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Abstract

In the logistics processes of trade business, goods delivered from warehouses to retailers are often transported on pallets.
The paper concerns the issue of using a robot for automatic palletizing. In order to put an item in a given place on a partially
loaded pallet, the robot must have free access to that place, i.e., the place must not be covered. A graph model and a formalized
method for determining the sequence of putting goods on a pallet is proposed to avoid such collisions. It is also shown that
not every packing pattern can be loaded by a robot. However, some pallet loading approaches have been identified that always
guarantee a feasible robot packing.

Keywords: distributor’s pallet loading problem, robot packing, aggregated precedence graphs, extended topological sorting

1. Introduction

Most goods delivered to warehouses and then to retail stores are transported on pallets. A pallet has a
rectangular flat surface on which products are placed for storage and handling. Goods packed on the
pallets are usually transported in bulk packaging, e.g. cartons, trays, etc. Most of them have rectangular
shapes similar to cuboids, so later in the paper, we will call them boxes. It is assumed that boxes may be
stacked on pallets only parallel to their edges. Such packing is denoted as orthogonal packing.

In warehouses, only one type of goods is stored on individual pallets. However, orders from retailers
usually concern a diverse assortment. Therefore, pallets must be loaded with the required variety of
goods in quantities consistent with individual orders. At the same time, it is desirable to ensure that the
number of pallets used and transported is as small as possible.

To automate the palletizing process, three issues must be considered:

e a method of determining where individual goods should be placed on pallets,

e capability and flexibility of the robot used,
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e an order of loading goods on pallets by the robot.

In the literature, most of papers deal only with the first issue, i.e., methods for finding the best pallet
packing patterns.

This paper focuses on the problem of finding a feasible sequence of packing boxes on pallets assuming
that a pallet packing pattern and the capability of the robot are known. For a given packing pattern, which
specifies where individual goods should be placed on the pallet, it is not obvious in what order should
they be picked and loaded by the robot. To pack a box on the pallet, the robot must have free access to
the place where it is to be put. Depending on the functionality of the robot, its access requirements can
be defined differently.

The main contributions of the paper are as follows.

e A formalized method for analyzing pallet packing patterns is proposed. It allows to identify whether
a given packing pattern can be stacked using a robot and if the answer is positive, it determines the
order of placing boxes taking into account the robot’s capability.

e A new concept of graph models for representing packing patterns is proposed in the form of aggre-
gated precedence graphs. It allows us to take into account the various manipulative capabilities of
the loading robot.

e The topological sorting algorithm is generalized to include the robot’s ability of loading boxes from
each side of the pallet.

¢ Finally, the packing strategies that always create robot-packable patterns of pallet loading are iden-
tified.

The remainder of the paper is organized as follows. The next section provides a brief review of the
existing approaches to the pallet loading problem and the box placement techniques that are used to
determine packing patterns of the pallets. It also includes a presentation of the constraints that can be
imposed in practice when loading and unloading pallets. In Sections 3 and 4 various capabilities of the
robots used for packing boxes are considered. An algorithm is proposed, which taking into account the
functionality of the robot, allows to check whether a given packing pattern can be loaded. If this pattern
is feasible for the robot, an order of packing boxes is determined. The algorithm uses the new concepts of
aggregated precedence graphs and extended topological sorting. Section 5 discusses the suitability of the
box placement techniques described in Section 2 when using robots to load pallets. Finally, in Section 6

concluding remarks are presented.

2. Literature review

The pallet loading problems can be classified in two categories:

e the manufacturer’s pallet loading problem (MPLP),
e the distributor’s pallet loading problem (DPLP).

The manufacturer’s pallet loading problem refers to the simplest form of palletizing. It occurs when
there are identical boxes to be placed on a pallet to maximize space utilization. This is usually the case
when goods are packed on pallets by manufacturers in warehouses. Assuming that the vertical orientation
of the boxes is fixed, the MPLP can be decomposed into a two-dimensional problem. Then the task is



Graph models for identifying robot-packable patterns. . . 143

to find a packing pattern for each layer of the pallet. A comprehensive review of various approaches for
solving the MPLP is presented in [17].

More complex than the MPLP is the distributor’s pallet loading problem where a set of different
boxes are to be packed on the smallest number of pallets. Many different concepts of algorithms have
been developed and an extensive overview of them can be found, for example, in [1, 9, 18, 20].

The DPLP is an extension of the Three-dimensional bin packing problem (3DBPP) and the container
loading problem (CLP). The 3DBPP consists of packing a given set of rectangular-shaped boxes into the
minimum number of identical three-dimensional containers (bins). In the CLP, only one container has to
be loaded with the boxes, but in such a way that the total volume of packed boxes is maximized. In this
case, not all boxes have to be loaded. A comparative review of various solution methods for the CLP and
3DBPP is presented in [1, 20].

In DPLP, the primary objective is to use as few pallets as possible, but in practice, various constraints
related to transport requirements must be taken into account. Bortfeldt and Wischer [4] provide a com-
prehensive review of such types of constraints, namely box orientation, vertical stability, pallet weight
limit, load balance, load-bearing strength of boxes, etc. Assuming only orthogonal packing patterns and
that it is allowed to put the boxes on any of their sides, six box orientations are possible. However, it is of-
ten required that the boxes are placed vertically on a defined bottom side and then the admissible number
of box orientations is restricted to only two. The vertical stability requires that most of the bottom area
of each box must either lie directly on the pallet or be supported by other boxes placed underneath. In
practice, support of 70% may be sufficient for pallet loading if the packed pallets are wrapped in plastic
foil, but in many cases, full vertical support is required [4, 11]. The pallet weight limit specifies the
maximum allowed total weight of the goods packed on it. Alternatively, the height of the load is being
limited instead. The load balance constraints ensure that the weight of the boxes is distributed evenly over
the entire pallet. Balanced loads reduce the risk of overturning while the pallet is transported. Finally,
load-bearing strength defines the maximum pressure, i.e., weight per unit of area that the box can support
on its top side, so as not to be damaged.

Most of these constraints should also be considered when loading goods into the cargo space of
delivery vehicles [16, 19]. However, other requirements concerning loading problems in combination
with vehicle routing may also arise. For example, the order in which goods are distributed to customers
and unpacked must be taken into account. These types of constraints are referred to in the literature
as unloading, visibility, LIFO or multi-drop constraints [2, 6, 15, 16, 19]. They ensure that products
delivered to the customer can be directly taken out of the cargo space without moving other products
destined for subsequent customers along a given transport route.

The two basic decisions and operations performed by the packing algorithms are: (i) the selection of
the next box that will be put on the pallet or in the container, and (ii) the choice of the place of its loading
[21]. The algorithms may differ in the order in which these two operations are carried out. The set of
possible positions for placing the next box is usually limited. The way these places are determined and
the rules for choosing the best one also differ in these algorithms.

Martello et al. [13] proposed to consider only corner point locations where an item can be placed
into an existing packing. The first box is packed in the back, bottom, and left corner of the container,
and the next ones are placed in the newly created corner points of the partial packing. The corner points
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are characterized by the fact that there are no other boxes in front of, right of or above them, but the
lines up, forward, and right of these points are adjacent to sides of certain previously packed boxes or
sides of the container. The black dots in Fig. 1 show corner points for an example of partial packing and
two-dimensional case. These are the only possible positions to place the corner of the box inserted next.

.3—#

Figure 1. Corner points for 2D packing problem

Crainic et al. [7] extended this approach by introducing the concept of extreme points. These are
points, which are projections of the corners of each new box added to an existing packing. Extreme
points also include points inside the envelope of the existing packing and thus the number of potential
placement positions of boxes is increased.

In [21], two other concepts for determining possible positions for placing a box are described. The
space in the container (also called residual space) is represented by a set of cuboids adjacent to the
already-packed boxes. Each subsequent box is placed only into one of these cuboids, on its bottom
surface.

In the partition representation proposed by Bortfeldt et al. [3], the cuboids are interior-disjoint (i.e.,
non-overlapping). In the beginning, when the container is empty, we have only one cuboid of the size
of this container. After packing the first box in the back, bottom, and left corner of the container, three
new cuboids appear in place of the existing one — two on the side and one at the top of the box. Such a
partition of residual space has a guillotine character, i.e., it is made through a sequence of cuts along the
sides of the inserted box. Depending on the order in which these cuts are carried out, different variants of
partition are obtained. In total, there are six such variants. Figure 2 shows the top view of the container
after packing an box with the base (A, B, E, D). The upper cuboid of the partition will be adjacent to the
top side of the box and, depending on the partition variant, can have the base (A, B, E, D), (A, C, F, D),
(A,B,H,G)or (A,C,I,G). From above it is bounded by the height of the container. The residual space
on the side of the box can be split in two ways. In the first variant, one cuboid has the base (B, C, F, E),
and the other (D, F',I,G). In the second variant, one cuboid has the base (B, C, I, H), and the other
(D, E,H,G). The height of these cuboids corresponds to the shape of the upper cuboid. When full
vertical support of the boxes is required, only two variants of the empty space partition are considered. In
this case the upper cuboid always has the base (A, B, E, D) like the box below. When using the partition
representation, after inserting a new box, a clear choice from the above partition variants must be made.
This decision may limit the possible locations for subsequent boxes.

In the cover representation proposed by Lim et al. [12], the residual space is represented by a set
of overlapping cuboids. When a new box is placed, there is only one way to determine these cuboids.
In Figure 2, the upper cuboid would adhere to the upper surface of the box and would have the base
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(A,C, I,G). The two side cuboids would always have the base (B, C, I, H) and (D, F, I, G) respectively.
The upper face of all three cuboids would be at the height of the upper side of the container. When full

vertical support of boxes is required, the upper cuboid in the cover representation is reduced and has the
base (A, B, E, D).

A B C
Box

D E F

G H |

Figure 2. Residual space representation (top view)

The feasible packing of a pallet can be represented using graph models. The vertices in these graphs
correspond to the individual boxes, while the undirected edges or arcs define their location relative to each
other. In the graph model proposed by Fekete and Schepers [10] the three-dimensional packing patterns is
represented by three undirected interval graphs. Each of these graphs corresponds to a single coordinate
axis, and vertices representing boxes are connected by an edge if their projections overlap along this axis.
Figure 3 illustrates such graphs for the two-dimensional packing pattern shown in Figure 1.

a) b)

.

Figure 3. Interval graphs corresponding to 2D packing pattern shown in Fig 1:
a) for the horizontal projection, b) for the vertical projection
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a) b)

)

@ 6' O

Figure 4. Comparability graphs corresponding to 2D packing pattern shown in Fig 1:
a) for the horizontal coordinate axis directed to the left, b) for the vertical coordinate axis directed downwards

Zhu et al. [22] also used three graphs to represent three-dimensional packing pattern but slightly
different ones. For each coordinate axis, they defined a comparability graph representing the mutual
precedence of boxes. This is a directed graph, in which there is an arc from vertex v; to v; if box j lies
entirely on the forward side of box i regarding the direction of a given coordinate axis. The comparability
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graphs for the two-dimensional packing pattern shown in Figure 1 are presented in Figure 4. It is assumed
that the horizontal coordinate axis is directed to the left and the vertical axis is directed downward.

However, both of the above graph models are not adequate for determining the order in which boxes
can be loaded on a pallet without causing collisions.

3. One-sided robot packings

In the case of automatic palletizing, in addition to the problem of building packing patterns, the issue
of robot’s ability to implement it is also important. To place a box on a pallet, the robot must have free
access to the place where it is inserted. In [8], the concept of robot packing was introduced. It was
defined as a packing pattern that can be created starting from the bottom, back, left corner of the pallet
and placing successive boxes so that they are always above, in front of and to the right of the previously
packed boxes. In this paper, such packing will be called a one-sided robot packing.

Let NV be a set of the boxes packed on a pallet. The location of each box ¢ € N will be identified by
the coordinates (z;,y;, z;) of its bottom, back, left corner in the coordinate system X, Y, Z, where X
axis is directed to the right, Y axis forward, and Z axis upwards (as in Figure 5). The position (0, 0,0) is
the bottom, back, left corner of the pallet.

V4
T 3 A Box Dimensions Coordinates
5 7 li wi  hi o (w4, yis 20)
X 1 1 3 1 (0,0,0)
o — 2 1 3 1 (2,0,0)
4 3 1 1 2 (1,0,0)
1 3 4 1 1 2 (1,2,0)
y 5 3 1 1 0,1, 1)

Figure 5. An example packing pattern (boxes 1 and 2 are identical, as well as boxes 3 and 4)

Suppose we consider placing a box at location (a, b, ¢) on a partially packed pallet. Let octant O(a, b, ¢)
be the set of points (z,y,2) such that z > a, y > b and z > ¢. We will say that location (a, b, c) is
accessible from the front of the pallet if octant O(a, b, ¢) is disjoint from any previously loaded box.

Definition 1. The one-sided robot packing is a packing pattern that can be created by placing consecu-
tive boxes at locations which are accessible from the front of the pallet, so that these boxes are above, in
front of and to the right of the previously loaded boxes.

The one-sided robot packing assumes that in order to place another box on a pallet and avoid collisions,
the robot must have free access, i.e., empty space, from the top, from the front of the pallet and from the
right side of this box. It turns out that satisfaction of this condition can be not possible for some packings.
Figure 5 shows an example that is not the one-sided robot packing. In the further part of the paper, we
will present a method that allows to formally determine whether a given packing is a one-sided robot
packing. If this is the case, this method also determines the order of packing boxes for a robot.

For a given packing, let us define X -comparability graph Gx = (Vy, Ex) similarly as in [22]. Tt is
a directed graph in which:
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e Every box ¢ € NV corresponds to one vertex v; € V.
e There is an arc from vertex v; to v; if and only if x; + [; < x;, where [; is the size of box 7 along
X axis.

Graph G x shows the relative positions of the packed boxes along the X axis. The arc from the vertex
v; to v; in this graph implies that box i lies entirely to the left of box j. In the same manner, we define
comparability graphs G'y and Gz for the Y and Z axes, respectively. Figure 6 shows the comparability
graphs for the example packing in Figure 5.

Gy Gz@
© 66 060
@) @

Figure 6. Comparability graphs for the example presented in Figure 5

Graphs G x, Gy, and G are directed graphs. They have the same set of vertices but can differ in arcs.
Note that each of them will always be an acyclic graph, i.e., it will have no directed cycle. For these
graphs, we introduce the new concept of a aggregated precedence graph denoted as Gx + Gy + Gz. It
is a directed graph in which:

e The set of vertices is the same as in Gx, Gy and G .
e There is an arc from vertex v; to v; if and only if in at least one of the graphs G'x, Gy or G there is
an arc from v; to v; and in none of these graphs there is an arc directed reversely, i.e., from v; to v;.

The aggregated precedence graph determines the required mutual sequence in which the robot should
pack each pair of boxes. Unlike the models proposed by Fekete and Schepers [10] as well as by Zhu
et al. [22], the packing pattern is represented here by only one graph not three. Note that if there is an
arc from v; to v; in graph G'x + Gy + G, then box j is either above, or in front of, or to the right of
box 7, and therefore must be packed later than . On the other hand, if in one of the graphs Gx, Gy or G4
there is an arc from vertex v; to v;, and an opposite arc in the other, then the boxes ¢ and j in fact do not
interfere with each other, and therefore in the aggregated precedence graph there will be no arc between
such vertices. For example, in the case of the packing shown in Figure 1, there would be the arc from v,
to vs in graph Gx, and the opposite arc from v; to v4 in graph GGy-. Note that the boxes 4 and 5, do not
cover each other along the X and Y axes.

Theorem 1. A pattern is a one-sided robot packing if and only if the aggregated precedence graph
G x + Gy + Gz for that pattern is acyclic.

Proof. Suppose that there is a directed cycle in graph G'x + Gy + Gz and let the vertices v; and v;
belong to this cycle. This means that box ¢ must be packed earlier than box j and at the same time box j
would have to be packed earlier than box 7, which is impossible. Thus, graph G x + Gy + Gz for the
one-sided robot packing cannot contain a directed cycle.

On the he other hand, if Gx + Gy + Gz is a directed acyclic graph, its vertices can be numbered so
that for each arc going from v; to v; in this graph, vertex v; will be assigned a smaller number than v;.
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The vertex numbers will then determine the sequence in which the robot can load the individual boxes as
to avoid collisions. U

Graph G x + Gy + Gz will not always be an acyclic graph. In computer science, ordering the vertices
according to the orientation of the arcs, and at the same time checking whether a directed graph is acyclic,

is called topological sorting [5]. A directed graph can be topologically sorted if and only if it is acyclic.
Gx+ Gy + Gz

Figure 7. Graph Gx + Gy + Gz

for the example presented in Figure 5
Figure 7 shows the aggregated precedence graph Gx + Gy + Gz for the packing pattern presented
in Figure 5 and comparability graphs G'x, Gy, G depicted in Figure 6. Note that in this graph, vertices
2,5 and 4 form a directed cycle. Thus, the pattern in Figure 5 is not a one-sided robot packing. The cycle
reflects the following situation. Box 5 must be placed later than box 2, because it lies on it, and earlier
than box 4, which is in front of box 5. Thus, box 4 would have to be placed later than box 2. However,

this is impossible because box 2 is covered by box 4 from the right.

4. Multi-sided robot packings

The one-sided robot packing refers to a situation in which boxes are packed by a robot operating from
only one side of the pallet. Starting from the left corner in the back of the pallet, it can place each next box
either in front, on the right or on top of the previously placed ones. However, there are also more flexible
robot designs with the arm above the pallet that allow packing from either side of the pallet. Taking into
account the capabilities of such robots, we introduce the concept of a multi-sided robot packing.

Definition 2. The multi-sided robot packing is a packing pattern that can be created by placing consec-
utive boxes at locations which are accessible from at least one side of the pallet.

When stacking multi-sided robot packing, it is assumed that the robot can place a box from any side
of the pallet. However, it must have empty space on that side of the pallet, as well as on the top and one
of the sides of the box, so that it doesn’t have to push it in between other boxes. Note that if a place is
accessible from a given side of the pallet, this place is not covered from that side of the pallet, as well as
from its right side. Thus, the box can then be loaded by the robot from any of these sides. Of course, any
one-sided robot packing is also a multi-sided robot packing.

It turns out that the graph models proposed in the previous section can also be used to analyze the
multi-sided robot packings. Let G x be a directed graph that differs from the comparability graph G'x in
that all the arcs are oppositely directed. Thus, this graph is also a comparability graph, but in opposite
direction to the X axis, and describes the acceptable packing order of boxes from this side. Similarly,
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let us define the comparability graph Gy. To take into account the robot’s capability to pack boxes
from each of the four sides of the pallet, let us create the following four aggregated precedence graphs:
Gx + Gy + Gz, Gx +ay+Gz,aX + Gy +Gz,§X +ay + Gy.

For a set of directed graphs G having the same set of vertices V, let us define the algorithm of the
extended topological sorting which will be referred to as Algorithm 1.

Require: set G of directed graphs with | N| vertices
k<« |N|
while £ > 0 do
Find a vertex v with no outgoing arc in at least one of the graphs G € G
if such a vertex exists then
Assign the number k to this vertex
else
stop {there are cycles in each graph G € G so it is impossible to number all the vertices}
end if
Remove vertex v from all graphs G € G and all arcs entering or leaving this vertex
k+—Fk—-1
end while

return
Algorithm 1. Extended topological sorting of directed graph set G

Note that when performing extended topological sorting of graph set G = {Gx + Gy + Gz, Gx
+Gy +Gy, Gx+Gy +Gz, Gx + Gy + Gz} we are in fact determining how to unload a pallet,
removing in each step one box that is not covered from the top and two adjacent sides of the pallet. So,
the pallet loading can be done in the reverse order. The numbers assigned to the vertices during extended
topological sorting will therefore specify the sequence of packing the boxes by the robot.

Theorem 2. A pattern is a multi-sided robot packing if and only if it is possible to number all vertices
by performing extended topological sorting of graph set G = {Gx + Gy + Gz, Gx + Gy + Gy, Gx
+ Gy + Gz, EX —0—63/ + Gz}

Proof. The numbering of all vertices is not possible during extended topological sorting if in a certain
iteration we have directed cycles in each of the graphs G € G. This means that it is impossible for the
robot to load any subsequent box from either side of the pallet. Thus, the packing pattern represented by
the set of graphs {Gx + Gy + Gy, Gx + Gy + Gy, Gx + Gy + Gz, Gx + Gy + Gz} cannot then be
a multi-sided robot packing.

On the other hand, if the extended topological sorting is successfully completed, the numbers assigned
to the vertices will determine the feasible loading sequence of a multi-sided robot packing. U

Let us note that the extended topological sorting of only one graph reduces to the simple topological
sorting. In particular, if the set G consists only of graph Gx + Gy + Gz, then Algorithm 1 will verify
the one-sided robot packing.

Analyzing the packing pattern in Figure 5, it can be seen that it is not a multi-sided robot packing.
Comparability graphs G x, Gy and Gz for this packing are shown in Figure 6, while the corresponding
aggregated precedence graphs Gx + Gy + Gz, Gx + Gy + G4, Gx + Gy + Gz and Gx + Gy + Gz in
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Figure 8. The aggregated precedence graphs for the example presented in Figure 5

Figure 7 and 8. Note that in all these four aggregated precedence graphs each vertex has an outgoing arc.
Thus, Algorithm 1 will stop in the first iteration because it will not find any vertex to assign the number 5
and, as a result, the vertices will not be numbered.

Gx+ Gy + Gz Gx+ Gy + G;

Figure 9. The aggregated precedence graphs without vertex 4

Let us now consider the case when there is no box 4 in the packing shown in Figure 5. Then there will
be no vertex 4 in the aggregated precedence graphs and these graphs will be reduced to the form depicted
in Figure 9. If we apply Algorithm 1 to the set of these four graphs, then the process of finding a loading
sequence for a robot will be as follows.

e In the first iteration, vertex 5 will be selected and assigned number 5 because it has no outgoing arc
in graphs Gx + Gy + Gz and Gx + Gy + G4 shown in Figure 9. This means that box 5 will be
packed as the last one by the robot. Since the horizontal components of graphs G x + Gy + Gz and
Gx + Gy + Gy are graphs Gy, Gx and G x, box 5 can be loaded from the front side of the pallet,
as well as from its left or right side.

¢ In the second iteration of Algorithm 1, vertex 1 can be selected because, after removing vertex 5, it
will have no outgoing arcs in graphs Gx + Gy + Gy and Gx + Gy + G4. Thus, vertex 1 can be
packed just before vertex 5 from the left side of the pallet or from its front or back side.

e In the third iteration, vertex 2 can be selected, then having no outgoing arcs in the graphs Gx +
Gy + Gz and Gx + Gy + G. It can be placed from the right side of the pallet, as well as from its
front or back side.

e In the last iteration, only vertex 3 will remain and therefore it will be packed first by the robot from
any side of the pallet.
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Since it is possible to number all the vertices, the aggregated precedence graphs shown in Figure 9
represent the multi-sided robot packing. The resulting box packing sequence is 3-2-1-5. It can be seen
that the packing pattern considered above is not only a multi-sided robot packing, but even a one-sided
robot packing. We can check this by applying Algorithm 1 to only one graph Gx + Gy + Gz shown in
Figure 9. In that case, vertex 5 will be numbered first, then vertex 2, next vertex 3 and finally vertex 1.
Thus, the resulting box packing order will be 1-3-2-5 which can be realized entirely from the front side
of the pallet.

The proposed technique of analyzing packing patterns for its feasibility can also be applied to various
other access requirements that may exist when packing boxes by a robot. Consider, for example, the case
where the robot needs to have access from the top and only from the front side of the pallet (Y axis),
but is able to insert a box between other placed boxes. As with visibility constraints [2, 15], it is only
required that the box is visible from above and from the loading area, not necessarily having an empty
space on the side. To determine the packing order in such a situation, the aggregate precedence graph
can also be used, but it needs to be created from a slightly modified comparability graphs.

Let Hy denotes the graph formed from GGy by removing from it the arcs between those vertices that
are connected by any arc in graph GGx. Thus, there are arcs in the graph Hy only between those vertices
that represent boxes that block each other along the Y coordinate axis. This graph can be seen as an
oriented version of the interval graph proposed by Fekete and Schepers [10].

To find the feasible packing sequence, this time aggregated preceding graph Hy + Gz should be
created and the extended topological sorting applied to it. For the packing pattern shown in Figure 5,
graph Hy is the same as Gy and Hy + Gz has the form as in Figure 10. The only vertex with no
outgoing arc in is vertex 4, so this vertex will be assigned number 5 in the first iteration of Algorithm 1.
After removing vertex 4 and all arcs entering it, vertex 5 will be chosen in the second iteration. In the
third iteration, there will be three vertices without any arcs, so their numbering can be continued in any
order. Thus, graph Hy + Gz can be topologically sorted and the packing pattern shown in Figure 5 would
be feasible for such a robot. One possible order of packing the boxes is 1-2-3-5-4.

©
06\9
4

Figure 10. Graph Hy + G for the example presented in Figure 5

On the other hand, if the robot were capable to place boxes from any side of the pallet, having only free
access from that side and from the top, then the extended topological sorting would have to be applied to
the set consisting of graph Hy + (' and three additional aggregated precedence graphs corresponding
to the other sides of the pallet.

To implement the proposed method for identifying robot-packable patterns of pallet loading, we must
first create the comparability graphs G x, Gy, GGz based on the location of the boxes and their dimensions.
Next, depending on the functionality of the robot, an appropriate set of aggregated precedence graphs
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should be built. Finally, the extended topological sorting of these graphs is performed. The generation
of aggregated precedence graphs requires comparing the position on the pallet of each pair of boxes, so
it takes O(|N|?) time. The algorithm of the extended topological sorting runs in O(| N |?) time, since it
consists in vertex search and arcs removal operations. Thus, the running time of the complete algorithm
for determining the feasible order in which the robot could place the boxes on a pallet is O(| N |?).

5. Pallet loading strategies for robot packing

In the previous sections it is shown how to check whether a given packing pattern can be stacked on a
pallet by a robot. From a practical point of view, it may be important to know which of the packing
strategies discussed in Section 2 always create patterns that are feasible for the robot.

It was noted in [8] that the strategies for placing elements at corner points which were used, for
example, in the algorithm described in [13], give us always a one-sided robot packing. This is because
in such packing, no already packed box is positioned in front of, right of, or above the destination of the
currently placed box.

The extreme points idea extends the corner points concept. However, by placing elements at the
extreme points, we may not get the one-sided or even multi-sided robot packing. Let us consider the
packing pattern shown in Figure 5 with an additional box 6 filling the empty space under box 5. The
dimensions of box 6 are 1 x 1 x 1 and its placement coordinates are (1, 1,0). Such an extended packing
pattern can be formed by placing boxes at the extreme points, for example, in order: 1-3-6-2-5-4 (without
box 6 there would be no extreme point to insert box 5). Note that, like the packing in Figure 5, this
extended packing with additional box 6 would not be the one-sided and even multi-sided robot packing.

It is shown in [ 14] that every guillotine-cuttable packing is also a one-sided robot packing. Since pack-
ing strategy based on partition representation of residual space give us only guillotine-cuttable packing
patterns, so using this technique we always get a one-sided robot packing. However, it is worth noting
at this point that not all one-sided robot packings are guillotine-cuttable. An example of a pattern that is
one-sided robot pacing but is not guillotine-cuttable is shown in [14].

The cover representation of the residual space offers the greatest freedom in choosing where to place
the box on a pallet. However, using this technique, unfortunately, we can get a pattern that is neither
the one-sided robot packing nor even multi-sided robot packing. An example of such a situation is the
packing pattern depicted in Figure 5. As shown earlier, this is not the multi-sided robot packing. On the
other hand, it can be obtained using the cover representation if the boxes are placed in the order 1-3-2-5-4.

We will show below that if there is an additional practical requirement for full vertical support of the
stacked boxes when loading the pallet, then the cover representation will nevertheless always give us the
one-sided robot packing. A box is fully supported when its entire bottom surface lies directly on the
pallet or on some other boxes.

Let us first consider the two-dimensional case of packing only one layer of boxes on a rectangular
surface, that is, including only those boxes that directly lie on such a surface. We will call such packing
a layer packing of boxes.

Theorem 3. Every layer packing of boxes is a one-sided robot packing.
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Proof. Graphs Gx, Gy and Hy are acyclic, and there are no arcs between the vertices in graph Gz for
the layer packing. Let 7" be a set of vertices with no outgoing arcs in oriented interval graph Hy and ¢
be a vertex with no outgoing arc in graph G x|T, i.e., subgraph of G'x induced by the vertices from set
T'. Note that then no arc can come out from vertex ¢ in graph Gx + Gy + Gz. So this vertex can be
assigned the largest number in topological sorting. Removing vertex ¢ from graphs G x, Gy, Gz and all
arcs entering it, we can continue topological sorting in this way and number all the vertices in decreasing
order. So, graph Gx + Gy + Gz of the layer packing is always acyclic and it follows from Theorem 1
that this is a one-sided packing. U

Theorem 4. The pallet loading strategy based on cover representation in full vertical support variant

always leads to a one-sided robot packing.

Proof. It follows from Theorem 3 that boxes lying directly on the pallet form a one-side robot packing
and can be loaded in a topological order by, b, ..., b,. In the case of full vertical support, every other box
is entirely above one of these lower boxes. So the robot with one-sided ability can first place box b; on
a pallet and the individual layers of boxes lying above it in the order determined recursively, then box by
and the layers of boxes located above it, and so on. The following pseudo-code illustrates this recursive

topological ordering method.

SEQUENCING(L, k)
repeat
box < NextTopological(L)
k< k+1
Assign the number £ to box
U < Upper Layer(box)
if U # () then
SEQUENCING(U, k)
end if
until box is the last one in layer L
return £

At the beginning of this algorithm, £ = 0 and L is the set of boxes lying directly on the pallet. Function
Upper Layer(box) identifies the set of boxes (box layer) that lie directly on the top of a given box, while
function NextTopological(L) gives consecutive box according to the topological loading order of such
a layer. By placing the boxes on the pallet in the order determined by the above recursive procedure, the

robot will always have free access to their locations from the top, front and right side. U

Note that Theorem 4 can be generalized to any packing method in full vertical support variant with
the restriction that each box can lie either at the bottom of the pallet or entirely on only one other box.

This also applies to the extreme point insertion technique.

Corollary 1. The pallet loading strategy based on extreme point insertion in full vertical support variant
with the restriction that each box can lie entirely only on just one box, always leads to a one-sided robot
packing.
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It is worth noting that if we allow that boxes can be supported not only by one, but several other
boxes, then using extreme points technique, we may not even get the multi-sided robot packing. The
packing pattern from Figure 5 extended by additional box 6 filling the empty space under box 5 meets
the conditions of full vertical support, with box 5 being fully supported by three boxes: 1, 6 and 2. As
mentioned earlier, we can get this pattern by loading the boxes at the extreme points, but it is not a
multi-sided robot packing.

6. Conclusions

In the paper a formalized method for analyzing pallet packing patterns is proposed. It allows to identify
whether a given packing pattern can be stacked using a robot and if the answer is positive, it determines
the order of placing boxes taking into account the robot’s capability. This method uses a graph repre-
sentation of packing patterns and is flexible enough to take into account various manipulative abilities of
the loading robot. Consequently, it can be uniformly applied to an arbitrarily defined concept of robot
packing, resulting from the required free space for the robot’s moves when stacking successive goods on
a pallet.

It is also shown which packing strategies and their variants leads to the robot packings. The corner
point insertion technique and partition representation give us always a one-sided robot packing. The
extreme point insertion technique and cover representation do not guarantee this in general. In practical
cases, when full vertical support is required, the use of cover representation provides the one-sided robot
packing. The same applies to the extreme points insertion technique in the case when boxes must be fully
supported by only one other box or lie directly on the pallet.
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