
Vol. 34, No. 4 (2024) | DOI: 10.37190/ord240407

OPEN ACCESS

Operations Research and Decisions

www.ord.pwr.edu.pl

The Opone family of distributions. Beyond the power
continuous Bernoulli distribution

Festus C. Opone1∗, 2 Christophe Chesneau3

1Department of Statistics, University of Benin, Benin City, Nigeria
2Department of Statistics, Delta State University of Science and Technology, Ozoro, Nigeria
3Department of Mathematics, LMNO, University of Caen, 14032 Caen, France
∗Corresponding author, email address: oponef@dsust.edu.ng

Abstract

Recent developments in applied statistics have given rise to the continuous Bernoulli distribution, a one-parameter distribution
with support of [0, 1]. In this paper, we use it for a more general purpose: the creation of a family of distributions. We
thus exploit the flexible functionalities of the continuous Bernoulli distribution to enhance the modeling properties of well-
referenced distributions. We first focus on the theory of this new family, including the quantiles, expansion of important
functions, and moments. Then we exemplify it by considering a special baseline: the Topp–Leone distribution. Thanks to the
functional structure of the continuous Bernoulli distribution, we create a new two-parameter distribution with support for [0, 1]
that possesses versatile shape capacities. In particular, the corresponding probability density function has left-skewed, N-type
and decreasing shapes, and the corresponding hazard rate function has increasing and bathtub shapes, beyond the possibilities
of the corresponding functions of the Topp–Leone distribution. Its quantile and moment properties are also examined. We
then use our modified Topp–Leone distribution from a statistical perspective. The two parameters are supposed to be unknown
and then estimated from proportional-type data with the maximum likelihood method. Two different data sets are considered,
and reveal that the modified Topp–Leone distribution can fit them better than popular rival distributions, including the unit-
Weibull, unit-Gompertz, and log-weighted exponential distributions. It also outperforms the Topp–Leone and continuous
Bernoulli distributions.

Keywords: family of distributions, continuous Bernoulli distribution, moments, quantiles, data fitting.

1. Introduction

Let us first go through the so-called continuous Bernoulli (CB) distribution, which plays a central role in
our study. It can be defined in the following manner [18]:
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Definition 1. The CB distribution with parameter λ ∈ [0, 1] is defined by the following cumulative
distribution function (cdf):

F (x;λ) =



0, x < 0

x, λ =
1

2
and x ∈ [0, 1]

λx(1− λ)1−x + λ− 1

2λ− 1
, λ ∈ (0, 1)/

{
1

2

}
and x ∈ [0, 1]

1, x > 1

(1)

Thus, like the standard power distribution, the CB distribution has a support of [0, 1] and is of a one-
parameter continuous type. It has applications in many different domains, with a focus on machine
learning, probability theory, and statistics. To learn more about these subjects, we suggest the following
references: [14, 18, 29] and [17].

Recent extensions of the CB distribution have been proposed in the literature. We may mention the power
CB (PCB) distribution elaborated in [7]. Its main feature is to add a shape parameter to the cdf in equation (1),
with the aim of extending the modeling scope of the CB distribution. The basic mathematical properties of
the PCB distribution were derived, and a statistical approach was performed. The estimates of the parameters
were discussed using the maximum likelihood method. The flexibility of the PCB distribution in real-life data
fitting was analyzed using two data sets: a trade share data set, and a tensile strength of polyester fibers data
set. Also, fair competitors are considered to highlight the accuracy of the PCB distribution. It is shown that it
has better results according to standard statistical criteria. As another efficient extension, the transmuted CB
(TCB) distribution was created in [8]. Its main feature is an additional parameter that realizes a linear tradeoff
between the min and max of two continuous random variables with the CB distribution. The fundamental
mathematical properties of the TCB distribution were deduced, and a statistical method was used. In order to
show its efficiency, three proportional data sets were analyzed: a time to infection of kidney dialysis patients
data set, records of exceedances of flood peaks data set, and waiting times before service in a bank data
set. Empirical findings reveal that the TCB distribution promises more flexibility in fitting these data sets
than well-reputed competitors. We also refer to [29, Chapter 9], where a two-dimensional version of the CB
distribution is introduced, along with some of its properties. The authors [17] developed a fractile (or quantile)
regression model for a response with values in [0, 1] using an exponentiated version of the CB distribution. In
2023, there is again a lot of room for work based on the CB distribution, both in theory and in practice.

In this paper, we use it for a more general objective: we take advantage of the cdf of the CB distribu-
tion to modify or enhance the functional properties of any existing distributions. Thus, the cdf of the CB
distribution is considered a generator function to create a new family of distributions, called the Opone
(Op) family. The use of distributions with support of [0, 1] to construct such a family is a well-mastered
technique (see, for instance, the beta generated family in [10], the Topp–Leone (TL) generated family in
[2], and the Kumaraswamy generated family in [15]) but, to the best of our knowledge, the CB distribu-
tion has never been employed in this general family context. In the first part of the paper, we present the
Op family by its main functions and illustrate it by some of its important member distributions. Then,
we examine the expansion results, which allow us to express complex analytical integral terms related
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to moments, into a series of manageable functions. After the general study, a focus is put on the special
member defined with the TL distribution as the baseline; the OpTL distribution is thus created. It pos-
sesses more capacities in terms of statistical modeling in comparison to the former TL distribution. In
particular, the corresponding probability density function (pdf) has left-skewed, N-type and decreasing
shapes, and the corresponding hazard rate function (hrf) has increasing and bathtub shapes, far beyond
the possibilities of the corresponding functions of the TL distribution. Investigations on its moment and
quantile features are also conducted. Finally, we statistically apply the OpTL distribution. The maximum
likelihood approach is developed to estimate the two involved parameters. Three data sets are considered:
one containing trade share data, one about the failure of components, and the last one about the recovery
rates of COVID-19 patients in Spain. We show that the OpTL distribution can fit these data sets more
accurately than prominent rival distributions like the unit-Weibull, unit-Gompertz, and log-weighted ex-
ponential distributions. Additionally, it performed better than the TL and CB distributions. Statistical
figures and numerical criteria are used to support this claim.

The organization of the paper is as follows: Section 2 presents the Op family. Section 3 is devoted to
the properties and applications of the OpTL distribution in a data fitting scenario. A conclusion is given
in Section 4.

2. The Op family of distributions

2.1. Presentation

The basic definition of the Op family is:

Definition 2. The Op family is defined by the cdf given as FOp(x;λ, ζ) = F [G(x; ζ);λ], where F (x;λ)

is the cdf of the CB distribution as described in Definition 1, and G(x; ζ) is the cdf of a continuous
univariate distribution.

Table 1. A short list of some Op distributions based on well-referenced distributions and λ ∈ [0, 1] \ {1/2}

Distribution Identity Support G(x; ζ) (λ, ζ) FOp(x;α, ζ)

OpTL Topp–Leone [0, 1] [x(2− x)]
a

(λ, a)
λ[x(2−x)]a(1− λ)1−[x(2−x)]a + λ− 1

2λ− 1

OpK Kumaraswamy [0, 1] 1− (1− xa)b (λ, a, b)
λ1−(1−xa)b(1− λ)(1−xa)b + λ− 1

2λ− 1

OpE Exponential [0,+∞) 1− e−θx (λ, θ)
λ1−e−θx

(1− λ)e
−θx

+ λ− 1

2λ− 1

OpW Weibull [0,+∞) 1− e−θxσ

(λ, θ, σ)
λ1−e−θxσ

(1− λ)e
−θxσ

+ λ− 1

2λ− 1

OpLom Lomax [0,+∞) 1− (1 + ρx)
−θ

(λ, ρ, θ)
λ1−(1+ρx)−θ

(1− λ)(1+ρx)−θ

+ λ− 1

2λ− 1

OpPar Pareto [a,+∞) 1− (x/a)
−b

(λ, a, b)
λ1−(x/a)−b

(1− λ)(x/a)
−b

+ λ− 1

2λ− 1

OpGu Gumbel R exp(−e−bx) (λ, b)
λexp(−e−bx)(1− λ)1−exp(−e−bx) + λ− 1

2λ− 1

OpLog Logistic R (1 + e−bx)−1 (λ, b)
λ(1+e−bx)−1

(1− λ)1−(1+e−bx)−1

+ λ− 1

2λ− 1
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Hence, we have

FOp(x;λ, ζ) =


G(x; ζ), λ =

1

2
and x ∈ R

λG(x;ζ)(1− λ)1−G(x;ζ) + λ− 1

2λ− 1
, λ ∈ (0, 1)/

{
1

2

}
and x ∈ R

(2)

Thus, FOp(x;λ, ζ) reduces to the chosen baseline cdf G(x; ζ) by taking λ = 1/2. Furthermore, if we
take G(x, ζ) as the cdf of the uniform distribution over the interval [0, 1], FOp(x;λ, ζ) corresponds to the
cdf of the CB distribution. To the best of our knowledge, the other parameter configurations generate
completely new distributions. A small panel of distributions belonging to the Op family are presented in
Table 1. To exemplify the interest of the Op family, a focus will be on the OpTL distribution in Section 3.

We end this part by exhibiting some asymptotic properties of FOp(x;λ, ζ), mainly to show the effect
of λ and the baseline cdf at the boundaries. When G(x; ζ) → 0, we get

FOp(x;λ, ζ) ∼ (1− λ)cλG(x; ζ)

where

cλ =
2arctanh(1− 2λ)

1− 2λ

(
or cλ =

ln(1− λ)− ln(λ)

1− 2λ

)
(3)

and when G(x; ζ) → 1, we have FOp(x;λ, ζ) ∼ 1 − λcλ[1 − G(x; ζ)]. On these limit bounds, the
impact of λ is significant.

2.2. Other crucial functions

In addition to the cdf, other functions are of interest to comprehend the modeling capacities of the Op
family. The most crucial of them are described below.

2.2.1. Pdf

To begin, the pdf corresponding to the Op family is obtained as

fOp(x;λ, ζ) =


g(x; ζ), λ =

1

2
and x ∈ R

cλg(x; ζ)λ
G(x;ζ)(1− λ)1−G(x;ζ), λ ∈ (0, 1)/

{
1

2

}
and x ∈ R

(4)

where cλ is defined in equation (3) and g(x; ζ) is the pdf associated with G(x; ζ).
Let us consider the case λ ∈ (0, 1)/ {1/2}, and proceed to a basic asymptotic investigation. When

G(x; ζ) → 0, we obtain
fOp(x;λ, ζ) ∼ (1− λ)cλg(x; ζ)

and, when G(x; ζ) → 1, we have
fOp(x;λ, ζ) ∼ λcλg(x; ζ).

These results sketch the importance of the role of the parameter λ in the Op family.
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A general mode study is performed below. If a mode exists, say xm, and fOp(xm;λ, ζ) ̸= 0, it satisfies
the equation {ln[fOp(x;λ, ζ)]}′|x=xm

= 0, that is, after some developments, if g(xm; ζ) ̸= 0,

g′(x; ζ)|x=xm
− c†λg(xm; ζ)

2 = 0,where c†λ = 2arctanh(1− 2λ)
(
or c†λ = ln(1− λ)− ln(λ)

)
(5)

Depending on the characteristics of G(x; ζ), this equation may be very complex. In this case, a
graphical study will be preferred.

2.2.2. Hrf

The hrf corresponding to the Op family is obtained as

hOp(x;λ, ζ) =


g(x; ζ)

1−G(x; ζ)
, λ =

1

2
and x ∈ R

c†λg(x; ζ)
(1− λ)1−G(x;ζ)

(1− λ)1−G(x;ζ) − λ1−G(x;ζ)
, λ ∈ (0, 1)/

{
1

2

}
and x ∈ R

(6)

where c†λ is defined in equation (5). Let us consider the case λ ∈ (0, 1)/ {1/2}. Some asymptotic results
on hOp(x;λ, ζ) are presented below. When G(x; ζ) → 0, we have

hOp(x;λ, ζ) ∼ (1− λ)cλg(x; ζ)

and, when G(x; ζ) → 1, we find that

hOp(x;λ, ζ) ∼
g(x; ζ)

1−G(x; ζ)

An extremum study of hOp(x;λ, ζ) is of interest to determine the hazard rate modeling properties
of the Op family. Here, if an extremum exists, say x∗, and hOp(x∗;λ, ζ) ̸= 0, it satisfies the equation
{ln[hOp(x;λ, ζ)]}′|x=x∗

= 0, that is, after some developments, if g(x∗; ζ) ̸= 0,

g′(x; ζ)|x=x∗
− g(x∗; ζ)

2 ln(1− λ) + g(x∗; ζ)
2 (1− λ)1−G(x∗;ζ) ln(1− λ)− λ1−G(x∗;ζ) ln(λ)

(1− λ)1−G(x∗;ζ) − λ1−G(x∗;ζ)
= 0

This equation can have a high level of complexity depending on the nature of G(x; ζ). In this case, a
graphical analysis is more convenient.

2.2.3. Quantile function

The quantile function (qf) corresponding to the Op family is indicated as

QOp(x;λ, ζ) = F−1
Op (x;λ, ζ)

=


Q(x; ζ), λ =

1

2
and x ∈ [0, 1],

Q

{
ln(1− λ)− ln[(2λ− 1)x+ 1− λ]

c†λ
; ζ

}
, λ ∈ (0, 1)/

{
1

2

}
and x ∈ [0, 1]

(7)

where c†λ is defined in equation (5) and Q(x; ζ) is the qf associated with G(x; ζ).
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If we take x = 1/2 in equation (7), the median of the Op family is obtained. It can be expressed as

Med(λ, ζ) = QOp

(
1

2
;λ, ζ

)
=


M∗

ed(ζ), λ =
1

2
,

Q

{
ln(2) + ln(1− λ)

c†λ
; ζ

}
, λ ∈ (0, 1)/

{
1

2

}
where M∗

ed(ζ) is the median associated with G(x; ζ).
Data generation can be performed with this qf based on the standard inversion approach. To this

aim, let us fix a positive integer n and generate n values from the uniform distribution over [0, 1], say
u1, . . . , un. Then data from a distribution in the Op family are given by x1, . . . , xn, where xi =

QOp(ui;λ, ζ), for i = 1, . . . , n.
The functions described in the above parts, i.e., the cdf, pdf, hrf and qf, will be described in the case

of the OpTL distribution in Section 3.

2.3. Some expansion results

Series expansions of the main functions of a distribution are useful to express complex analytical integral
terms related to moments into a series of manageable functions. They have computational interests.
Indeed, discrete coefficient summations are easy to manipulate, and a high degree of precision can be
obtained in comparison to standard integral computation methods.

Two complementary series expansions for the cdf are presented in the next result.

Proposition 1. For λ ∈ (0, 1)/ {1/2}, the two following expansions hold:

Cdf expansion 1. In function of exponentiated versions of the cdf G(x; ζ), we have

FOp(x;λ, ζ) =
+∞∑
k,ℓ=0

ℓ∑
m=0

αk,ℓ,m(λ)G(x; ζ)k+m + βλ

where

αk,ℓ,m(λ) =
1

2λ− 1

[ln(λ)]k[ln(1− λ)]ℓ(−1)m

k!ℓ!

(
ℓ

m

)
(8)

and

βλ =
λ− 1

2λ− 1
(9)

Cdf expansion 2. In function of exponentiated versions of the survival function (sf)
S(x; ζ) = 1−G(x; ζ), we have

FOp(x;λ, ζ) =
+∞∑
k,ℓ=0

k∑
m=0

α⋆
k,ℓ,m(λ)S(x; ζ)

ℓ+m + βλ

where

α⋆
k,ℓ,m(λ) =

1

2λ− 1

[ln(λ)]k[ln(1− λ)]ℓ(−1)m

k!ℓ!

(
k

m

)
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Proof. By using suitable decompositions and the series expansion of the exponential function, we get

FOp(x;λ, ζ) =
1

2λ− 1
λG(x;ζ)(1− λ)S(x;ζ) + βλ =

1

2λ− 1
eG(x;ζ) ln(λ)eS(x;ζ) ln(1−λ) + βλ

=
1

2λ− 1

{
+∞∑
k=0

[ln(λ)]k

k!
G(x; ζ)k

}{
+∞∑
ℓ=0

[ln(1− λ)]ℓ

ℓ!
S(x; ζ)ℓ

}
+ βλ (10)

On this mathematical basis, let us now distinguish the two kinds of expansions.

For the cdf expansion 1. In function of the exponentiated versions of the cdf G(x; ζ), by using the
standard binomial theorem, we have

S(x; ζ)ℓ = [1−G(x; ζ)]ℓ =
ℓ∑

m=0

(
ℓ

m

)
(−1)mG(x; ζ)m

This decomposition, combined with equation (10), gives the desired result.

For the cdf expansion 2: In function of the exponentiated versions of the sf S(x; ζ), we have

G(x; ζ)k = [1− S(x; ζ)]k =
k∑

m=0

(
k

m

)
(−1)mS(x; ζ)m.

This decomposition, combined with equation (10), gives the desired result.

This ends the proof. □

Based on Proposition 1, assuming the interchange of differentiation and summation, we get two dif-
ferent series expansion for the pdf of the Op family upon differentiation of FOp(x;λ, ζ), that is, for
λ ∈ (0, 1)/ {1/2}:

Pdf expansion 1. based on the cdf expansion 1 in Proposition 1, we have

fOp(x;λ, ζ) =
+∞∑
k,ℓ=0

ℓ∑
m=0

α†
k,ℓ,m(λ)g(x; ζ)G(x; ζ)k+m−1

where α†
k,ℓ,m(λ) = (k +m)αk,ℓ,m(λ).

Pdf expansion 2. based on the cdf expansion 2 in Proposition 1, we have

fOp(x;λ, ζ) =
+∞∑
k,ℓ=0

k∑
m=0

α‡
k,ℓ,m(λ)g(x; ζ)S(x; ζ)

ℓ+m−1

where α‡
k,ℓ,m(λ) = −(ℓ+m)α⋆

k,ℓ,m(λ).

Hence, for a random variable X with a distribution into the Op family, and a function φ(x), the following
moment results hold:
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Based on the pdf expansion 1. Using the transfer formula and assuming the interchange of integration
and summation, we have

E[φ(X)] =

∫ +∞

−∞
φ(x)fOp(x;λ, ζ)dx =

+∞∑
k,ℓ=0

ℓ∑
m=0

α†
k,ℓ,m(λ)γk,m

where

γk,m =

∫ +∞

−∞
φ(x)g(x; ζ)G(x; ζ)k+m−1dx

Based on the pdf expansion 2. We have

E[φ(X)] =

∫ +∞

−∞
φ(x)fOp(x;λ, ζ)dx =

+∞∑
k,ℓ=0

k∑
m=0

α‡
k,ℓ,m(λ)τℓ,m

where

τℓ,m =

∫ +∞

−∞
φ(x)g(x; ζ)S(x; ζ)ℓ+m−1dx

The integral terms γk,m and τℓ,m can be calculated for most of the standard distributions, i.e., with a
well-referenced cdf G(x; ζ). In particular, this is the case for all the baseline distributions presented in
Table 1.

3. Overview of the OpTL distribution

In this section, we exemplify the Op family by focusing on the theory and application of the OpTL
distribution, as sketched in Table 1.

3.1. On the TL distribution

We recall that the cdf of the TL distribution with parameter a > 0 is defined by

G(x; a) =


1, x > 1

[x(2− x)]a , x ∈ [0, 1]

0, x < 0

(11)

In addition, the corresponding pdf is defined by

g(x; a) =

2a(1− x) [x(2− x)]a−1 , x ∈ [0, 1]

0, x ̸∈ [0, 1]
(12)
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The hrf of the TL distribution is indicated as

h(x; a) =


2a(1− x) [x(2− x)]a−1

1− [x(2− x)]a
, x ∈ [0, 1]

0, x ̸∈ [0, 1]

In a nutshell, the TL distribution is of interest in probability and statistics for several reasons, as those
described below.

Flexibility. The TL distribution is a flexible distribution that can analyze efficiently a wide range
of data types with values of [0, 1]. This is mostly thanks to the J-shapes of the pdf, and the bathtub
shapes of the hrf, which are rare properties of a one-parameter distribution with the support of [0, 1].
Computational ease. The TL distribution has a closed-form expression for its cdf, pdf and
hrf, which makes it relatively easy to compute compared to other more complex distributions. This
makes it an attractive option for analyzing data in many situations where other distributions might
be too computationally expensive.
Interpretability. The TL distribution has a clear and intuitive interpretation of its parameters,
which makes it simple to understand and interpret the results of statistical analysis. This is partic-
ularly important in situations where the distribution is being used to model real-world phenomena,
and the results of the analysis will be used to inform decisions.
Applications. The TL distribution has been used in a variety of applications, including finance,
actuarial science, biology, and ecology. It has also been used in the analysis of data from surveys,
market research, and clinical trials. This broad range of applications demonstrates the versatility
and usefulness of the TL distribution in probability and statistics.

For more information on the TL distribution, we refer to [9, 12, 22, 26, 30] and [11].

3.2. The OpTL distribution

Based on the cdf in equation (11) and the cdf of the Op family as described in equation (2), we define
the OpTL distribution as follows:

Definition 3. Using equations (2) and (11), the OpTL distribution with parameter λ and a is defined
by the following cdf:

FOpTL(x;λ, a) =


1, x > 1

λ[x(2−x)]a(1− λ)1−[x(2−x)]a + λ− 1

2λ− 1
, λ ∈ (0, 1)/

{
1

2

}
and x ∈ [0, 1]

0, x < 0

(13)

For the special case λ = 1/2, it is reduced to the cdf of the TL distribution.

Thus defined, the OpTL distribution presents a new option of two-parameter distribution with support
of [0, 1]. Such distributions have found renewed interest these last few years due to the need to analyze
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complex proportional or percentage data of various kinds. On this topic, we may refer to [1], [6, 13, 16,
19, 20], [21, 23, 25, 27], and [28].

In the sequel, for the sake of space, we omit the case λ = 1/2 (so λ ∈ (0, 1)/ {1/2}), since it
corresponds to the well-known TL distribution.

Based on Proposition 1, the following expansion holds:

FOpTL(x;λ, a) =
+∞∑
k,ℓ=0

ℓ∑
m=0

αk,ℓ,m(λ)G(x; a(k +m)) + βλ (14)

where αk,ℓ,m is given in equation (8), βλ is described in equation (9), and G(x; a(k +m)) is defined as
in equation (11) with the parameter a(k +m) instead of a.

3.3. Other functions

Based on the cdf in equation (13), the pdf of the OpTL distribution is obtained as

fOpTL(x;λ, a)

=


cλ2a(1− x) [x(2− x)]a−1 λ[x(2−x)]a(1− λ)1−[x(2−x)]a , λ ∈ (0, 1)/

{
1

2

}
and x ∈ [0, 1]

0, λ ∈ (0, 1)/

{
1

2

}
and x ̸∈ [0, 1]

(15)

where cλ is defined in equation (3). Let us now briefly study this function, beginning with its asymptotic
properties. When x → 0, we have

fOpTL(x;λ, a) ∼ (1− λ)cλ2
aaxa−1 →


0, a > 1

2, a = 1

+∞, a < 1

(16)

and, when x → 1, we obtain
fOpTL(x;λ, a) ∼ λcλ2a(1− x) → 0

From these asymptotic results, we conclude that fOpTL(x;λ, a) can have at least one mode, and is not
increasing. For a more deep shape study, in view of the functional complexity of the function, a graphical
work will be performed later.

In a last remark on this pdf, based on equation (14), the following expansion holds:

fOpTL(x;λ, a) =
+∞∑
k,ℓ=0

ℓ∑
m=0

αk,ℓ,m(λ)g(x; a(k +m)) (17)

where g(x; a(k + m)) is the pdf related to the TL distribution, i.e., defined in equation (12) with the
parameter a(k +m).

The expansion of fOpTL(x;λ, a) finds an interest in approximation of various moments quantities, for
computation purposes. The hrf of the OpTL distribution is obtained as
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hOpTL(x;λ,a)

=


c†λ2a(1− x) [x(2− x)]a−1 (1− λ)1−[x(2−x)]a

(1− λ)1−[x(2−x)]a − λ1−[x(2−x)]a
, λ ∈ (0,1)/

{
1

2

}
and x ∈ [0,1]

0, λ ∈ (0,1)/

{
1

2

}
and x ∉ [0,1]

(18)

where c†λ is defined in equation (5). Let us now briefly examine this function, beginning with its asymp-
totic properties.

When x → 0, we have

hOpTL(x;λ, a) ∼ (1− λ)cλ2
aaxa−1 →


0, a > 1

2, a = 1

+∞, a < 1

and, when x → 1, we get

hOpTL(x;λ, a) ∼
2

1− x
→ +∞

These results demonstrate the flexibility of hOpTL(x;λ, a). For a more deep shape study, in view of
the functional complexity of the function, we chose to do a graphical work in the next part.

With regard to equation (7), the qf of the OpTL distribution is obtained as

QOpTL(x;λ, a)

= 1−

√√√√1−

{
ln(1− λ)− ln[(2λ− 1)x+ 1− λ]

c†λ

}1/a

, λ ∈ (0, 1)/

{
1

2

}
and x ∈ [0, 1]

The closed form expression of QOpTL(x;λ, a) is a clear plus; diverse quantile measures can be ex-
pressed and computed without problem.

3.4. Graphical work

For comparison purposes, and as a visual benchmark, Figure 1 displays the pdf and hrf of the TL distri-
bution for varying values of a ∈ (0, 1).

Clearly, for a ∈ (0, 1), the pdf the TL distribution is strictly a decreasing function, while the hrf
accommodates only a bathtub-shaped property.

Now, let us investigate the shapes of the pdf and hrf of the OpTL distribution. Figure 2 displays them
for several values of λ and a ∈ (0, 1).

From this figure, we notice that the pdf of the OpTL distribution accommodates left-skewed, N-type
and decreasing shapes, while the hrf exhibits increasing and bathtub shapes.
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Figure 1. The pdf (a) and hrf (b) plots of the TL distribution for varying values of a

Figure 2. The pdf (a) and hrf (b) plots of the OpTL distribution for varying values of λ and a

If we compare Figures 1 and 2, it is clear that the functional capabilities of the TL distribution are thus
considerably enhanced by our CB distribution generator. The OpTL distribution is thus preferable from
a statistical modeling viewpoint.

3.5. Moment analysis

Let X be a random variable that follows the OpTL distribution with parameters λ and a (with λ ∈ (0, 1)/

{1/2} to lighten the developments), and r be a non-negative integer. Then the rth moment of X is
obtained as

vr = E(Xr) =

+∞∫
−∞

xrfOpTL(x;λ, a)dx.

Based on equation (16), we get

vr = cλ2a

1∫
0

xr(1− x) [x(2− x)]a−1 λ[x(2−x)]a(1− λ)1−[x(2−x)]adx.

This integral is complicated to manage from an analytical viewpoint, but it can be calculated easily
with the help of any mathematical software. Furthermore, based on the series expansion in equation (17),
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we have

vr =
+∞∑
k, ℓ=0

ℓ∑
m=0

αk, ℓ,m(λ)wr(a(k +m))

where wr(a(k + m)) denotes the rth moment of a random variable Y that follows the TL distribution
with parameter a∗ = a(k +m). See [22] for the exact and technical expression of this moment. In the
expression above, by replacing the infinite upper bound by a finite integer, we obtain an approximation
of vr; the larger the chosen integer, the more precise the approximation.

Classical moment measures can be derived to vr. In particular, the standard deviation of X follows from

the standard formula: σ =
√
v2 − v21. In addition, the rth central moment of X around 0 is given by

v∗r = E[(X − v1)
r] =

r∑
k=0

(
r

k

)
(−1)r−kvr−k

1 vk

Based on these ingredients, the moment skewness and kurtosis coefficients of X are, respectively,
obtained as the following ratio expressions:

S =
v∗3
σ3

, K =
v∗4
σ4

Numerical computations of the mean, variance, moment skewness, and moment kurtosis for the OpTL
distribution are shown in Table 2 for varying parameter values.

Table 2. Numerical computation
of the moments of the OpTL distribution

λ a v∗1 σ2 S K

0.1 1 0.2038 0.0361 1.3391 4.4503
3 0.4232 0.0350 0.4226 2.7973
6 0.5617 0.0248 0.1283 2.5943
9 0.6327 0.0189 -0.0509 3.3990

0.3 1 0.2786 0.0494 0.8563 2.9095
3 0.4941 0.0402 0.1534 2.2405
6 0.6198 0.0269 -0.1370 2.6439
9 0.6827 0.0200 -0.2463 2.7134

0.6 1 0.3606 0.0574 0.4399 2.2178
3 0.5663 0.0406 -0.1825 2.3087
6 0.6777 0.0279 -0.4212 2.6675
9 0.7321 0.0225 -0.5230 2.9148

From this table, we observe that for a fixed parameter λ, as parameter a increases, the mean increases,
whereas the variance decreases. Conversely, for a fixed parameter a, the mean and variance increase as
parameter λ increases. Hence, we assert that the mean of the OpTL distribution is an increasing function
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of parameter a. The results further described the OpTL distribution as one possessing both symmetry
and asymmetry properties.

3.6. Parameter estimation

In a basic statistical scenario, we have observations of a certain variable considered as random and whose
distribution fits with the OpTL distribution. We aim to estimate the related unknown parameters λ and a

based on them. The ML method is employed to this end. It can be described as follows: Let x1, . . . , xn

represent n independent observations from a random variable X following the OpTL distribution. The
related parameters λ and a are supposed to be unknown. For convenience in the presentation, we sup-
pose that λ ∈ (0, 1)/ {1/2}, corresponding to the special CB distribution case. Then, based on the pdf
indicated in equation (15), the corresponding likelihood function is given as

LOpTL(λ, a;x1, . . . , xn) =
n∏

i=1

fOpTL(xi;λ, a)

= cnλ2
nan

n∏
i=1

(1− xi)

[
n∏

i=1

xi(2− xi)

]a−1

λ
∑n

i=1[xi(2−xi)]
a

(1− λ)n−
∑n

i=1[xi(2−xi)]
a

The ML estimates (MLEs) of λ and a are obtained as

(λ̂, â) = argmax(λ,a) LOpTL(λ, a;x1, . . . , xn)

We can eventually replace the likelihood function by its logarithmic version defined as

ℓOpTL(λ, a;x1, . . . , xn) = ln [LOpTL(λ, a;x1, . . . , xn)]

= n ln (cλ) + n ln(2) + n ln(a) +
n∑

i=1

ln(1− xi) + (a− 1)
n∑

i=1

[ln(xi) + ln(2− xi)]

+ ln(λ)
n∑

i=1

[xi(2− xi)]
a + ln(1− λ)

{
n−

n∑
i=1

[xi(2− xi)]
a

}

Based on it, on the computational side, the MLEs can be determined by solving the following non-
linear equations with respect to λ and a:

∂ℓOpTL(λ, a;x1, . . . , xn)

∂λ
= 0,

∂ℓOpTL(λ, a;x1, . . . , xn)

∂a
= 0

The ML method has numerous advantages, including the asymptotic unbiasedness and normality prop-
erties of the produced estimates. Details on the benefits of applying the ML method can be found in [5].

Based on λ̂ and â, the functions of the OpTL distribution can be estimated by the substitution approach.
In particular, an estimate of FOpTL(x;λ, a) is given by F̂ (x) = FOpTL(x; λ̂, â) and an estimate of the pdf
fOpTL(x;λ, a) is obtained as f̂(x) = fOpTL(x; λ̂, â).
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3.7. Simulation

Investigating the performance of the parameter estimates of any proposed probability model is very sig-
nificant. This gives us an insight of how well an estimate predicts the true parameter values. In this
subsection, we treat the parameters of the OpTL distribution arising from the Op family. Random sam-
ples of size n = 25, 50, 100, 200 and 500 are generated from OpTL distribution at three different sets
of parameter values (λ = 0.1, a = 0.2), (λ = 0.2, a = 0.6) and (λ = 0.3, a = 0.8). A Monte Carlo
simulation is conducted N times, with N = 5000. For ζ = a and ζ = λ, the following quantities are
computed:

1. Mean estimate defined by
1

N

N∑
i=1

ζ̂i,

2. Bias indicated as
1

N

N∑
i=1

(ζ̂i − ζi),

3. Root mean square error (RMSE) specified by

√√√√ 1

N

N∑
i=1

(ζ̂i − ζi)
2.

Table 3 presents the mean estimates, bias and root mean square error of the parameter of the OpTL
distribution.

Table 3. The mean estimate, bias and RMSE of the parameter of the OpTL distribution

Parameters
Mean estimate Bias RMSE

n a λ a λ a λ

25 0.2142 0.1147 0.0142 0.0147 0.0512 0.1125
a = 0.2 50 0.2083 0.1136 0.0083 0.0136 0.0352 0.0856
λ = 0.1 100 0.2047 0.1043 0.0047 0.0043 0.0245 0.0575

200 0.2033 0.1007 0.0033 0.0008 0.0166 0.0370
500 0.2032 0.0971 0.0032 -0.0029 0.0107 0.0229

25 0.6402 0.2162 0.0402 0.0163 0.1706 0.1773
a = 0.6 50 0.6202 0.2112 0.0202 0.0112 0.1166 0.1305
λ = 0.2 100 0.6145 0.2042 0.0145 0.0042 0.0886 0.1003

200 0.6087 0.2009 0.0087 0.0009 0.0609 0.0692
500 0.6051 0.1977 0.0051 -0.0023 0.0373 0.0420

25 0.8248 0.3163 0.0248 0.0163 0.1719 0.1889
a = 0.8 50 0.8124 0.3103 0.0124 0.0103 0.1486 0.1565
λ = 0.3 100 0.8114 0.3056 0.0114 0.0056 0.1162 0.1200

200 0.8023 0.3009 0.0023 0.0009 0.0877 0.0904
500 0.8018 0.3000 0.0018 0.00002 0.0482 0.0494

Notice that in Table 3, the mean estimate of both parameters converges to the true parameter value as
n increases. Likewise, as n increases, the bias and RMSE of both parameter estimates decreases. These
properties are consistent with the properties of a good estimator.
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3.8. Data fitting

Here, we attempt to show the relevance of the Op family in modeling real world data sets. More precisely,
two data sets of different nature are considered for data fitting purposes and in all fairness, five existing
bounded lifetime distributions are selected as the main competitors. These competitors are presented
below.

1. Unit-Weibull (UW) distribution introduced in [20], and defined by the following pdf:

fUW (x;α, β) =
1

x
αβ (− lnx)β−1 e−α(− lnx)β , x ∈ (0, 1]

and fUW (x;α, β) = 0 for x ̸∈ (0, 1].
2. Unit-Gompertz (UG) distribution studied in [19], and defined by the following pdf:

fUG(x; a, b) = abx−(a+1)e−b(x−a−1), x ∈ [0, 1]

and fUG(x; a, b) = 0 for x ̸∈ [0, 1].
3. Log-weighted exponential (LWE) distribution developed in [3], and defined by the following pdf:

fLWE(x;α, λ) =
α + 1

α
λxλ−1

(
1− xαλ

)
, x ∈ [0, 1]

and fLWE(x;α, λ) = 0 for x ̸∈ [0, 1].
4. TL distribution reported in [26], and defined by the following pdf:

fTL(x; a) = 2a (1− x) [x(2− x)]a−1 , x ∈ [0, 1]

and fTL(x; a) = 0 for x ̸∈ [0, 1].
5. CB distribution reported in [29], and defined by the following pdf:

fCB(x;λ) = cλλ
x(1− λ)1−x, x ∈ [0, 1]

where cλ is defined in equation (3) and fCB(x;λ) = 0 for x ̸∈ [0, 1].

Data set 1
The first data set constitutes of trade share data reported in [4]. It contains the following values:

0.140501976, 0.156622976, 0.157703221, 0.160405084, 0.160815045, 0.22145839, 0.299405932,
0.31307286, 0.324612707, 0.324745566, 0.329479247, 0.330021679, 0.337879002, 0.339706242,
0.352317631, 0.358856708, 0.393250912, 0.41760394, 0.425837249, 0.43557933, 0.442142904,
0.444374621, 0.450546652, 0.4557693, 0.46834656, 0.473254889, 0.484600782, 0.488949597,
0.509590268, 0.517664552, 0.527773321, 0.534684658, 0.543337107, 0.544243515, 0.550812602,
0.552722335, 0.56064254, 0.56074965, 0.567130983, 0.575274825, 0.582814276, 0.603035331,
0.605031252, 0.613616884, 0.626079738, 0.639484167, 0.646913528, 0.651203632, 0.681555152,
0.699432909, 0.704819918, 0.729232311, 0.742971599, 0.745497823, 0.779847085, 0.798375845,
0.814710021, 0.822956383, 0.830238342, 0.834204197, .979355395.
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Data set 2
The second data set reported in [24] is concerned with ordered failure of components. The data are
presented as follows:

0.0009, 0.004, 0.0142, 0.0221, 0.0261, 0.0418, 0.0473, 0.0834, 0.1091, 0.1252,
0.1404, 0.1498, 0.175, 0.2031, 0.2099, 0.2168, 0.2918, 0.3465, 0.4035, 0.6143.

Table 4 shows the descriptive statistics of the two data sets.

Table 4. Descriptive statistics for data sets 1 and 2

Data set Minimum Mean Variance Skewness Kurtosis Maximum

1 0.1405 0.5142 0.0375 0.0059 2.4696 0.9794
2 0.0009 0.1613 0.0248 1.2317 4.0743 0.6143

Information drawn from Table 4 reveals that data sets 1 and 2 are, respectively, approximately sym-
metric and right-skewed in nature. More information about them can be obtained by inspecting the box
plot and total time on test (TTT) plot of the two data sets as shown in Figures 3 and 4, respectively.

Figure 3. TTT plot (left) and box plot (right) for data set 1

Figure 4. TTT plot (left) and box plot (right) for data set 2

In Figure 3, the TTT line is concave, implying that data set 1 exhibits an increasing failure rate
property, while the box plot indicates that the data set is approximately symmetric with no outlier. Also,
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we observe that the TTT line in Figure 4 is first convex and then concave, suggesting that the data set
exhibits an inverted bathtub failure rate property. Whereas, the box plot shows that the data set is right-
skewed with the presence of an outlier in the data.

For model comparison and investigation of an appropriate model suitable for fitting the two data sets,
we adopt the computation of the maximized log-likelihood (LL), Akaike information criterion (AIC),
corrected Akaike information criterion (AICc), Kolmogorov–Smirnov (K-S), and Cramér–Von-Mises
(W ∗) test statistics with their corresponding p-value. The smaller the value of the AIC and AICc, and
the higher the value of the p-values, the more preferable the corresponding model is to fit the data under
consideration. Tables 5 and 6 present the summary results for the data sets.

Table 5. Summary results for data set 1

Distribution Parameter LL AIC AICc K–S W ∗

estimates (p-value) (p-value)

OpTL a = 3.3726 14.4208 -24.8417 -24.6348 0.0575 0.0416
λ = 0.2938 (0.9809) (0.9259)

UW α = 1.3395 14.2436 -24.4872 -24.2803 0.0681 0.0617
β = 1.7345 (0.9210) (0.8049)

UG a = 0.6161 10.8758 -17.7518 -17.5449 0.1098 0.2076
b = 1.0921 (0.4235) (0.2535)

LWE α =-2.9×10−5 13.0829 -22.1659 -21.9540 0.1025 0.1356
λ = 2.6578 (0.5108) (0.4376)

CB λ = 0.5424 0.0734 1.8532 1.9210 0.1834 0.6877
(0.0287) (0.0134)

TL a = 2.7391 13.3202 -24.6404 -24.5726 0.0859 0.0878
(0.7258) (0.6495)

Table 6. Summary results for data set 2

Distribution Parameter LL AIC AICc K–S W ∗

estimates (p-value) (p-value)

OpTL a = 0.8349 16.8009 -29.6017 -28.8958 0.1158 0.0382
λ = 0.0873 (0.9234) (0.9462)

UW α = 0.1598 16.4575 -28.9150 -28.2091 0.1318 0.0531
β = 1.7269 (0.8335) (0.8625)

UG a = 0.7741 14.7625 -25.5251 -24.8192 0.1494 0.0996
b = 0.2782 (0.7093) (0.5911)

LWE α =0.0003 16.4329 -28.8659 -28.1600 0.1351 0.0521
λ = 0.7807 (0.812) (0.8689)

CB λ = 0.0022 15.5370 -29.074 -28.8518 0.1221 0.0410
(0.8713) (0.9325)

TL a = 0.5112 15.6167 -29.2337 -29.0115 0.1848 0.1114
(0.4481) (0.5360)
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3.9. Discussion of the results

An appropriate model suitable for fitting any real data set is traceable to the one having the maximized
log-likelihood value and the least value judging from AIC, AICc, K-S, and W ∗.

A careful study of Tables 5 and 6 reveals that the OpTL distribution has satisfied the aforementioned
criteria across the two data sets (except the AICc in Table 6 which was in favor of the TL distribution)
and performed better than the competitor distributions, thus being declared the most appropriate model
for fitting the two data sets. The superiority of the OpTL distribution is also established judging from the
p-value of the test statistics in Tables 5 and 6, since the OpTL distribution has the highest p-value in both
tables. It is appealing to reckon that only the CB distribution with (p-value < 0.05), failed to model the
first data set adequately, hence the usefulness of the proposed Op family of distributions.

Figure 5. Estimated pdf fit of the distributions for data set 1

Figure 6. P-P plot of the distributions for data set 1



122 F.C. Opone and C. Chesneau

Figure 7. Estimated pdf fit of the distributions for data set 2

Figure 8. P-P plot of the distributions for data set 2

Alternatives to numerical computation for goodness-of-fit are graphical plots such as the estimated
pdf fit and Probability-Probability (P-P) plots. We present them for the data sets in Figures 5–8.

A clear observation of all the plots validates the superiority of the OpTL distribution over the competi-
tor distributions in fitting the two data sets, as its fit matches closer to the empirical pdf of each data set
than the rest of the distributions. It is also obvious from the plots obtained from data sets 1 and 2 that the
CB distribution performed poorly in fitting the data sets.



The Opone family of distributions. . . 123

4. Conclusion

In this paper, we contributed to the development of the CB distribution by using its cdf as a generator
of distributions, creating the Op family. We thus transposed the functionalities of the CB distribution to
enhance the modeling capabilities of a given absolutely continuous univariate baseline distribution. In
the first part, we provided all the necessary theory to apprehend the Op family as it is best understood,
including the quantiles, expansion of important functions, and moments. In the second part, we exemplify
it by considering the TL distribution; the OpTL distribution was thus created. It can be presented as a new
two-parameter distribution with support of [0, 1]. By using mathematical arguments, graphics, and tables,
we show that it has more modeling capacities than the TL distribution. Then, its quantile and moment
properties were retained. We then use the OpTL distribution from a statistical perspective. The maximum
likelihood method is applied. Two different data sets were considered, and it was revealed that the OpTL
distribution could fit them better than the UW, UG, and LWE distributions. It also outperformed the TL
and CB distributions.

The paper thus sets the basis for more in the direction of the use of the CB distribution in probability
and statistics. New distributions are elaborated and can be used in various data-fitting scenarios in all
areas of applied sciences. The perspectives of the Op family are numerous, including the developments
of regression models, cluster models, and multivariate models.

Acknowledgement
The authors express their gratitude to two anonymous reviewers for their insightful critiques and recommendations on an

earlier version of this paper.

Funding
The authors declare that there are no funding for the publication of this paper.

References

[1] Akata, I. U., Opone, F. C., and Osagiede, F. E. U. The Kumaraswamy unit-Gompertz distribution and its application to
lifetime datasets. Earthline Journal of Mathematical Sciences 11, 1 (2023), 1–22.

[2] Al-Shomrani, A., Arif, O., Shawky, A., Hanif, S., and Shahbaz, M. Q. Topp–Leone family of distributions: Some
properties and application. Pakistan Journal of Statistics and Operation Research 12 (2016), 443–451.

[3] Altun, E. The log-weighted exponential regression model: alternative to the beta regression model. Communications in Statistics -
Theory and Methods 50, 10 (2021), 2306–2321.

[4] Bantan, R. A. R., Jamal, F., Chesneau, C., and Elgarhy, M. Theory and applications of the unit Gamma/Gompertz
distribution. Mathematics 9, 16 (2021), 1850.

[5] Casella, G., and Berger, R. L. Statistical Inference. Duxbury Resource Center, 2001.
[6] Chesneau, C. A note on an extreme left skewed unit distribution: Theory, modelling and data fitting. Open Statistics 2, 1 (2021),

1–23.
[7] Chesneau, C., and Opone, F. The power continuous Bernoulli distributions: Theory and applications. Reliability: Theory &

Applications 17, 4(71) (2022), 232–248.
[8] Chesneau, C., Opone, F. C., and Ubaka, N. O. Theory and applications of the transmuted continuous Bernoulli distribution.

Earthline Journal of Mathematical Sciences 10, 2 (2022), 385–407.
[9] Van Dorp, J. R., and Kotz, S. Modeling income distributions using elevated distributions on a bounded domain. In Distribution

Models Theory (Singapure, 2006), R. Herrerías Pleguezuelo, J. Callejón Céspedes and J. M. Herrerías Velasco, Eds., World Scientific
Publishing Co Pte Ltd., pp. 1–25.

[10] Eugene, N., Lee, C., and Famoye, F. Beta-normal distribution and its applications. Communications in Statistics - Theory
and Methods 31, 4 (2002), 497–512.

[11] Genc, A. İ. Moments of order statistics of Topp–Leone distribution. Statistical Papers 53 (2012), 117–131.



124 F.C. Opone and C. Chesneau

[12] Ghitany, M. E., Kotz, S., and Xie, M. On some reliability measures and their stochastic orderings for the Topp-Leone
distribution. Journal of Applied Statistics 32, 7 (2005), 715–722.

[13] Gomaa, R. S., Magar, A. M., Alsadat, N., Almetwally, E. M., and Tolba, A. H. The unit alpha-power
Kum-modified size-biased Lehmann type II distribution: Theory, simulation, and applications. Symmetry 15, 6 (2023), 1283.

[14] Gordon-Rodriguez, E., Loaiza-Ganem, G., and Cunningham, J. P. The continuous categorical: a novel simplex-valued
exponential family. In Proceedings of the 37th International Conference on Machine Learning, 13-18 July 2020, PMLR (2020), H.
Daumé III and A. Singh, Eds., PMLR, pp. 3637–3647.

[15] Hussain, M. A., Tahir, M. H., and Cordeiro, G. M. A new Kumaraswamy generalized family of distributions: Properties
and applications. Mathematica Slovaca 70, 6 (2020), 1491–1510.

[16] Korkmaz, M. Ç., and Chesneau, C. On the unit Burr-XII distribution with the quantile regression modeling and applications.
Computational and Applied Mathematics 40 (2021), 29.

[17] Korkmaz, M. Ç., Leiva, V., and Martin-Barreiro, C. The continuous Bernoulli distribution: Mathematical characteriza-
tion, fractile regression, computational simulations, and applications. Fractal and Fractional 7, 5 (2023), 386.

[18] Loaiza-Ganem, G., and Cunningham, J. P. The continuous Bernoulli: fixing a pervasive error in variational autoencoders.
Advances in Neural Information Processing Systems 32 (2019), 13266–13276.

[19] Mazucheli, J., Menezes, A. F., and Dey, S. Unit-Gompertz distribution with applications. Statistica 79, 1 (2019), 25-–43.
[20] Mazucheli, J., Menezes, A. F. B., Fernandes, L. B., de Oliveira, R. P., and Ghitany, M. E. The unit-Weibull

distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates. Journal of
Applied Statistics 47, 6 (2020), 954–974.

[21] Muse, A. H., Tolba, A. H., Fayad, E., Ali, O. A. A., Nagy, M., and Yusuf, M. Modelling the COVID-19
mortality rate with a new versatile modification of the log-logistic distribution. Computational Intelligence and Neuroscience 2021
(2021), 640794.

[22] Nadarajah, S., and Kotz, S. Moments of some J-shaped distributions. Journal of Applied Statistics 30, 3 (2003), 311–317.
[23] Nasiru, S., Abubakari, A. G., and Chesneau, C. New lifetime distribution for modeling data on the unit interval: Properties,

applications and quantile regression. Mathematical and Computational Applications 27, 6 (2022), 105.
[24] Nigm, A. M., Al-Hussaini, E. K., and Jaheen, Z. F. Bayesian one-sample prediction of future observations under Pareto

distribution. Statistics 37, 6 (2003), 527–536.
[25] Opone, F. C., Akata, I. U., and Altun, E. The Marshall-Olkin extended unit-Gompertz distribution: its properties, regression

model and applications. Statistica 82, 2 (2022), 97–118.
[26] Opone, F. C., Ekhosuehi, N., and Omosigho, S. E. Topp-Leone power Lindley distribution(Tlpld): its properties and

application. Sankhya A 84, 2 (2022), 597–608.
[27] Opone, F. C, and Iwerumor, B. A new Marshall-Olkin extended family of distributions with bounded support. Gazi University

Journal of Science 34, 3 (2021), 899–914.
[28] Ramadan, A. T., Tolba, A. H., and El-Desouky, B. S. A unit half-logistic geometric distribution and its application in

insurance. Axioms 11, 12 (2022), 676.
[29] Wang, K.-S., and Lee, M.-Y. (22 November 2020) Continuous Bernoulli Distribution: Simulator and Test Statistic (accesessed

on 23 August 2021).
[30] Zhou, M., Yang, D. W., Wang, Y., and Nadarajah, S. Some j-shaped distributions: sums, products and ratios. In RAMS

’06. Annual Reliability and Maintainability Symposium (Newport Beach, CA, USA, 2006), IEEE, pp. 175–181.

https://www.researchgate.net/profile/Mei-Yu-Lee/publication/346208482_Continuous_Bernoulli_distribution---simulator_and_test_statistic/links/5fceca69a6fdcc697beb9cb8/Continuous-Bernoulli-distribution---simulator-and-test-statistic.pdf?__cf_chl_tk=.HRJdhYV89fu0oXVF3ut4MMJwPi89IS5j_tSPzzky7s-1732052114-1.0.1.1-B.OKaIA494wnL3qMYx5XuH.d0MpTSuUrcJGNzkHnovQ

	Introduction
	The Op family of distributions
	Presentation
	Other crucial functions
	Pdf
	Hrf
	Quantile function

	Some expansion results

	Overview of the OpTL distribution
	On the TL distribution
	The OpTL distribution
	Other functions
	Graphical work
	Moment analysis
	Parameter estimation
	Simulation
	Data fitting
	Discussion of the results

	Conclusion

