.72
0.99 23.5898 11.816 10.5557 9.3159 6.5346

50 0.8 9.0335 7.9328 7.6178 6.1175 4.3582
0.9 9.7213 8.5351 8.1916 6.6575 5.3508

0.95 10.4674 9.0672 8.7335 7.3121 6.3666
0.99 13.3232 9.6661 9.3111 10.0046 7.4787

100 0.8 8.2511 7.7764 7.6921 6.8609 5.865
0.9 8.6697 8.1852 8.1049 7.2658 6.3384

0.95 9.0805 8.5416 8.4521 7.6458 6.802
0.99 10.6487 9.1846 9.0578 9.1847 7.7419

200 0.8 8.4303 8.193 8.1683 7.7018 7.0609
0.9 8.7619 8.5235 8.5031 8.0448 7.403

0.95 9.2039 8.9425 8.9198 8.465 7.7617
0.99 10.1681 9.4972 9.4632 9.3991 8.2662

300 0.8 8.2777 8.1203 8.1072 7.7892 7.3442
0.9 8.6945 8.5357 8.5252 8.2069 7.7824

0.95 8.9958 8.8258 8.8144 8.5023 8.0462
0.99 9.5893 9.2073 9.1902 9.0828 8.3491

500 0.8 8.1828 8.0917 8.0856 7.8918 7.6414
0.9 8.564 8.4731 8.4687 8.2769 8.0344

0.95 8.8271 8.7321 8.7281 8.539 8.2919
0.99 9.265 9.0656 9.0602 8.9732 8.4717

Table 5. Estimated MSEs for p = 4 and δ = 6

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 14.7185 10.973 8.0793 6.665 4.3535
0.9 15.654 11.656 8.9923 7.7714 5.7363

0.95 16.694 12.0191 9.5434 9.4094 6.7056
0.99 25.6592 13.6293 11.1415 11.6787 7.7544

50 0.8 12.4739 10.8608 9.7074 7.5978 5.0652
0.9 13.2995 11.5857 10.3435 8.1811 6.6357

0.95 13.8202 11.923 10.7149 8.6799 7.9298
0.99 17.013 12.7442 11.4866 11.7198 9.5562

100 0.8 11.5609 10.8485 10.3895 9.0351 7.068
0.9 12.1141 11.3889 10.9241 9.5528 7.8997

0.95 12.4309 11.6569 11.2012 9.9079 8.7034
0.99 14.0997 12.371 11.7944 11.5182 10.3657

200 0.8 11.7032 11.353 11.1646 10.3699 9.0352
0.9 12.2563 11.9015 11.7138 10.9188 9.5995

0.95 12.6721 12.2939 12.0982 11.3153 10.1259
0.99 13.5851 12.7919 12.5021 12.1719 11.1892

300 0.8 11.6845 11.4472 11.3191 10.7512 9.7662
0.9 12.1288 11.8934 11.7741 11.215 10.3061

0.95 12.3722 12.1263 12.0052 11.4634 10.6105
0.99 12.9842 12.5077 12.3339 12.0609 11.3076

500 0.8 11.4841 11.3473 11.2762 10.9308 10.3646
0.9 12.0031 11.8668 11.7994 11.4565 10.9138

0.95 12.1705 12.0323 11.9687 11.6381 11.1308
0.99 12.7686 12.5086 12.4064 12.2198 11.5714
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Table 6. Estimated MSEs for p = 4 and δ = 8

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 17.7771 12.9607 8.2386 7.2881 4.5796
0.9 19.1419 13.9393 9.1831 8.4445 6.1148

0.95 20.4014 14.3687 9.808 10.6906 7.0699
0.99 29.99 15.9577 11.6509 11.5559 8.1024

50 0.8 15.4373 13.2619 10.8196 8.4597 5.3986
0.9 16.4621 14.1952 11.6896 9.146 7.4735

0.95 16.9495 14.4739 12.0139 9.6762 9.0233
0.99 19.5518 15.021 12.84 12.8288 10.8735

100 0.8 14.3452 13.3974 12.3693 10.5723 7.6284
0.9 15.0445 14.0819 13.039 11.1983 8.9224

0.95 15.3479 14.3323 13.2916 11.5509 10.1703
0.99 16.8528 14.8748 13.744 13.063 12.2195

200 0.8 14.5481 14.0728 13.5897 12.4593 10.1642
0.9 15.0708 14.6015 14.1522 13.0386 10.983

0.95 15.4441 14.9512 14.4906 13.4098 11.7923
0.99 16.503 15.5588 14.9629 14.3714 13.4981

300 0.8 14.3788 14.0642 13.7546 12.9484 11.288
0.9 14.9167 14.6051 14.3128 13.5198 12.0323

0.95 15.2359 14.9131 14.6183 13.8444 12.5996
0.99 15.9811 15.379 14.9741 14.5465 13.7678

500 0.8 14.2057 14.024 13.8498 13.3503 12.3687
0.9 14.7367 14.5569 14.3917 13.9005 12.985

0.95 15.0466 14.8624 14.6962 14.2143 13.3771
0.99 15.4625 15.1498 14.9228 14.6338 13.9063

Table 7. Estimated MSEs for p = 8 and δ = 0.5

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 7.9249 6.5184 7.4923 7.0793 5.8303
0.9 10.4156 8.2095 9.7746 9.5866 6.6309
0.95 10.9676 7.1222 9.5734 10.3493 3.6347
0.99 54.577 35.8714 48.1431 26.3426 9.3

50 0.8 1.6661 1.5407 1.6403 1.5377 1.5355
0.9 2.5048 2.1784 2.4442 2.1469 2.1135
0.95 3.9392 3.2184 3.8069 3.162 2.8597
0.99 17.411 13.3494 16.631 12.3559 5.35

100 0.8 1.3449 1.3163 1.3403 1.3412 1.3214
0.9 1.9781 1.8993 1.9665 1.9626 1.9059
0.95 3.125 2.9547 3.1009 3.1046 2.9232
0.99 11.4429 10.4586 11.3028 11.4011 8.6275

200 0.8 1.0582 1.0542 1.0576 1.053 1.055
0.9 1.3347 1.3123 1.3318 1.324 1.3182
0.95 1.913 1.8613 1.9064 1.9086 1.8671
0.99 8.3474 7.9999 8.3015 8.323 7.7153

300 0.8 0.8432 0.8431 0.8432 0.8431 0.8428
0.9 1.0791 1.07 1.078 1.079 1.0731
0.95 1.4624 1.4381 1.4594 1.4607 1.4442
0.99 4.2847 4.1217 4.2646 4.2791 4.0391

500 0.8 0.7035 0.7029 0.7034 0.7032 0.7031
0.9 0.8546 0.851 0.8542 0.8536 0.8525
0.95 1.0502 1.0422 1.0493 1.0486 1.0452
0.99 2.241 2.1857 2.2344 2.2374 2.1872
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Table 8. Estimated MSEs for p = 8 and δ = 2

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 19.5656 15.5296 16.6683 18.1347 13.6347
0.9 21.2689 16.29 17.7462 19.9524 14.2943

0.95 13.7061 6.4912 7.8259 10.6906 4.1427
0.99 45.1537 13.7749 18.1899 17.1508 4.398

50 0.8 4.8108 3.7557 4.2869 3.7096 2.7147
0.9 5.7907 4.4336 5.1053 4.6285 3.2698

0.95 7.1938 5.1026 6.061 6.0716 3.6825
0.99 17.194 8.0899 11.3708 16.3888 4.1737

100 0.8 4.5322 4.126 4.3922 4.0597 3.6973
0.9 5.207 4.723 5.0426 4.7415 4.2238

0.95 6.2664 5.5286 6.0062 5.7938 4.7636
0.99 13.3323 9.4986 11.7306 12.7758 5.7439

200 0.8 4.2066 4.0111 4.1453 3.9768 3.8023
0.9 4.6818 4.4672 4.6172 4.4601 4.2405

0.95 5.2491 4.9576 5.1606 5.0374 4.6548
0.99 18.1175 16.5224 17.5221 18.0993 14.784

300 0.8 4.0156 3.8918 3.9785 3.8628 3.761
0.9 4.4348 4.3018 4.396 4.2853 4.155

0.95 4.8997 4.7256 4.8484 4.7525 4.5396
0.99 7.2296 6.3341 6.9289 7.104 5.3607

500 0.8 4.0113 3.9384 3.9899 3.9236 3.8646
0.9 4.3887 4.3148 4.3675 4.3027 4.2356

0.95 4.6743 4.5901 4.6504 4.5889 4.5031
0.99 5.8613 5.5292 5.7576 5.7697 5.1964

Table 9. Estimated MSEs for p = 8 and δ = 4

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 28.5676 22.2188 22.2754 23.5617 19.0484
0.9 30.7882 23.3811 23.452 25.8207 20.3857

0.95 19.2761 8.9954 8.2488 13.8258 5.5846
0.99 45.9419 13.0482 12.6691 14.1962 5.9767

50 0.8 9.2092 7.0696 7.4385 5.9706 4.1369
0.9 9.8922 7.5621 8.0139 6.802 5.2542

0.95 11.6515 8.4586 8.9694 8.4646 6.3376
0.99 20.9636 10.1788 11.355 19.0143 7.0692

100 0.8 8.5928 7.7657 8.1172 7.1312 5.9442
0.9 9.4029 8.5056 8.9057 8.0139 6.7724

0.95 10.2674 9.0554 9.5907 9.0136 7.2547
0.99 17.4921 11.8723 13.7623 16.5022 8.3247

200 0.8 7.9764 7.5872 7.7769 7.2812 6.6232
0.9 8.5386 8.1358 8.3406 7.8853 7.219

0.95 9.0188 8.5244 8.7837 8.4239 7.581
0.99 27.3647 25.0115 25.9423 27.1948 22.7907

300 0.8 7.8557 7.6024 7.728 7.38 6.9246
0.9 8.3013 8.0492 8.1819 7.8657 7.4283

0.95 8.7786 8.4729 8.6345 8.3622 7.7982
0.99 11.2586 9.8497 10.5013 10.9177 8.1452

500 0.8 7.949 7.7974 7.8744 7.6683 7.3679
0.9 8.3143 8.1683 8.2464 8.0579 7.781

0.95 8.6058 8.4489 8.5348 8.359 8.0663
0.99 9.7521 9.2544 9.5107 9.5048 8.491
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Table 10. Estimated MSEs for p = 8 and δ = 6

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 34.8583 26.2625 24.3811 26.1273 21.7235
0.9 36.6105 27.3061 25.8299 28.3968 23.0281

0.95 22.7772 10.5494 8.2257 18.3726 6.125
0.99 49.9893 14.6085 12.2166 19.3216 6.6605

50 0.8 12.7231 9.5149 9.1497 7.4051 5.0729
0.9 13.3887 10.0343 9.7824 8.2928 6.6152

0.95 14.784 10.6566 10.4819 9.8417 7.7449
0.99 24.3262 12.4254 12.3179 21.2951 8.916

100 0.8 11.752 10.5095 10.7536 9.135 6.9523
0.9 12.5236 11.2391 11.5498 10.1073 8.2495

0.95 13.4472 11.8632 12.2747 11.2152 9.2857
0.99 21.0634 14.3352 15.5175 19.4434 10.7216

200 0.8 11.0058 10.4242 10.5888 9.7219 8.3485
0.9 11.5973 11.0173 11.2084 10.4182 9.2044

0.95 12.2633 11.5706 11.8068 11.143 9.8361
0.99 34.188 31.3128 31.9158 33.744 28.8356

300 0.8 10.9412 10.5611 10.6738 10.0534 9.0784
0.9 11.4692 11.0969 11.2224 10.6586 9.7653

0.95 11.9134 11.4885 11.6401 11.1552 10.2149
0.99 14.4042 12.7077 13.2117 13.7821 10.7516

500 0.8 10.9814 10.7565 10.8281 10.46 9.8124
0.9 11.4094 11.1958 11.2734 10.9402 10.3665

0.95 11.7393 11.5173 11.603 11.2918 10.749
0.99 12.9337 12.2875 12.5174 12.5009 11.1612

Table 11. Estimated MSEs for p = 8 and δ = 8

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 39.4485 29.1499 25.838 27.754 23.3622
0.9 42.2345 30.5004 26.8285 30.3397 24.7902

0.95 26.8379 12.0367 7.9948 19.1334 6.2365
0.99 53.9231 16.0798 11.7998 20.6348 6.7055

50 0.8 15.546 11.3393 9.915 8.4121 5.6398
0.9 16.5495 12.1113 10.7511 9.3636 7.5158

0.95 17.723 12.6035 11.2989 10.8514 8.7455
0.99 26.842 14.2449 13.11 22.5399 9.9944

100 0.8 14.568 12.9007 12.8679 10.6527 7.6357
0.9 15.2537 13.5696 13.6212 11.6129 9.4201

0.95 16.2816 14.2718 14.423 12.9028 10.9117
0.99 23.7233 16.3099 16.7184 21.2734 12.6689

200 0.8 13.6063 12.8216 12.878 11.6189 9.3709
0.9 14.2825 13.5165 13.6226 12.4595 10.6169

0.95 14.9084 14.0326 14.1838 13.203 11.5659
0.99 39.4125 36.0321 36.2848 38.6312 33.2095

300 0.8 13.6338 13.1222 13.1689 12.2498 10.5996
0.9 14.1248 13.6313 13.7061 12.8809 11.4628

0.95 14.5505 14.0052 14.1029 13.3859 12.0691
0.99 17.3247 15.35 15.6409 16.3236 13.1747

500 0.8 13.5198 13.2231 13.2626 12.7229 11.6176
0.9 13.9883 13.7071 13.76 13.2702 12.3242

0.95 14.3118 14.022 14.0855 13.6325 12.7819
0.99 15.5245 14.7646 14.9286 14.8859 13.371
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Table 12. Estimated MSEs for p = 12 and δ = 0.5

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 10.8928 6.7019 9.1062 9.7983 4.3018
0.9 19.3459 11.7872 16.2625 17.2706 6.1183
0.95 38.1331 23.8021 32.3379 33.798 9.5264
0.99 183.5229 106.8655 148.4445 121.4217 19.6797

50 0.8 3.038 2.4237 2.9397 2.9971 2.3434
0.9 5.3933 4.1261 5.1923 5.3301 3.589
0.95 9.6336 6.9705 9.2077 9.5668 4.9616
0.99 47.0498 32.4977 44.6805 46.1444 11.2954

100 0.8 1.2083 1.1144 1.1978 1.1996 1.1427
0.9 2.0118 1.7925 1.9872 1.988 1.8274
0.95 3.4958 2.9985 3.4395 3.4543 2.9532
0.99 14.0756 11.2304 13.7241 13.9409 7.7806

200 0.8 1.2652 1.2439 1.2632 1.2598 1.2526
0.9 1.742 1.6961 1.7379 1.7314 1.7118
0.95 2.3535 2.2596 2.3451 2.339 2.2827
0.99 7.1028 6.5128 7.0474 7.065 6.1951

300 0.8 5.5136 5.4646 5.5096 5.5175 5.4878
0.9 6.4657 6.4131 6.4614 6.4696 6.4346
0.95 7.401 7.3403 7.3961 7.4049 7.3599
0.99 6.3588 6.088 6.3364 6.3428 5.9846

500 0.8 1.1709 1.1654 1.1704 1.1685 1.1678
0.9 1.4301 1.4216 1.4294 1.4263 1.4253
0.95 1.73 1.718 1.729 1.7258 1.7228
0.99 3.5037 3.4429 3.4989 3.4983 3.4481

Table 13. Estimated MSEs for p = 12 and δ = 2

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 15.7344 5.689 6.5827 15.0675 3.848
0.9 24.0933 8.6085 10.2454 22.6646 4.8819
0.95 36.5893 12.3591 15.7387 35.9252 5.5171
0.99 154.0891 39.6507 55.7465 40.5199 5.492

50 0.8 6.9195 5.1304 6.2452 5.6457 4.2239
0.9 9.1811 6.4019 8.0279 8.1925 5.2089
0.95 12.7737 7.8807 10.5738 12.2569 6.0566
0.99 42.8938 16.9143 29.3522 39.1001 7.4509

100 0.8 5.0074 4.3697 4.844 4.3299 3.8921
0.9 6.021 5.2024 5.8084 5.3594 4.613
0.95 7.4166 6.0943 7.0348 6.726 5.2016
0.99 16.767 9.9695 14.2217 15.9574 6.4379

200 0.8 5.0084 4.7328 4.9508 4.7153 4.5195
0.9 5.5868 5.2869 5.5258 5.3046 5.0593
0.95 6.2566 5.8497 6.1715 5.9792 5.5488
0.99 10.2234 8.1806 9.6772 9.9515 6.6249

300 0.8 17.1732 16.9419 17.1284 17.168 16.7532
0.9 18.3936 18.1471 18.3476 18.3854 17.958
0.95 19.3102 19.0068 19.2531 19.3007 18.7779
0.99 9.8072 8.4513 9.5053 9.6419 7.1987

500 0.8 4.9477 4.8438 4.9283 4.8344 4.7603
0.9 5.4241 5.32 5.4054 5.3143 5.2369
0.95 5.761 5.6459 5.7407 5.6549 5.5574
0.99 7.4043 6.958 7.317 7.306 6.6045
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Table 14. Estimated MSEs for p = 12 and δ = 4

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 21.8358 7.1535 6.4472 20.5903 4.6675
0.9 30.7594 10.0924 8.8312 29.832 5.5149
0.95 44.2534 13.1111 11.7057 33.1373 6.0881
0.99 159.2169 28.5049 28.0352 44.7997 6.2795

50 0.8 12.0233 8.81 10.0192 8.6437 6.8612
0.9 14.1017 10.0314 11.5637 11.6706 8.193
0.95 18.3279 11.6437 13.8208 17.1138 9.2776
0.99 44.3526 16.0826 22.1142 32.5165 10.1276

100 0.8 9.78 8.4833 9.2114 7.7882 6.4229
0.9 10.9201 9.4477 10.2885 9.0204 7.5765
0.95 12.3044 10.2405 11.3448 10.3849 8.4906
0.99 21.5375 12.6608 16.1504 19.3437 9.5907

200 0.8 9.0392 8.5128 8.8644 8.2446 7.5227
0.9 9.4471 8.9257 9.2861 8.7416 8.0514
0.95 10.0521 9.4162 9.8537 9.3772 8.5279
0.99 13.8808 11.2056 12.8019 13.2881 9.3392

300 0.8 27.0489 26.6041 26.908 26.9038 25.6606
0.9 28.4281 27.9831 28.296 28.2946 27.1283
0.95 29.3497 28.8316 29.1968 29.2236 27.9624
0.99 13.9408 11.8298 13.2074 13.5598 9.6193

500 0.8 9.0259 8.8205 8.9643 8.7074 8.3618
0.9 9.4699 9.2753 9.4161 9.1834 8.8744
0.95 9.8656 9.6515 9.8077 9.5909 9.2569
0.99 11.4922 10.7162 11.2547 11.2459 9.787

Table 15. Estimated MSEs for p = 12 and δ = 6

n ρ MLE BRRE BLE OPBLE
k1 kopt d d∗

25 0.8 25.7839 7.822 6.0674 20.3246 4.8335
0.9 36.0008 10.8222 7.8172 24.7202 5.6426
0.95 50.2725 13.9913 10.6588 28.1797 6.211
0.99 172.3873 26.2148 20.1025 34.7578 6.4978

50 0.8 15.6422 11.1608 11.9955 10.4718 8.3063
0.9 18.1839 12.8003 13.8443 14.2297 10.1095
0.95 22.2654 14.274 15.6177 20.3646 11.2281
0.99 50.2077 18.3165 21.7789 33.8359 12.0673

100 0.8 13.5587 11.5938 12.3323 10.0384 7.8388
0.9 14.846 12.6923 13.5464 11.4528 9.6825
0.95 16.4255 13.588 14.6507 13.0083 11.09
0.99 25.27 15.3518 17.6509 21.6516 12.4316

200 0.8 12.3032 11.5305 11.9494 10.892 9.4207
0.9 12.6669 11.9225 12.3555 11.4432 10.1941
0.95 13.1703 12.3111 12.8174 12.0353 10.7658
0.99 16.7537 13.6885 15.1862 15.7639 11.7053

300 0.8 34.1021 33.443 33.8109 33.7003 31.3009
0.9 35.5849 34.9336 35.3136 35.2222 33.1019
0.95 36.535 35.8177 36.2457 36.1987 34.1664
0.99 17.1971 14.608 16.0009 16.5558 11.9272

500 0.8 12.1939 11.8924 12.0701 11.6261 10.9065
0.9 12.6848 12.4015 12.5784 12.1817 11.5531
0.95 13.1241 12.8178 13.0123 12.6437 12.0021
0.99 14.8272 13.8444 14.4222 14.3931 12.5163
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Table 16. Estimated MSEs for p = 12 and δ = 8

n ρ MLE BRRE BLE OPBLE

25 0.8 30.0596 8.1133 5.8973 25.881 4.8666
0.9 39.0035 11.0563 7.7142 27.0869 5.7753
0.95 54.0946 14.2224 9.6198 31.2964 6.1617
0.99 180.5057 25.7764 17.8996 36.0216 6.6411

50 0.8 19.0266 13.2297 13.3192 12.1292 9.3609
0.9 21.4541 14.8014 15.0926 16.3695 11.2027
0.95 25.3127 16.1986 16.7121 23.5701 12.3763
0.99 53.1576 20.0377 21.4693 37.6457 13.3993

100 0.8 16.6409 14.0148 14.5397 11.5569 8.837
0.9 17.9558 15.1642 15.8171 13.0935 11.2563
0.95 19.7392 16.1544 16.9434 14.8264 12.9657
0.99 29.0784 17.8916 19.364 24.3167 14.6174

200 0.8 14.9089 13.8846 14.3055 12.818 10.5135
0.9 15.5227 14.535 14.99 13.664 11.8306
0.95 15.8652 14.77 15.3031 14.2022 12.5489
0.99 19.8695 16.16 17.5945 18.4119 13.7773

300 0.8 39.4939 38.611 38.9852 38.7583 34.9027
0.9 41.1584 40.3056 40.7043 40.4996 37.2998
0.95 42.2964 41.3686 41.8112 41.6737 38.7916
0.99 20.292 17.2047 18.5279 19.3429 14.1742

500 0.8 14.8812 14.4796 14.6695 14.0183 12.7622
0.9 15.4514 15.0765 15.2716 14.6874 13.649
0.95 15.9304 15.5288 15.7445 15.2097 14.2226
0.99 17.624 16.4481 17.0252 16.9747 14.8086

4.1. Gasoline yield data

The performance of the proposed OPBLE over the MLE, BRRE, and BLE is evaluated by considering the
gasoline yield dataset which is taken from Prater [28]. This application has four explanatory variables
that may affect crude oil (gasoline yield). These explanatory variables include crude oil gravity (x1),
vapor pressure on crude oil (x2), the temperature at which 10 percent of crude oil has vaporized (x3) , the
temperature at which all gasoline is vaporized (x4) . Lemonte et al. [19] found that the gasoline yield is
well-fitted to the beta distribution. So, the BRM is a more suitable model for this data. Qasim et al. [31]
and Pirmohammadi and Bidram [27] showed that the explanatory variables are multicollinear. Therefore,
we are considering this data to see the performance of our proposed estimator. Table 17 presents the
estimated coefficients and MSEs of the MLE, BRRE, BLE, and OPBLE. Table 17 indicates that the
proposed OPBLE has a minimum MSE than other estimators. Therefore, we can say that the proposed
OPBLE shows better performance than the MLE, BRRE, and BLE.

Table 17. Estimated coefficients and MSEs for the gasoline yield data

Terms MLE BRRE BLE OPBLE
k1 kopt d d∗

Intercept –2.6949 0.0007 0.0616 0.0282 –0.0006
x1 0.0045 –0.0096 –0.0099 –0.0098 –0.0098
x2 0.0304 –0.0427 –0.0444 –0.0435 –0.0419
x3 –0.011 –0.0187 –0.0189 –0.0188 –0.0187
x4 0.0106 0.0106 0.0106 0.0106 0.0106

MSE 21110.6 28 7.96 21.06 18.07
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4.2. Body fat data

We consider another application to illustrate the superiority of the proposed OPBLE which is the body fat
dataset. In this application, there are 252 observations with one response and 14 explanatory variables.
The response variable denoted as y, represents the percentage of body fat. The explanatory variables
include density determined from underwater weighing (x1), age (x2), weight (x3) , height (x4), neck
circumference (x5), chest circumference (x6), abdomen 2 circumference (x7), hip circumference (x8),

thigh circumference (x9), knee circumference (x10), ankle circumference (x11), biceps extended circum-
ference (x12), forearm circumference (x13), and wrist circumference (x14). These explanatory variables
are used to evaluate the impact of these factors on the percentage of body fat. This data is already used by
Dunder and Gengiz [10] and Amin et al. [6] in the BRM. To test the multicollinearity among explanatory
variables, we use the condition index (CI) which is mathematically defined as CI = (min/max)(1/2) where
λ1, λ2, . . . , λp are the eigenvalues of X tWX excluding intercept. We found that the CI of this dataset
is 13,762.92. This indicates the existence of severe multicollinearity among the explanatory variables.
So, we use this dataset to evaluate the performance of the proposed estimator. Table 18 presents the
estimated coefficients and MSEs of the MLE, BRRE with two biasing parameters, BLE, and OPBLE.
The proposed BRRE with optimum biasing parameter outperforms the other compared estimators in the
sense of minimal MSE. The second best estimator for this is the OPBLE as compared to the BRRE with
the first biasing parameter, MLE, and BLE. These results are also compatible with the simulation results
because, for n > 200, there is a minor difference among MSEs of the considered estimators and the
application has a sample of size 252.

Table 18. Estimated coefficients and MSEs for the body fat data

Terms MLE BRRE BLE OPBLE
k1 kopt d d∗

Intercept 30.6659 –0.0013 –0.4207 –0.0356 –0.1401
x1 –30.6599 –0.0022 –0.4332 –0.0365 –0.1835
x2 0.0018 0.0043 0.0041 0.0042 0.0041
x3 0.0005 0.0029 0.0006 0.0027 0.0021
x4 0.0048 –0.0123 –0.0103 –0.0125 –0.0117
x5 –0.004 –0.0387 –0.0343 –0.0385 –0.0374
x6 –0.001 –0.0171 –0.0152 –0.0172 –0.0163
x7 –0.0036 0.0682 0.0674 0.0684 0.0677
x8 –0.0056 –0.04 –0.0361 –0.0401 –0.0384
x9 0.0087 0.0103 0.0112 0.0102 0.0106

x10 0.0058 –0.0055 –0.002 –0.0051 –0.0045
x11 –0.0074 0.0029 0.0051 0.0032 0.0027
x12 0.0047 0.0202 0.0205 0.0204 0.02
x13 –0.0025 0.0277 0.0282 0.0277 0.0272
x14 0.0085 –0.1272 –0.1155 –0.1221 –0.1184

MSE 153898.3 12482.37 367.55 44.66 42.8

5. Conclusion

Different researchers developed some biased estimators for the BRM to deal with the issue of multi-
collinearity. So, we intended to propose an estimator for the BRM to deal with the multicollinearity issue
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in a more consistent way than the other available biased estimators. This estimator is called OPBLE. By
theoretical comparison, we show that the proposed OPBLE outperforms the MLE and other well-known
estimators such as BRRE and BLE. The performance of the proposed OPBLE is also evaluated with the
help of a simulation study using MSE as a performance evaluation criterion. In the simulation experiment,
multiple factors are considered to assess the performance of the proposed estimator. Through simulation
study results, it is determined that the proposed estimator exhibited higher efficiency compared to the
MLE and other existing biased estimators. Finally, we used two real-life applications to demonstrate
the efficiency of the proposed OPBLE where the proposed estimator mostly dominates the MLE, BRRE
and BLE in a sense of smaller MSE. We suggest the researchers use this estimator for the BRM in the
presence of multicollinearity. Furthermore, one can also work on robust biased estimators to deal with
the simultaneous issues of outliers and multicollinearity.
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