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Abstract

We investigate assessment functions, i.e., functions that aggregate numerical attribute values into single numbers. All assess-
ment functions in the current use share the same limitation: they do not explicitly account for the attribute values balance.
Here, we present assessment functions that provide for that. However, those functions are at odds with the well-established
paradigm of Pareto efficiency. As an example, the relevance of assessment functions to rankings is discussed.
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1. Introduction

We appraise objects (or ideas, e.g., plans) in any domain of human activity. Whenever possible, this is
done by evaluating objects quantitatively and aggregating their numerical attribute values by (multiat-
tribute) assessment functions. Assessment functions are at the root of decision theories, like the social
choice theory, the production theory, the utility theory, or the multiple criteria decision making theory.
They all share a common framework: object attributes become arguments of an assessment function, and
the assessment function value constitutes the object appraisal.

The standard mechanism of assessment functions is that larger attribute values', with no attribute
value smaller, result in a higher assessment function value; it is then said that assessment functions are
increasing. Thus, for two objects with the same assessment function value, increases in some attribute
values have to be compensated by a decrease in values of some other attributes. This is the principle of
Pareto efficiency. But what if one goes beyond that mechanism, by admitting cases when larger attribute

! To simplify the presentation, it is assumed that all attributes are of the type “the more, the better” or are transformed to
that type by multiplication their values by —1.
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values do not necessarily result in higher assessment function values? We present this idea formally and
then show its relevance to decision making on the example of rankings.

In the production theory, the utility theory, the decision theory, and the multiple criteria decision
making theory, the assessment functions are based on the generalized mean functions (GMFs) (it is
commonly assumed in the first three domains that attribute values are nonnegative; below we stick to this

assumption):

where x; is the [th attribute of an object. To align with the assumption that all attributes are of the type

k
H x; (the geometric
=1

“the more, the better”, these functions have to be maximized. For p — 0, f(z) =

mean), and for p — —oo, f(z) = 1@2& x; (the Leontief function), cf. Figure 1.

Figure 1. Contours of the generalized mean functions
for selected p (solid) and the CHL (dashed)

In the production theory, GMFs with p < 1 are known as CES functions ([12]). For p = 1, function (1)
is the linear function. Here, to simplify the exposition, we use the unweighted form of assessment
functions, absorbing weights by substituting weighted attributes x; by unweighted x, namely:

wr, = J}/l (2)

where w; > 0, [ =1,..., k, are weights.

2. Assessment functions inconsistent with Pareto efficiency

Assessment functions in the current use are consistent with Pareto efficiency. Larger attribute values (and
no one smaller) incur higher assessment function values (this immediately follows from the definition of
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GMFs), and that is the contemporary dogma in all mentioned domains. But can larger attribute values
incur lower assessment function values? It all depends on how assessment function values are interpreted.

We say that the attribute values are perfectly balanced, if x;/xy = 1foralll,I' =1, ..., k, 1 # 1,
as represented by the dashed half line in Figure 1 (the compromise half line, CHL, the term introduced
in [6], cf. also [9, 10])?. We define the attribute values balance as the distance (in the sense of a selected
distance measure) between the collection (vector) of k attribute values and the CHL. Here the lower
balance, the better, thus one can interpret so defined attribute values balance as unbalance. With that,
objects can be appraised by their attribute values balances. Attribute values collections that are located
on the CHL are perfectly balanced, their balance is zero (cf. the definition of “extremeness aversion”
discussed in the next section).

For k = 2, equidistant collections of objects’ attribute values are located on lines parallel to the CHL,
and for £ = 3 on surfaces of convex bodies with the CHL as the axis.

Figure 2. Contours of the generalized Leontief function (solid and dashed),

1
p=—1 k = 2. Each line contains points (x1, x2) equidistant to the CHL (dashed)

Apprising objects according to their attribute values balances, as outlined above, focus on the positions
of attribute values collections relative to the CHL, rather than, as in the classic methods of objects’
apprising, on attribute values collections relative to one another. A novel object appraising approach is
needed that would compromise that two perspectives.

3. Related works

In behavioral decision theory the issue of attribute values balance has been of research interests since
ninethies of the previous century. In [16] (cf. also [15]), the authors come out with a hypothesis that the
attractiveness of an object is enhanced if it is an intermediate object in the choice set and is diminished
if it is an extreme object. The authors term that effect the extremeness aversion. According to this
hypothesis, the extremeness aversion is a function of the relational properties of choice objects and the
middle object, defined such that its attribute values are between the values of the other objects, is viewed
as the least extreme, compromise object. The hypothesis is further elaborated in [1, 2] where it is argued

2 In the context of this paper, the term “the attribute values balance line”, as in [1, 2], would be perhaps more adequate but
here we stick to the former term for consistency with our previous works.
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that an object with equal attribute values will be perceived as the compromise object even when it is
not the middle object. The hypothesis is supported by data studies. However, no formal assessment
framework is offered.

Whereas the behavioral decision theory tends to explain the decision maker (such as an individual
consumer) choices ex post, the utility theory (cf. e.g., [4, 13]), the production theory (cf. e.g., [14, 18]),
and the multiple criteria decision making theory (cf. e.g., [3, 5, 10, 11, 17, 19]) offer more normative
approaches. Works in these domains tend to rely on assessment functions (named, respectively, utility
functions, production functions, scalarizing functions, with the generic term value functions referring to
all of them) that ex ante specify properties of attributes of objects delivered by the assessment function
maximization.

In the first two named domaines, as a rule, researches confine themselves to GMFs that are, with
the exception for p — 400 resulting in the Leontief function, smooth functions and admit a variety
of analyses based on infinitesimal calculus (cf. e.g., [12]). The attribute values balancing effect of
different curvatures of GMFs has been noticed, resulting in occasional propensity to make use of, e.g.,
the geometric mean function instead of the linear function. However, the issue of attribute value balance
(and extremeness aversion) has been not exploited, at least explicitly. The Leontief function, that is not
smooth, is the limit of possible GMFs curvatures that until now no research ventured to cross beyond.

In contrast, the multiple criteria decision making theory is more open to the use of the Leontief funcion
and the family of generalized Leontief functions steaming from it (see the next section). This can be related
to the fact that contours of the Leontief function are shifted nonnegative orthants R* . where Rﬁ ={z €
R” |z, >0, 1=1, ..., k}. Rﬁ serves for an alternative definition of Pareto efficiency: object Z (variant,
alternative) is Pareto efficient in a set of objects X iff (z + R’i) N X = z. That form of the Pareto efficiency
definition offers an obvious but elegant, geometrical interpretation of that notion. The Leontief function
(as its generalization), constructed on collections of linear functions (hyperplanes) has favorable numerical
properties that are exploited in algorithms for deriving Pareto efficient objects, notably in large-scale multiple
criteria decision problems [17]. In [7] and [8], the generalized Leontief functions (see the next section) serve
there as the base for a method to limit the derivation of Pareto efficient objects to those with limited trade-offs,
in line with, but not in a relation to, the findings of [16]. Again, the issue of attribute values balance (and
extremeness aversion) is not exploited in those works, at least explicitly.

4. “Beyond the wall” to reconcile the extremes

Let us observe that GMFs with p < 1 are sensitive to the attribute values balance in appraisals they
provide, in the following manner. Suppose that for p < 1, two objects are equally appraised by the
corresponding GMF but their attribute values collection distances to the CHL are different. For any
p', P < p, an object with the attribute values collection closer to the CHL is apprised higher than the
other object with the attribute values collection further from the CHL. This is because the contours of
GMFs are symmetric to the CHL. So, with p becoming smaller and smaller, more and more objects with
attribute values collections distant from the CHL are penalized by lower appraisals based on GMFs. This
is illustrated in Figure 3. The Leontief function (p — —o0) is the limit, the wall. Is there anything beyond
this “wall”? To see, we first equip ourselves with the (family of) generalized Leontief functions:
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. 1
fo) = min (2+p) a |, -3 <p< oo (3)

To align with the assumption that all attributes are of the type “the more, the better” these functions have
to be maximized. The contours of the GLFs (3) are presented in Figure 4.

)(1 X1
Figure 3. From two objects equally appraised Figure 4. Contours of the Generalized Leontief
by generalized mean function for some p < 1 Functions for selected p (solid) and the CHL (dashed)

(solid contour), for any p’ < p the object with attribute
values less distant from the CHL (dashed) is appraised
higher than the other object (dash-dotted contours)

For p = 0, GLF is the standard Leontief function. For p = —l, k = 2, contours of the GLF are
lines parallel to the CHL, as in Figure 2. GLFs with 0 < p < 400 are widely used in the domain of
multiobjective optimization, the underlying formalism for multiple criteria decision making theory (cf.
e.g., [3,5, 10, 11, 17, 19]). For —% < p < 0, GLFs are inconsistent with Pareto efficiency as they
no longer are increasing functions. And in contrast to GMFs, GLFs are not smooth. But like GMFs,
irrespective of the sign of p, GLFs penalize high attribute values in the following manner. Suppose
that for p > 7 two objects are equally appraised by the corresponding GLF, but their attribute values

collection distances to the CHL are different. For any p/, p' < p, the object with the attribute values
collection closer to the CHL is appraised higher than the other object with its attribute values collection
farther from the CHL. This is because the contours of GMFs are symmetric to the CHL. So, with p

1
becoming smaller and smaller (but not smaller than ——), more and more objects with attribute values
collections distant from the CHL are penalized by lower appraisals based on GLFs.

5. How does this work in practice?

We illustrate the working of the GLFs on the Human Development Index (HDI) 2022 ranking data® for
20 top positions in the ranking (Table 1).

3 https://hdr.undp.org/data-center/human-development-index#/indicies/HDI.
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Table 1. Data for top twenty HDI 2022 ranked countries.

No Country Life  Education Wealth
1 Switzerland  0.9844 0.9203 0.9828
2 Norway 0.9728 0.9335 0.9776
3 Iceland 0.9643 0.9589 0.9553
4  Hong Kong 1.0000 0.8875 0.9727
5  Australia 0.9927 0.9242 0.9364
6  Denmark 0.9442 0.9320 0.9672
7  Sweden 0.9690 0.9203 0.9517
8  Ireland 0.9538 0.8861 1.0000
9  Germany 0.9328 0.9422 0.9519
10 Netherlands  0.9490 0.9194 0.9558
11 Finland 0.9544 0.9291 0.9371
12 Singapore 0.9655 0.8565 1.0000
13 Belgium 0.9608 0.9315 0.9196
13 New Zealand 0.9520 0.9125 0.9455
15 Canada 0.9639 0.9166 0.9288

16  Liechtenstein 0.9732 0.8397 1.0000
17  Luxembourg  0.9635 0.8338 1.0000
18 UK 0.9345 0.9277 0.9236
19  Japan/Korea  0.9800 0.8760 0.9212
20  Japan/Korea  0.9967 0.8684 0.9134

The HDI is a summary measure of average achievement in key dimensions of human development:
a long and healthy life (“Life”), being knowledgeable (“Education”), and having a decent standard of
living (“Wealth”). The HDI is the geometric mean of the normalized indicators for each dimension. The
health dimension is assessed by the life expectancy at birth.

The education dimension is measured by the mean of years of schooling for adults aged 25 years
and more, and expected years of schooling for children of school-entering age. The standard of living
dimension is measured by gross national income (GNI) per capita. The HDI uses the logarithm of income
to reflect the diminishing importance of income with the increasing GNI. Refer to the HDI website* for
more details.

Table 2 illustrates “the climb” of countries with balanced indicators (attributes) towards higher and
higher positions in rankings as the value of parameter p decreases. A good example is New Zealand.
However, the climb is not always monotonous, as is the case of Denmark which for p = —0.1 climbs to
the second position and is pushed down the rankings for p = —0.2 and for p = —1/3 by the climb of the
United Kingdom and Finland to a higher than Denmark positions. Table 3 contains values of GLFs for
all the rankings from Table 2.

6. Discussion

There is no such thing as objective single-number appraisals. Mathematically, objects with two or more
attributes are generally partially ordered, whereas objects in single-number appraisals are (have to be)
linearly ordered, and the latter is the special case of the former. When a partial order is not a linear
order by itself, it can be reduced to a linear order only by brute force in a subjective (even if expert)

4 https://hdr.undp.org/sites/default/files/2021-22_HDR/hdr2021-22_technical_notes.pdf.
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Table 2. Top twenty HDI 2022 ranked countries
in the rankings defined by the Generalized Leontief Functions for different p.

No. p— o0 HDI p =10 p=1 p=0 p=-0.1 p=-02 p=-1/3
1 Switzerland Switzerland Switzerland Iceland Iceland Iceland Iceland Iceland
2 Norway Norway Norway Norway Norway Germany Germany UK
3 Iceland Iceland Iceland Switzerland Germany Denmark UK Germany
4 Hong Kong Hong Kong Hong Kong Australia Denmark Finland Finland Finland
5 Australia Australia Australia Denmark Finland Norway Denmark Denmark
6 Denmark Denmark Denmark Sweden Australia UK New Zealand New Zealand
7 Sweden Sweden Sweden Germany UK Australia Norway Canada
8 Ireland Ireland Ireland Finland Switzerland New Zealand Canada Netherlands
9 Germany Germany Germany Hong Kong Sweden Netherlands Netherlands Belgium
10 Netherlands Netherlands Netherlands Netherlands New Zealand Sweden Australia Sweden
11 Singapore  Finland Finland New Zealand Netherlands Canada Sweden Australia
12 Finland Singapore  Singapore  Ireland Canada Switzerland Belgium Norway
13 Liechtenstein Belgium New Zealand Canada Belgium Belgium Switzerland Switzerland
13 New Zealand New Zealand Belgium Belgium Hong Kong Ireland Korea Korea
15 Belgium Canada Canada UK Ireland Hong Kong Ireland Japan
16 Canada Liechtenstein Liechtenstein Singapore  Korea Korea Hong Kong Ireland
17 Luxembourg Luxembourg Luxembourg Korea Japan Japan Japan Hong Kong
18 UK UK UK Liechtenstein Singapore Singapore Singapore Singapore
19 Japan Japan/Korea Japan Japan Liechtenstein Liechtenstein Liechtenstein Liechtenstein
20 Korea Japan/Korea Korea Luxembourg Luxembourg Luxembourg Luxembourg Luxembourg

UK — United Kingdom.

Table 3. Assessment function values for rankings from Table 2

No. p—4c0 HDI p=10 p=1 p=0 p=-01 p=-02 p=-1/3
1 2.89 096 2980 3.83 096 0.67 0.38 0.00
2 2.88 096 29.77 3.82 093 0.65 0.37 -0.01
3 2.88 096 29.74 381 093 0.65 0.37 -0.01
4 2.86 095 2949 378 0.93 0.65 0.36 -0.01
5 2.85 095 2946 3.78 093 0.65 0.36 -0.02
6 2.84 095 2937 376 092 0.65 0.36 -0.02
7 2.84 095 2933 376 092 0.64 0.36 -0.02
8 2.84 095 2928 375 092 0.64 0.35 -0.02
9 2.83 094 2920 375 092 0.64 0.35 -0.02
10 2.82 094 29.16 3.74 092 0.64 0.35 -0.03
11 2.82 094 29.14 373 092 0.64 0.35 -0.03
12 2.82 094 29.08 373 092 0.63 0.35 -0.03
13 2.81 094 29.04 373 091 0.63 0.34 -0.04
13 2.81 094 29.01 372 0.89 0.60 0.32 -0.05
15 2.81 094 29.01 3.71 0.89 0.60 0.32 -0.06
16 2.81 093 2897 3.68 0.88 0.60 0.32 -0.06
17 2.80 093 2881 3.65 0.87 0.59 0.31 -0.07
18 2.79 093 2878 3.65 0.86 0.57 0.29 -0.08
19 2.78 092 28.65 3.65 0.84 0.56 0.28 -0.10
20 2.78 092 28.65 3.63 0.83 0.55 0.27 -0.10

Due to number rounding, for the exact position of a country in the ranking see
Table 2.

manner; that is precisely how single-number appraisals (rankings!) are made. The choice of an instance
of assessment function as well as the choice of attribute weights are subjective. Hereby, acknowledging
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the inherent subjectivity so understood, we offer an extension of assessment functions currently in use

by stepping beyond the Pareto efficiency principle. By this, one can appraise objects in a manner that

accounts for and reflect the attribute values balance.
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