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Abstract

Inspired by a real-life manufacturing problem, we present a mathematical model and a heuristic that solves it. A desired
solution needs not only to maximize the company’s profit but must also be easy to interpret by the members of the man-
agement. The considered problem is thus a variant of the order acceptance and scheduling (OAS) problem, which can be
solved using known heuristics. Our approach is different because we study the mechanism by which setup times arise, unlike
other approaches where setup times are treated as parts of the instance. This enables us to develop a very fast and efficient
heuristic, formulate a MILP model that can be applied to solve much larger problems than previously known methods, and
ultimately meet decision-makers’ expectations. We prove the efficiency of the presented method by comparing its results with
the optimum obtained by a state-of-the-art solver. We also briefly discuss a case study that arose in a food industry company
in Poland.
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1. Introduction

The problem presented in this article is a real-life problem that appeared in the food production industry.
The details will be described in the following sections, as for now let us mention only that the company
under discussion produces various kinds of chips for several customers, being food retailers in Poland.
It possesses one production line that can be used for production, however it requires changeover/setup
almost whenever it switches from one order to another. The company’s primary objective is to maximize
profit, however, for several business reasons, the management is interested not only in an optimal solution
but also in being able to understand, what is the influence or significance of every single order on this
solution. For that reason, it is preferred to obtain some easily interpretable evaluation assigned to every
order, even if in consequence the obtained solution is only close to the global optimum. The main
constraint is the capacity of the production line, which implies that not all the orders can be fulfilled.
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Putting this together we can see that the problem we address is an order selection and scheduling problem
on a single machine to maximize the manufacturer’s profit, defined as total revenue. This problem has
been previously studied by Charnsirisaksul et al. [8] and Oǧuz et al. [35]. Both studies applied heuristics,
particularly the dynamic release first-sequence best (d-RFSB) heuristic with a complexity of O(n2). They
also provided a mixed-integer linear programming (MILP) formulation, but could only solve very small
instances with up to 15 orders using CPLEX [10]. Larger instances were not solved optimally. Our
approach differs in the way we deal with changeover times (setup times), which are the periods wasted
on setting up the machine when switching from one order to another. In previous studies, these times
were included as part of the problem instance. Motivated by a real-life case study, we investigated the
mechanisms causing these changeover times and found that they are driven by changes of a relatively
small number of features characterizing the orders, significantly fewer than the number of orders. As a
result, we achieved the following goals:

• We developed an efficient heuristic with computational complexity max(O(n log n), O(nm)),
where m is the number of features. Given that m = 3 in the real-life problem we examined, the
complexity was essentially O(n log n).

• We formulated a MILP model capable of solving very large problems in a reasonable time. For
instance, problems with 10,000 orders were solved optimally by the GUROBI [18] solver in an
average of 40 seconds, which was even faster than the d-RFSB heuristic.

• We provided a solution that is easily interpretable by management, meeting their strong preference
for understandable outcomes.

Let us briefly discuss the former research on these two topics. The order acceptance and scheduling
problem, sometimes referred to as the scheduling problem with rejections, has been widely studied at
least for the last thirty years. An extensive review of this topic collecting the research up to 2011 was
published by Slotnick [37]. The author presented a systematic review of various kinds of problem and
solution approaches. Earlier, two papers were published that attracted our interest. One of them is [9],
where the authors, motivated by a steel production problem, minimize the total cost, including the rejec-
tion cost and the transition cost. The solution method applied in their research is a hybrid evolutionary
algorithm joining a genetic algorithm and extreme optimization. In the other paper Oǧuz et al. [35] also
consider the variant with sequence-dependent setup times and other constraints, like time windows, to
find the optimal solutions of small instances with at most 15 orders and present heuristics solving larger
problems. More recently the order acceptance and scheduling with setup times was considered in [36],
where the authors focused, among others, on introducing several assumptions making the problem more
consistent with real-life problems. Other papers treating this topic are [41] and [42], where the authors
deal with the generalized order acceptance and scheduling problem. A variant similar to the one consid-
ered in our work has been analyzed by Ou [33], who considers batch processing on a single machine with
setup times, rejections, and the objective being the weighted sum of the makespan of the accepted jobs
and the total cost computed as the sum of the setup costs and rejection penalties. Another similar setting
was considered in [43]. In this case, the objective is equal to the total cost of earliness and tardiness
penalties, changeover costs, and rejection penalties. The variants of the problem with optimization of the
weighted sum of revenue and tardiness penalty on distinct parallel machines were solved by Emami et
al. by Lagrangian relaxation [14] and Benders decomposition [13]. A dynamic version of the problem,
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where the arrival times of orders are stochastic and follow a Poisson distribution, and the objective is the
expected revenue was studied in [17] and [47].

Some authors included the setup times in the processing times. Wang et al. [46] considered a job shop
problem in a make-to-stock / make-to-order manufacturing company. Another example is [29], where
the variant with time windows and the possibility of the capacity extension were included in the problem
set. Exact algorithms for this variant of the problem were presented in [28]. There are also papers, where
the setup/changeover times are not considered at all [19, 22, 26, 30, 34, 38].

One of the first papers where the scheduling problem with changeover times was analyzed is the
article of Lockett and Muhlemann [31], where the authors consider a branch-and-bound approach and
several heuristics. Another early paper on this topic is the one of Geoffrion and Graves [16], where
the authors applied a solution strategy using the quadratic assignment problem assisted with some linear
programming adjustments.

Several MIP formulations for the scheduling problems with sequence-dependent changeovers have
been proposed by Velez et al. [45]. Lee and Maravelias [25] mentioned the changeover times as a possible
extension of their MILP models for short-term scheduling. Blocher et al. [1] studied a discrete time
single machine scheduling problem with sequence-independent changeover times and applied a branch
-and-bound method to solve it. Hu et al. [21] studied the properties of a batch scheduling problem with
subassemblies. In particular, they characterized a set of optimal schedules. Konge and Subramanian
[23] presented and evaluated a MILP model for a scheduling problem with changeovers in an ice cream
production facility.

Bowers et al. [2] applied cluster analysis to reduce the sequence-dependent changeover times in a man-
ufacturing short-term scheduling problem. Clustering helped in reducing the complexity of the model,
otherwise equivalent to an appropriately defined instance of TSP. Hong et al. [20] applied accelerated
dynamic programming for car resequencing in automotive paint shops. In this case, the changeover times
depended on the sequence of orders, too. Also Sun and Han [40] studied scheduling with changeovers
in automotive paint shops. In particular, they applied two batching strategies to obtain color-oriented
batches before painting. Sun and Fan [39] in turn considered the car sequencing problem for mixed-
assembly lines, in particular applying multiple objective and colony optimization to find an approximate
solution to the problem.

Casado et al. [4] analyzed a scheduling problem with changeovers originating from the steel man-
ufacturing industry. After presenting an MIP formulation, they proposed a heuristic approach to solve
it and showed that some simplified variants of the problem are equivalent to clique partition and graph
coloring problems. Montoya-Torres et al. [32] used a randomized heuristic to solve scheduling prob-
lems with sequence-dependent setup times, motivated by real-life manufacturing systems. Duncan in her
thesis [12] focused on the scheduling problem with changeovers present in a company manufacturing
industrial equipment. In particular, she analyzed some pairing and grouping methods.

Many publications involving changeovers are connected with the applications in the chemical industry.
Castro et al. [6] modeled the sequence-dependent changeovers using TSP constraints in multiperiod refin-
ery planning. Castro [5] considered scheduling with changeovers in a multiproduct batch chemical plant,
using among others the resource-task network formulation of the problem. Castro et al. [7] presented
several mathematical models of batch scheduling problems with sequence-dependent setup times and
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solved them with a greedy algorithm. A continuous time scheduling problem with changeovers and its
application to the chemical industry was presented by Díaz-Ramírez and Huertas [11]. Li and Milne [27]
presented a formulation of a real-life production scheduling problem that appeared in a chemical com-
pany. They also presented a three-step heuristic involving in particular a neighborhood search strategy.
Brunaud et al. [3] studied batch scheduling with quality-based changeovers, i.e., the situation present
in the chemical industry, where cleaning/setup can be avoided if enough batches of the second product
are processed consecutively. The authors considered in particular the state-task network, resource-task
network, and unit-operation-port-state-superstructure frameworks. It is worth mentioning that also col-
lecting data about the changeover times can be a challenge in complex manufacturing systems. In this
context, Engelmann et al. [15] developed a machine learning model for the identification and characteri-
zation of machine setups in cyberphysical production systems.

The current article is organized as follows. In the following section, we describe the problem and
present its mathematical model, together with an illustrative example. In Section 3, we present the naive
method used initially to solve the problem and the new algorithm, also illustrated with an example. In
Section 4, the results of numerical experiments performed on a set of randomly generated test problems
have been presented. Section 5 contains a description of the application of the presented method in a
company operating in the food industry located in southwestern Poland. We conclude the paper with
some final remarks.

2. Description of the problem

The company is considering the execution of n distinct orders O1, . . . , On, each of which can be sold
on the market based on the offers collected from potential buyers. Each product is characterized by
m features F1, . . . , Fm, with values uniquely assigned to the products. Each feature can take multiple
values, and these values are determined by the specific settings of the machines’ working parameters.
Any change in the value of a feature requires corresponding retooling of the production line components.
Therefore, to alter the value of any feature, a retooling process is necessary. Each retooling has a fixed
processing time, which remains constant regardless of the specific value change for that feature.

Production follows a cyclic pattern over a given period, meaning the same schedule is repeated weekly
throughout the planning horizon. Multiple feature changes can be executed simultaneously. In such cases,
the overall production time is only affected by the longest of the simultaneous retoolings. Consequently,
moving forward, we define a changeover as the retooling that impacts total production time, disregarding
others that do not contribute to this delay. If the longest retooling pertains to feature Fi, we refer to it as
a changeover caused by feature Fi (or simply a changeover when no ambiguity arises).

To illustrate, suppose the features F1, F2, and F3 for order Oj are (A, a, 1), and for order Oj′ , they
are (B, b, 2). The retooling times for F1, F2, and F3 are 2, 1, and 0.5, respectively. When switching
production from Oj to Oj′ , three separate retoolings are required (since all features change). However,
as these can occur simultaneously, the changeover is determined by the longest retooling. Hence, the
duration time of the changeover in this case is 2, and the changeover is caused by feature F1. If the
features of Oj′ were (A, b, 2), then the changeover time would be 1, driven by feature F2.
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Interestingly, although the total changeover time depends on the sequence in which the orders are
executed, the way changeovers occur allows us to approach the problem in a quasi-sequence-independent
manner. As we will see, once a subset of orders is selected, the optimal sequence that minimizes total
changeover time is simply to sort the orders lexicographically by their feature values. This approach will
be elaborated in Theorem 1 in the following subsection.

2.1. Mathematical model

The parameters are:

• E – the production line’s efficiency, not depending on the order, kg/h,
• T – time capacity, i.e., the maximum working time of the production line during one week, h/week,
• qj, j = 1, . . . , n – sizes of the order Oj , kg/week,
• ti, i = 1, . . . , m – the duration of changeover corresponding with feature Fi, h; in the remainder

of the paper we will assume without loss of generality that the features are indexed so that ti ≤ tj

when i > j; for the sake of notation convenience we set tm+1 = 0,
• t0 – cleaning time; at the beginning of every week the production line has to be cleaned, h,
• cj, j = 1, . . . , n – unit profit for order Oj , USD/kg.

Let us denote by

aj =
qj
E

(1)

the time, h/week used for processing order Oj during one week, j = 1, . . . , n. Moreover, for every
feature Fi, let fi denote the number of all possible combinations of the features with indices at most i,
i.e., f1 will be the number of all values of F1, f2 the number of all possible pairs of values of F1 and F2

and so on. Additionally let f0 = 1 stand for cleaning.
The decision variables are:

• xj, j = 1, . . . , n – binary variable equal to 1 if the company decides to execute order Oj and 0

otherwise,
• yik, i = 1, . . . , m, k = 1, . . . , fi – binary variable equal to 1 if the company needs at some moment

to set up the production line to the state where features F1, F2, . . . , Fi take the kth combination of
their possible values and 0 otherwise.

The core concept of the forthcoming MILP model is that we can predict the minimal total time spent
on changeovers based solely on the selected set of orders. An optimal sequence, which minimizes the
time spent on changeovers is determined by arranging the chosen orders in lexicographic order by the
names of their attributed features (in short lexicographic order).

Theorem 1. Let σ be an ordering of accepted orders and z(σ) be the total time lost for changeovers
forced by σ. Let gi be the number of distinct tuples (F1, . . . , Fi), i = 1, . . . , m, among accepted
orders and let χi(σ) be the number of changeovers caused by feature Fi. Furthermore, let σ∗ be the
lexicographical order of accepted orders. Then

z(σ) ≥ z(σ∗)
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with equality if

χi(σ) = χi(σ
∗) =

gi − 1, if i = 1

gi − gi−1, if i ∈ {2, . . . , m}
(2)

Proof. If the orders are sorted in lexicographic order then
i∑

k=1

χk(σ
∗) = gi−1 since there are gi distinct

tuples (F1, . . . , Fi). Thus χi(σ
∗) = gi − gi−1, i = 1, . . . , m. On the other hand, if σ is any ordering of

the orders then
i∑

k=1

χk(σ) ≥ gi − 1. Then z = z(σ) satisfies

z =
m∑
k=1

tkχk(σ)→ min (3)

i∑
k=1

χk(σ) ≥ gi − 1, i = 1, . . . , m χk(σ) ≥ 0, k = 1, . . . , m.

The problem dual to (3) has the form

w =
m∑
l=1

(gl − 1)yl → max (4)

m∑
l=i

yl ≤ ti, i = 1, . . . , m yl ≥ 0, l = 1, . . . , m.

Consider χ∗ = (χ∗
1, . . . , χ

∗
m) with χ∗

k = gk − gk−1, k = 1, . . . , m, and y∗ = (y∗1, . . . , y
∗
m) with

y∗l = tl − tl+1. Since tl ≥ tl+1, χ∗ and y∗ are feasible solutions of (3) and (4), respectively. Moreover,
z(χ∗) = w(y∗). Hence, by the duality χ∗ is an optimal solution of (3). □

Therefore in the sequel we may assume that the orders are sorted in lexicographic order by the values
of the features. Let Jik denote the set of the indices of orders requiring the setup with feature combination
defined with yik = 1. The mathematical model of the problem takes the form

z =
n∑

j=1

cjxj −→ max, (5)

n∑
j=1

ajxj + (t0 − t1) +
m∑
i=1

(ti − ti+1)

fi∑
k=1

yik ≤ T, (6)

|Jik|yik ≥
∑
j∈Jik

xj, (7)

yik ≤
∑
j∈Jik

xj,

xj ∈ {0, 1} for j = 1, . . . , n, (8)

yik ∈ {0, 1} for i = 1, . . . , m, k = 1, . . . , fi.
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Indeed, the objective is simply maximization of the profit. Furthermore, by Theorem 1, in the best

schedule of accepted orders the number of changeovers caused by feature i is equal to
f1∑
k=1

y1k−1 if i = 1,

is equal to
fi∑

k=1

yik −
fi−1∑
k=1

yi−1,k if i ∈ {2, . . . , ,m}. The duration time of such changeover is equal to ti.

Therefore, the time limit constraint takes the form:

n∑
j=1

ajxj + t0 + t1

(
f1∑
k=1

y1k − 1

)
+ t2

(
f2∑
k=1

y2k −
f1∑
k=1

y1k

)
+ t3

(
f3∑
k=1

y3k −
f2∑
k=1

y2k

)
+ · · · ≤ T

which is equivalent to

n∑
j=1

ajxj + (t0 − t1)1 + (t1 − t2)

f1∑
k=1

y1k + (t2 − t3)

f2∑
k=1

y2k + (t3 − t4)

f3∑
k=1

y3k + · · · ≤ T

which agrees with (6)
The constraints (7) connect xj to yik and assure that yik = 1 if and only if at least one xj = 1 for

j ∈ Jik. All the variables are binary, as defined by (8).

2.2. Illustrative example

To illustrate the problem and its MILP model, let us consider an example described with the data pre-
sented in Table 1.

Table 1. Input data for the example
t1 = 2, t2 = 1, t3 = 0.5, t0 = 2, T = 12, E = 20

Order F1 F2 F3 cj qj aj

O1 A a 0 3.0 14.0 0.7
O2 A a 1 5.0 19.0 0.95
O3 A a 3 4.0 22.0 1.1
O4 A b 2 2.0 24.0 1.2
O5 A b 3 6.0 20.0 1.0
O6 A b 3 3.0 32.0 1.6
O7 A c 1 4.0 47.0 2.35
O8 B b 2 2.0 27.0 1.35
O9 B c 0 4.0 9.0 0.45
O11 C b 2 2.0 27.0 1.35
O12 C c 1 5.0 15.0 0.75
O13 C c 2 1.0 32.0 1.6
O14 C c 3 3.0 15.0 0.75

Let us start with constraints (7). If i = 1 then since the possible states of feature Fi = F1 are A, B or
C, we have

J1,1 = {1, . . . , 7}, J1,2 = {8, . . . , 10}, J1,3 = {11, . . . , 14}.
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Hence, equations (7) corresponding to F1 have the following form

7y1,1 ≥ x1 + · · ·+ x7, (A)

3y1,2 ≥ x8 + · · ·+ x10, (B)

4y1,3 ≥ x11 + · · ·+ x14. (C)

If i = 2, then all possible states of F1 and F2 are Aa, Ab, Ac, Bb, Bc, Cb, Cc. Hence,

J2,1 = {1, 2, 3}, J2,2 = {4, 5, 6}, J2,3 = {7}

J2,4 = {8}, J2,5 = {9, 10}, J2,6 = {11}, J2,7 = {12, 13, 14}

Therefore, equations (7) that correspond with all the possible settings of F1 and F2 are as follows:

3y2,1 ≥ x1 + · · ·+ x3, (Aa)

3y2,2 ≥ x4 + · · ·+ x6, (Ab)

y2,3 ≥ x7, (Ac)

y2,4 ≥ x8, (Bb)

2y2,5 ≥ x9 + x10, (Bc)

y2,6 ≥ x11, (Cb)

3y2,7 ≥ x12 + · · ·+ x14, (Cc)

Analogously, equations (7) corresponding to the settings of F1, F2 and F3 have the form

y3,1 ≥ x1, (Aa0)

y3,2 ≥ x2, (Aa1)

. . .

2y3,5 ≥ x5 + x6, (Ab3)

. . .

y3,13 ≥ x14. (Cc3)

Finally the constraint (6) takes the form

14∑
j=1

ajxj + (2− 2) + (2− 1)
3∑

k=1

y1,k + (1− 0.5)
7∑

k=1

y2,k + 0.5
13∑
k=1

y3,k ≤ 12.

3. Solution
The primary objective of the company is the maximization of the profit. The instances of the problem de-
scribed in the previous sections can be solved efficiently using well-known optimization solvers. However,
the solutions obtained this way cannot be accepted by the management of the firm. As we already mentioned
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in the introduction, managers need clear and easy-to-compute indicators that allow them to prepare a ranking
of the orders so that the accepted orders will be the ones with the highest value of the indicator. It is preferred
to obtain a worse solution, provided that such an interpretable indicator will be assigned to every order.

For that reason, our efforts focused on finding a method that would be on one hand easy to apply and
whose results would be easy to interpret, while on the other hand, it would produce a solution as close
as possible to the optimal one. These efforts resulted in the heuristic that we are going to present in
one of the following subsections. We will start, however, by describing the method that was used in the
company before our activity started. (In reality, this method served only as the initial foundation for the
analysis. Subsequently, it underwent substantial modifications based on business experience and intuition.
However, these modifications were made without explicit support from numerical computations). This
one, which we call naive heuristic, produces a solution that can be easily interpreted, however, as we will
see later, does not need to be satisfactorily close to the actual optimum.

3.1. Naive heuristic

The method presented in the current subsection is essentially the same as the well-known greedy heuristic
for the Knapsack Problem (see, e.g., [24]). Nevertheless, we present it for the sake of completeness, using
the notation from the current paper.

The naive approach consists in adding greedily the orders according to the non-increasing order of
unit profit. Let A0 denote this heuristic and let z0 be the value of the objective function (5) obtained
using this heuristic. For that purpose, we first compute the unit profits according to the equation

dj =
cjqj
aj

, j = 1, . . . , n (9)

PHASE 1: ORDERING
for j = 1, . . . , n do

Compute dj using equation (9)
end
Sort orders according to the non-increasing order of dj and mark all of them as unchecked
PHASE 2: SELECTION
Set all the variables xj and yik to 0.
while there is at least one unchecked order do

Select the first unchecked order j and mark it as checked.
Set the temporary value of xj : xtemp

j ← 1.
Calculate the corresponding temporary values ytemp

ik of yik using equation (7).
if constraint (6) is satisfied with temporary values of variables then

Set xj ← xtemp
j .

Set yik ← ytemp
ik for each i, k such that yik ̸= ytemp

ik .
end

end
Algorithm 1. Naive heuristic
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This could be expressed as dj = cjE but we present it in the form as above for the sake of consistency
with the notation used in the remainder of this paper, in particular in the descriptions of the methods.
Then, the naive heuristic A0 can be written in the form presented as Algorithm 1.

3.2. The new method

We denote the heuristic described in this section by A1 and the value of the objective function (5) obtained
using A1 by z1.

Let
Qik =

∑
j∈Jik

qj, i = 1, . . . , m, k = 1, . . . , fi (10)

denote the sum of quantities corresponding with the orders included in set Jik. We also introduce unit
penalties for each kind of changeover (e.g. changeover corresponding with every feature). It will be
defined with the equation

pi =
fi − fi−1

fi
ti, i = 1, . . . , m (11)

where we assume f0 = 1 for consistency.
The idea of this equation follows from the fact that by Theorem 1, the number of necessary changeovers

caused by Fi is equal to fi − fi−1 (assuming all orders are preliminarily admissible). On the other hand,
the penalties should be uniformly distributed among fi combinations of settings, which defines the de-
nominator.

Having defined the unit penalties, we distribute them proportionally among the orders according to
the equation:

a⋆ij =
qj
Qik

pi, i = 1, . . . , m, k = 1, . . . , fi, j ∈ Jik (12)

By including both nominal production time aj and the penalties, we define the adjusted production
time of every order:

a⋆j = aj +
m∑
i=1

a⋆ij, j = 1, . . . , n (13)

Finally, we can compute the adjusted unit profits per hour with the equation

d⋆j =
cjqj
a⋆j

, j = 1, . . . , n (14)

Note that our method is somewhat similar to the d-RFSB heuristic, as both approaches involve adding
an additional element to the processing time in the denominator of (14). Specifically, in the d-RFSB
heuristic, the next order chosen is the one that minimizes the value

cjqj
aj + sij

over all unscheduled orders j,

where i is the last scheduled order and sij is the respective set-up time. This incorporation of changeover
times is the major difference of our new algorithm from the naive one.

Then the orders are included in the schedule greedily, according to the non-increasing order of d⋆j .
Taking into account the above considerations, the heuristic (denoted A1) can be summarized in the form
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presented as Algorithm 2.

PHASE 1: ORDERING
for i = 1, . . . , m, k = 1, . . . , fi do

Compute Qik using equation (10)
end
for i = 1, . . . , m do

Compute pi using equation (11)
end
for i = 1, . . . , m, k = 1, . . . , fi, j ∈ Jik do

Compute a⋆ij using equation (12)
end
for j = 1, . . . , n do

Compute a⋆j using equation (13)
Compute d⋆j using equation (14)

end
Sort orders according to the non-increasing order of d⋆j and mark all of them as unchecked.
PHASE 2: SELECTION
Perform the PHASE 2: SELECTION like in the Algorithm 1

Algorithm 2. New heuristic

3.3. Illustrative example – continued

In this subsection, we illustrate all the significant steps of the presented algorithm on the same example
that has already been introduced in Subsection 2.2. The necessary data and partial computations are
collected in Tables 2 and 3. Let us start with Table 2.

Table 2. Data and computations for the example

Parameter F1 F12 F123 Sum

Number of combinations (fi) 3 7 13 23
Number of changeovers (fi − fi−1) 2 4 6 12
Time lost for changeovers (ti) 4 4 3 11
Penalty for a changeover (pi) 1.33 0.57 0.23

Recall that three features are given: F1, F2 and F3, having 3, 3 and 4 possible values, respectively,
while the numbers of possible combinations of F1, (F1, F2) and (F1, F2, F3) are f1 = 3, f2 = 7 and
f3 = 13. The corresponding changeover times are t1 = 2, t2 = 1 and t3 = 0.5, and the production line
efficiency E = 20. The unit penalties are obtained by using equations (11):

p1 =
f1 − f0

f1
t1 =

3− 1

3
× 2 =

4

3

p2 =
f2 − f1

f2
t2 =

7− 3

7
× 1 =

4

7

p3 =
f3 − f2

f3
t3 =

13− 7

13
× 0.5 =

3

13
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The remaining data and partial computations have been presented in Table 3. Let us discuss its selected
entries in a more detailed way.

Table 3. Data and computations for the example.

j F1 F2 F3 cj qj aj Q1k Q2k Q3k a∗1j a∗2j a∗3j a∗j

1 A a 0 3.0 14.0 0.7 178.0 55.0 14.0 0.1 0.15 0.23 1.18
2 A a 1 5.0 19.0 0.95 178.0 55.0 19.0 0.14 0.2 0.23 1.52
3 A a 3 4.0 22.0 1.1 178.0 55.0 22.0 0.16 0.22 0.23 1.72
4 A b 2 2.0 24.0 1.2 178.0 76.0 24.0 0.17 0.18 0.23 1.79
5 A b 3 6.0 20.0 1.0 178.0 76.0 52.0 0.14 0.15 0.08 1.38
6 A b 3 3.0 32.0 1.6 178.0 76.0 52.0 0.23 0.24 0.14 2.22
7 A c 1 4.0 47.0 2.35 178.0 47.0 47.0 0.35 0.57 0.23 3.5
8 B b 2 2.0 27.0 1.35 57.0 27.0 27.0 0.63 0.57 0.23 2.78
9 B c 0 4.0 9.0 0.45 57.0 30.0 9.0 0.21 0.17 0.23 1.06

10 B c 1 3.0 21.0 1.05 57.0 30.0 21.0 0.49 0.39 0.23 2.17
11 C b 2 2.0 27.0 1.35 89.0 27.0 27.0 0.4 0.57 0.23 2.55
12 C c 1 5.0 15.0 0.75 89.0 62.0 15.0 0.22 0.13 0.23 1.34
13 C c 2 1.0 32.0 1.6 89.0 62.0 32.0 0.47 0.29 0.23 2.6
14 C c 3 3.0 15.0 0.75 89.0 62.0 15.0 0.22 0.13 0.23 1.34

Sum 324.0 16.2 4.0 4.0 3.0 27.2

Recall that j is the number of orders to be processed, while the columns F1, F2, and F3 contain the
possible values of the features in the corresponding setup. cj represents the unit profit, while qj is the
order size. Using equation (1) the values of aj were computed, like

a1 =
q1
E

=
14

20
= 0.7, a2 =

q2
E

=
19

20
= 0.95

and so on. Using equation (10) the values of Q1k have been computed. In particular, for the value A of
the first feature (i.e., for j = 1, . . . , 7) we have

Q11 =
∑

j∈{1, ..., 7}

qj = 14 + 19 + 22 + 24 + 20 + 32 + 47 = 178

Using the same equation, the values of Q2k corresponding with the pairs of features including A, i.e.,
the pairs Aa (corresponding with orders 1, 2, and 3), Ab (corresponding with orders 4, 5, and 6), and Ac

(order 7) were obtained as follows:

Q21 =
∑

j∈{1,2,3}

qj = 14 + 19 + 22 = 55

Q22 =
∑

j∈{4,5,6}

qj = 24 + 20 + 32 = 76,

Q23 =
∑
j∈{7}

qj = 47

Finally, the values of Q3k, associated with the triples Aa0 (j = 1), Aa1 (j = 2), Aa3 (j = 3), Ab2
(j = 4), Ab3 (j = 5, 6) and Ac1(j=7) were computed as follows:
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Q31 =
∑
j∈{1}

qj = 14, Q32 =
∑
j∈{2}

qj = 19, Q33 =
∑
j∈{3}

qj = 22

Q34 =
∑
j∈{4}

qj = 24, Q35 =
∑

j∈{5,6}

qj = 20 + 32 = 52, Q36 =
∑
j∈{7}

qj = 47

The remaining entries of the columns have been computed analogously. In the next step, equations (12)
and (13) have been used to compute the penalties for the changeovers and the adjusted production times:

a⋆11 =
q1
Q11

p1 =
14

178
× 4

3
= 0.1, a⋆21 =

q1
Q21p2 =

14

55
× 4

7
= 0.15, a⋆31 =

q1
Q31

p3 =
14

14
× 3

13
= 0.23

a⋆1 = a1 + a⋆11 + a⋆21 + a⋆31 = 0.7 + 0.1 + 0.14 + 0.23 = 1.18

a⋆12 =
q2
Q11

p1 =
19

178
× 4

3
= 0.14, a⋆22 =

q2
Q21

p2 =
19

55
× 4

7
= 0.2, a⋆32 =

q2
Q32

p3 =
19

19
× 3

13
= 0.23

a⋆2 = a2 + a⋆12 + a⋆22 + a⋆32 = 0.95 + 0.14 + 0.2 + 0.23 = 1.52

and so on. The following steps of Algorithm 2 have been illustrated in Table 4. The values of d⋆j have
been computed using equation (14). For instance, the first two values are obtained as

d⋆1 =
c1q1
a⋆1

=
3× 14

1.18
= 35.56, d⋆2 =

c2q2
a⋆2

=
5× 19

1.52
= 62.47

Table 4. Data and computations for the example.
Source: own elaboration

j F1 F2 F3 cj qj aj a∗j d⋆j A0 A1 Optimal

5 A b 3 6.0 20.0 1.0 1.38 86.39 1.0 1.0 1.0
2 A a 1 5.0 19.0 0.95 1.52 62.47 1.0 1.0 1.0

12 C c 1 5.0 15.0 0.75 1.34 55.81 1.0 1.0 0.0
7 A c 1 4.0 47.0 2.35 3.5 53.64 0.0 1.0 1.0
3 A a 3 4.0 22.0 1.1 1.72 51.04 1.0 0.0 1.0
6 A b 3 3.0 32.0 1.6 2.22 43.19 0.0 0.0 1.0
1 A a 0 3.0 14.0 0.7 1.18 35.56 0.0 0.0 0.0
9 B c 0 4.0 9.0 0.45 1.06 33.87 1.0 0.0 0.0

14 C c 3 3.0 15.0 0.75 1.34 33.48 0.0 0.0 0.0
10 B c 1 3.0 21.0 1.05 2.17 29.0 0.0 0.0 0.0
4 A b 2 2.0 24.0 1.2 1.79 26.8 0.0 0.0 0.0

11 C b 2 2.0 27.0 1.35 2.55 21.12 0.0 0.0 0.0
8 B b 2 2.0 27.0 1.35 2.78 19.39 0.0 0.0 0.0

13 C c 2 1.0 32.0 1.6 2.6 12.28 0.0 0.0 0.0

Table 5. Computations for the example

A0 A1 Optimal

z 414 478 587
z, % 71 81 100
Time lost for changeovers 7.5 6 4.5
Producing time 4.25 5.05 7.00
Time total 11.75 11.05 11.50
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The solutions have been sorted with the non-increasing values of d⋆j . Corresponding values of vari-
ables xj are presented in column A1. As one can see, in the first four main steps of the new method,
the value 1 was assigned to the variables corresponding with orders 5, 2, 12, 7. No other order could be
included in the plan because of the violation of constraint (6). In order to make it possible to compare
the results, we presented also the plan obtained by the naive heuristic (in column A0) and the optimal
solution generated by Gurobi (in the last column). The performance of the algorithms on the example
has been summarized in Table 5.

4. Numerical experiments

In order to examine the method’s performance, we run 2000 of numerical experiments on randomly
generated test problems. The average running time for a single experiment was 0.02 s, 0.045 s, 1.46 s,
5.1 s, respectively, for algorithms A0, A1, d-RFSB and the exact solution by the Gurobi solver.

The problems were characterized with the following values of parameters (x ∈ [a, b] means that the
value of x was an integer chosen uniformly at random from the interval [a, b]):

• the number of features m ∈ [2, 7],
• the number of orders n ∈ [200, 2000]

• the number of possible values of features F1, . . . , Fm were chosen randomly from the intervals
λi ∈

[⌊
m
√
i · n

⌋
, 2
⌊

m
√
i · n

⌋]
, and then the values of F1, . . . , Fm were chosen uniformly at random

from the sets Fi ∈ [1, λi], for i = 1, . . . , m independently for every order; this implies in particular
that 1 ≤ f1 ≤ λ1, 1 ≤ f2 ≤ λ1λ2 and 1 ≤ f3 ≤ λ1λ2λ3 etc.,

• the production line’s efficiency E ∈ [500, 6000],
• sizes of orders qj ∈ [400, 6000],
• time capacity

T =
1

2

n∑
j=1

aj =
1

2

n∑
j=1

qj
E

• durations of changeovers ti ∈ [1/m, 10/m] with ti ≥ ti+1,
• cleaning time t0 = 8,
• unit profits cj ∈ [20, 70].

This choice of parameters serves two key purposes. First, we aimed to ensure that each feature signif-
icantly impacts the problem’s solution. Otherwise, the orders could be distinguished mainly by the first
few features, making the rest negligible, as the corresponding changeovers would nearly always occur
alongside those with longer durations. Second, we wanted to independently analyze the influence of
changeover duration and the number of features. Therefore, as we increased the number of features, we
reduced their duration to avoid a strong correlation between these two factors.

The above was the so-called unbiased setting. We also performed several experiments for biased settings.
The unit profits were generated differently, while the remaining parameters were defined in the same way as
before. The change in the method of obtaining the values of cj was motivated by the fact that the smaller
orders correspond with higher unit profits. The exact method of generating the profits was:
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bj =
40000

qj
, c′j ∈ [20, 70], cj =

1

10
(c′j + bj)

where bj defines the bias corresponding with the order quantity, and the division by 10 scales the value
of cj to fit the ranges of other parameters.

The heuristics were implemented in Python 3.7 [44], while the exact solution was obtained with
Gurobi 9.1.2 [18]. The computations were performed on a PC with Intel(R) Core(TM) i7-8665U CPU @
1.90GHz 2.11 GHz with 16GB RAM and a 64-bit operating system.

Taking for the notation convenience tm+1 = 0 and f0 = 1, the total time lost for changeovers in the
case when all orders are performed is equal to

tch(P ) : = (t0 − t1)× 1 +
m∑
i=1

fi∑
k=1

(ti − ti+1)yik = (t0 − t1)× 1 +
m∑
i=1

fi∑
k=1

(ti − ti+1)× 1

= (t0 − t1) +
m∑
i=1

(ti − ti+1)fi =
m∑
i=0

(ti − ti+1)fi

where the equality in the first line follows from the fact that yik = 1 if and only if Jik ≠ ∅, cf. equations
(6) and (7). Similarly, the working time in the case when all orders are performed is equal to

tw(P ) :=
n∑

j=1

aj (15)

Let

r(P ) =
tch(P )

tw(P )
(16)

It is natural to expect that the more time is spent on the changeovers, the more the approximate
character of the presented methods will influence their efficiency. In other words, we expect that with the
increase of r(P ), the performance of the presented heuristics should worsen.
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Figure 1. Results of the experiments – algorithms performance, unbiased case

Figure 1 illustrates the performance of algorithms A0 and A1 concerning the value of r(P ) on the
randomly generated instances following the unbiased setting. The labels of the horizontal axis are the
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left ends of the left-side closed intervals of length 0.05 (e.g. 0.35 denotes the interval [0.35, 0.4). The
value on the vertical axis is the percentage of the total profit obtained by the heuristics concerning the
exact optimum generated with Gurobi.

As we can see, the accuracy of both heuristics decreases as the ratio calculated with equation (16) goes
up. This confirms our suppositions presented above. On the other hand, even for very elevated values
of r(P ), the average accuracy of the second heuristics remains at the level of approximately 6% (the
heuristic reaches about 94% of the optimal profit gained by Gurobi), while in the entire sample, it is only
3.1% (96.9% of the optimal profit). The naive heuristic performs much worse, its results are on average
by 9% worse than the optimal profit of Gurobi in the entire sample, while in the worst case, the average
difference reached the value of 17% (the profit equals to 83% of its optimal value). The performance of
the d-RFSB algorithm remains consistently above 96.5 %.

Analogous results for the instances following the biased setting have been presented in Figure 2. The
labels of the axes are the same as in the previous case.
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Figure 2. Results of the experiments – algorithms performance, biased case

The performance of both heuristics is much worse in this case: A1 goes down even to 88.5% on
average for the second last interval of the values of r(P ) (94.2% in the entire sample, i.e., the mean
accuracy equals to 5.8%). Things go even worse for the naive heuristic, where the lowest average (in the
last considered interval) is 66%, while in the entire sample, it is only 85.0% (accuracy of 15.0%). As
before, the performance of the d-RFSB algorithm remains consistently above 96.5 %.
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Figure 3. Results of the experiments – performance depending on the number of features, both cases
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Figure 3 illustrates the algorithm performances based on the number of features, showing a slight in-
crease as the number of features grows—an initially unexpected result. However, recall that we designed
the experiments to ensure that the duration time and number of features are not dependent. Since we
have already demonstrated the significant impact of duration time on the problem’s solution, this rela-
tionship would have been evident if these two factors were correlated. Instead, our experiments indicate
no significant dependence between the two properties.
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Figure 4. Results of the experiments – average value of r(P )

across experiment groups defined by m, both cases

As shown in Figure 4, the average value of r(P ) remains nearly constant across experiment groups
defined by the number of features.

5. Case study

Such a problem arose in a branch of the company Intersnack located in Nysa in Poland which is a chips
production plant. At that time the overall equipment effectiveness index (OEE index) in this branch was
low compared to the other branches of Intersnack, but the assortment included many profitable indices
(in terms of margin per kilogram). Nevertheless, due to the low OEE index, the management began
to question whether the general strategy for selecting offers on the market was appropriate and started
to work on algorithms to improve the strategy. With cooperation with the management of this branch
of Intersnack, we formulated the mathematical model (5)–(8). To do it, we distinguished three main
changeovers that affected the OEE index. These changeovers were forced by two different oils used in
the frying process, seven different body types of the shapes of chips, and 28 different tastes of chips. The
number of orders was equal to 290 (i.e. n = 290) and the number of distinct products was equal to 101
(more specific: |F1| = 2, |F2| = 7, |F3| = 28, f1 = 2, f2 = 11 and f3 = 101). The parameter r(P ),
which in some way predicts the quotient of the time needed for changeovers to the time needed for actual
production, was 0.32.

Furthermore, we observed a bias of the margin caused by the number of orders (Figure 5). Perfor-
mance of A0 was 71.33% and of A1 was 93.01%.

While the optimization model (5)–(8) can be precisely solved using mixed integer linear programming
(MILP) solvers, the management expressed a strong preference for developing an alternative approach
– a greedy algorithm to rank the orders in question. Their rationale was that such an algorithm would
offer a deeper understanding of the complex decision space, which might extend beyond the confines
of the mathematical model. This deeper understanding could prove invaluable in adapting the solution



18 M. Anholcer and A. Żak

to address additional, potentially critical, business intricacies that were not explicitly considered in the
mathematical model but may gain significance in the future. This motivated the creation of algorithm A1.

max qj

max cj

0

Figure 5. Bias of the margin

On the flip side, exact methods could face limitations when dealing with significantly larger instances
of the model due to computational complexity. In contrast, the computational complexity of algorithm
A1 is relatively low, primarily dependent on sorting, and operates with a time complexity of O(n log n)

(assuming the number of features is low compared to the number of orders which is natural in these kind
of settings).

6. Conclusions

Starting from a real problem that occurred in a food industry company located in Poland, we developed
a model and algorithm for solving this type of task , which was the main goal of the current paper.
The problem in question is, in fact, a hybrid of two others known from the literature: the Problem of
Accepting and Scheduling Orders and the Changeover Problem.

Although the method never found the global optimum, it achieved 99% of the optimal performance
in 10% of the experiments. Nonetheless, it meets the primary condition specified by the company’s
management. It assigns easily interpreted indicators to orders, which, on the one hand, can be used to
build order rankings, and on the other hand, allow for the analysis of orders and thus facilitate strategic
business decisions.

A possible direction for further research that could be developed in the future is to adapt the method so
that it can be used in situations where switching different features cannot be performed simultaneously.
In such a situation, the order in which orders are executed could be important. In particular, one can
imagine a situation in which, in an optimal solution, it would be profitable to change the configuration
of the production line from one feature value to another and then change it back again. This would, of
course, require at least some changes in the calculation of penalties and adjusted production times.
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[41] Tarhan, I., and Oǧuz, C. Generalized order acceptance and scheduling problem with batch delivery: Models and metaheuristics.
Computers & Operations Research 134 (2021), 105414.
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