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Abstract

The insurance market is changing due to new distribution channels, requiring insurers to update their pricing models. We
propose a mathematical approach using Bayesian generalized linear models (GLM) to adjust insurance pricing. Our strategy
modifies the pricing model by incorporating distribution channels while utilizing the initial model as a baseline. Bayesian
GLM enable effective model updates while incorporating existing knowledge. We validated our approach using data from
the general insurance sector, comparing it with the traditional approach. Results show that Bayesian GLM outperforms the
traditional method in accurately estimating pricing. This superiority highlights its potential as a powerful tool for insurers to
remain competitive in a rapidly changing market. Our approach makes a significant mathematical contribution to insurance
pricing, allowing insurers to adapt to market conditions and enhance their competitive edge.
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1. Introduction

General insurance is one of the leading insurance products in the Indonesian insurance environment.
The reliability and often low price captivate a lot of the public, especially health and vehicle insurance.
In addition, a much more intuitive approach to the empirical data at hand is that the past COVID-19
pandemic has dramatically grown awareness of the importance of insurance as a financial protection
instrument and further complicates the insurance and risk landscape of general insurance.

Seeing the growth of demand and the general insurance market, a lot of companies would naturally
see this as an opportunity to expand their existing business models. This could be done in many ways,
one of which is opening and expanding the number of distribution channels. On the other side of this
advancement, actuaries would also have to adjust to the massive inflation of risk and policies. These prove
a new demand for a flexible model that can accommodate the ever-changing and growing landscape of
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the Indonesian insurance industry. One famously known method is the generalized linear model (GLM),
which is an expansion of the traditional regression. GLM liberates users from the constraint of the
traditional regression, which is its limitations to model strictly normally distributed data [15]. This
particular flexibility is very advantageous to actuaries, as insurance data such as claims and the number
of claims are rarely (in other words, never) normally distributed. More often, it is more suitable to use
Poisson distribution or Gamma distribution to describe claim patterns [13].

Again, further advancements are made to the existing GLM model. This time, incorporated into the
GLM is the Bayesian principle, specifically on the regression coefficients. As with traditional Bayesian,
these coefficients are assumed to be random variables [14], therefore prior distributions are assumed for
each regression coefficient. These assumptions are made considering there is little to no reliable data
when we are initially making models for product expansions. As such, we may use the limited data
available, as the prior distribution of the regression coefficient of the Bayesian GLM (BGLM). These
data could be obtained by borrowing data from another area, or existing products that may be similar in
terms of risk and claim patterns (i.e., sharing common characteristics such as demographic, geographic,
climate, etc.).

As its namesake, the basic method that makes up the foundation for the Bayesian GLM modeling
is the generalized linear model (GLM). There is an extensive array of literature on the subject such as
[12, 15], and [6], as they have extensive information on the basics of general insurance pricing (such as
aggregate models, rating factors, frequency and severity modeling, etc.) and the application of GLM on
the subject. As for Bayesian analysis, readers could refer to [4] and [5]. In addition, some articles that
show some applications and advancements in Bayesian modeling are [16] that cover mainly Bayesian
analysis applications in pharmaceutical research and a lot of discussions involved in the paper that show
various other applications of the Bayesian inference technique, [8] presents Bayesian’s ability to resolve
null values, and [3] which illustrates Bayesian’s implementation on various case studies, ranging from
medicine, economics, and engineering.

The leading advantage of using Bayesian methods lies in its ability to combine information from
multiple sources. This ability accounts for the model’s flexibility, by incorporating multiple levels of
randomness and combining information from multiple sources. In addition, by estimating a posterior
conditionally based on real or newly incorporated data, Bayesian gives more objective results in its
model. It also takes into greater account a statistical problem’s uncertainty, hence making it a great
tool for presenting a certain unknown landscape to clients [4]. Conversely, Bayesian is highly dependent
on its prior distribution, even more so in cases where there is little to no data available. While prior
distributions are a great tool to incorporate personal judgment that may aid in model enhancement, an
inaccurate prior distribution may also result in a misleading model due to its subjective nature, especially
where there is no data to override it with. An overly flexible prior may also result in overfitting if there is
the data involved is insufficient. Bayesian analysis is also computationally expensive, as it relies heavily
on simulations such as Markov chain Monte Carlo (MCMC) to compensate for its minimally required
observations [9].

Particularly, in the actuarial science landscape, Bayesian statistics has been an intensive and promising
topic. It started from Bühlmann and Straub’s innovation on Bayesian credibility theory in 1967, and ever
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since then it has grown into a reliable method for almost every aspect of insurance modeling. In this
paper, we are about to take a look at Bayesian statistics’ contribution to the pricing aspect of insurance.

In the insurance pricing industry, Bayesian GLM has been shown as a useful method in automobile
insurance risk modeling, where it is deemed an excellent model for incorporating the personal judgment
of actuaries and available yet limited data, hence leading to more reasonable vehicle insurance rates [2].
Furthermore, Bayesian GLM also shows potential in modeling in conditions where there is little to no
data available, by borrowing data from another class of business that is similar to the risk of interest
[20]. This ability is particularly useful in the practice of pricing new and unique insurance products,
where it cannot be guaranteed that an actuary will have reliable data on hand to work with. The Bayesian
GLM, as described, was implemented in [18], where spatial variable selection was employed to assess
the impact of weather on insurance claims. In a similar vein, [19] also utilizes Bayesian modeling for
insurance risk assessment. However, there has been a lack of methods addressing the adoption pricing
model, particularly in the context of the expansion of distribution channels using real insurance data,
specifically within the Indonesian market.

This paper aims to propose a method of adjusting the insurance pricing model to incorporate the
expansion of distribution channels by using BGLM. Here we use the data of vehicle insurance of a
general insurance company in Indonesia, from 2016 to 2021, to present a more realistic take on the model
with more real and representative data, albeit messier. We are using the data of 2016–2020 as the prior
distribution, early 2021 as the data that will update the prior, and late 2021 as the data for testing. We also
emphasize that there is a strikingly high increase in the number of claims received by the company in
the year 2021. The reason behind this mighty increase is that the company made a significant expansion
of its vehicle insurance. As there was an increase in the policyholder from the expansion, the spike in
claims naturally came following. The effect of this spike will be captured by the proposed method in
adjusting the insurance pricing model.

In the following section, we will further explore the application of the Bayesian GLM technique for
adjusting pricing models. In Chapter 2, the Bayesian GLM model that we are utilizing will be explained.
It includes model and prior distribution specifications, updating the prior distribution based on newly
observed data, and incorporating new information into an existing pricing model using Bayesian GLM.
Chapter 3 will state the data used and the implementation of the model on the data we have used. Some
discussion of the results and suggestions for further research on the topic is provided in Chapter 4 which
also delivers the conclusion of the study.

2. Methodology

2.1. Overview of Bayesian GLM methodology

The basis of the Bayesian GLM is, as its name, to incorporate Bayesian theories into the GLM method.
Usually, in traditional GLM, we would determine the coefficients by using the frequentist method, more
commonly known as the maximum likelihood estimator (MLE). However, this method comes with a big
stumbling block, that is its reliability on good data. Estimations that are based solely on past data can
become problematic when there is insufficient data available. This is particularly true when expanding the
distribution channels, as the past data may no longer accurately represent a newly transformed landscape.
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To address the aforementioned problem, Bayesian principles come into play. A trademark of Bayesian
statistics is its subjective approach to a previously exact one. Bayesian challenges the notion that model
parameters are fixed, and as probability is the best tool in the box to tackle uncertainty and find unknown
values, so can it be used to determine unknown model parameters [11]. The Bayesian method does
so by determining a prior distribution for the unknown values, this represents our subjective judgment
on the parameter of interest. As more data is gathered, we can update the model we are using, until
theoretically, we finally reach the real value of each parameter, which is represented in the posterior
distribution. Mathematically, the posterior of the parameter of interest can be described as such

π(θX) =
π(Xθ)π(θ)∫

θ

π(Xθ)π(θ)dθ
=

π(Xθ)π(θ)

π(x)
(1)

where given a data set of X = {x1, x2, . . . , xn}. Here, π(Xθ) stands for the likelihood function of
θ, π(θ) is the prior distribution, and the denominator is the marginal distribution of x. Another much
simpler form of the posterior distribution is given by

π(θX) ∝ π(X|θ)π(θ) (2)

Theoretically, as we have more data, the likelihood value will get larger and eventually override the
uncertainty presented by the prior distribution π(θ), therefore we get closer to the real value.

As with traditional GLM modeling for insurance pricing, we will construct two separate models for
each claim frequency and claim severity. Claim frequency pertains to the count of claims submitted
by policyholders to the insurance company, while claim severity quantifies the actual monetary losses
incurred within a specific period, typically one year. Each model, aside from differences in model spec-
ifications, will for the most part receive the same treatment of prior and model specification, posterior
estimation, model checking, and posterior analysis. However, it is advised for analysts to do some unique
adjustments if needed for each model, such as parameter range adjustments or changing the distribution
to better suit the data, depending on the result we get from the program.

It is common for Bayesian statistics to use simulation techniques due to the high dimensional integra-
tion and analytic calculation that is required to estimate the posterior. Here we use Markov Chain Monte
Carlo (MCMC) simulation to estimate the posterior. More specifically we are using the No-U-Turn Sam-
pling (NUTS) algorithm by [7], which is an update to the Hamiltonian Monte Carlo (HMC) algorithm
previously done by [1], where it basically determines its own required leapfrog steps by using a slice
variable and declaring a stop criterion.

2.2. Prior distribution specification

A critically important step in Bayesian analysis is the specification of prior distribution, as this distribu-
tion represents the aspect of uncertainty, due to the lack of informative data. Two ways are typically used
to discern which prior distribution to use. The first one is the population interpretation, where we assume
that the prior distribution represents a population of possible parameter values. A more subjective ap-
proach is the state of knowledge interpretation, in which we include our uncertainty about the parameter
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of interest and assume that the parameter value could be realized at random from our prior distribution.
The prior distribution need not be concentrated and close to the real value which is unknown, this is
due to the information from the real data which is expressed in the likelihood distribution will usually
outweigh any reasonable prior distribution [4].

Some distributions are commonly acquainted and used in the insurance and risk modeling industry.
For frequency modeling, the most commonly used distribution is the Poisson distribution, but aside from
that, in conditions where there are over-dispersion properties present, negative binomial and zero-inflated
Poisson may be a reliable option. In terms of severity modeling, usually, the gamma distribution is mostly
utilized due to its ability to accommodate heavy-tailed characteristics.

2.3. Updating prior and incorporating new information
to an existing model with Bayesian GLM

We will be employing the so-called three-pricing period principle to incorporate and update the prior
distribution based on the newly obtained data information. The three pricing period principle is in essence
splitting the pricing process into three separate parts:

1. First period, where we have no data available representing the new situation and therefore we use
the old data (prior data) to fit the model.

2. Second period, we update the pricing model with newly available data (this process is repeated for
several periods until it is deemed to be enough experience).

3. When enough experience is obtained (in other words, we have sufficient data to make a good model),
traditional GLM may be used to fit the model.

It is however, important to notice that in the process of fitting each model pay careful attention to the
model fit of each BGLM and traditional GLM, as well as the number of observations used in each data,
as it may occur after a certain amount of information is used, the GLM model is deemed as a superior
than of its Bayesian counterpart.

3. Results

3.1. Description of data used

The data used in this study is the loss register for vehicle insurance from a general insurance company
based in Indonesia from the year 2016–2021. The data set includes the underwriting year, loss year, claim
amount, number of claims, and vehicle category (5 levels). The number of claims of the dataset we are
using consists of 96.57% of zero claims and 6.43% of 1 claim. Meanwhile, for the severity, the smallest
claim is at IDR 4,860, the maximum claim is IDR 556,843,605, and the mean claim IDR 7,908,519.

In addition to the statistical information stated above, business and practical information, the company
has recently expanded its distribution channels in 2019. This expansion accounts for massive inflation of
the number of policies and claims received in 2020–2021, to accommodate the change in risk landscape
as well as claims, we will use Bayesian GLM to adjust and incorporate the new information obtained
post-expansion. As a standard procedure for Bayesian techniques, it is required to declare a data set for
our prior information.
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Figure 1. Claim frequency (left) and severity (right) per loss year

Figure 2. Workflow of incorporating new information with Bayesian GLM

Based on the information we have, as seen in Figure 1, there is a drastic change in the claims incurred
in the year 2021. When comparing our approach with the traditional one, we follow the same proce-
dure, as illustrated in Figure 2. Indeed, in 2020, the company expanded its distribution channels, and
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it took a year to reach the customers. The substantial increase in this expansion was primarily due to
the company’s significant expansion of its vehicle insurance offerings. With an increase in policyholders
resulting from this expansion, there was a subsequent surge in claims. The proposed method aims to
account for the impact of this spike in claims when adjusting the insurance pricing model. The prolonged
duration of this process could have been influenced by the COVID-19 pandemic. Therefore, we have
chosen to utilize the data from 2016–2020 as prior information.

3.2. Prior distribution specification for insurance pricing

3.2.1. Frequency model

For this paper, we use the logistic regression. This uncommon approach is made mainly due to the
limitation of the data that we have. The data does not include exposure, normally represented by policy
duration which is critical for the usual Poisson regression. Another supporting circumstance is that the
number of claims filed is always either 1 or 0, hence the classification method chosen. We model

Yi ∼ Bernoulli(πi) (3)

log

(
πi

1− πi

)
= β0 + β1x1i + β2x2i + · · ·+ βpxpi (4)

where Yiθi stands for the claims filed by the ith policyholder, provided we know θi, which is the rate of
claims. Meanwhile, the vector (x1i, . . . , xpi) stands for the rating factors of policyholder i. Here, p + 1

is the number of parameters needed.
In the model, we assume the coefficients to have a prior distribution that follows the normal distribution

βj|µj, σ
2
j ∼ normal(µj, σ

2
j ), for j = 0, 1, . . . , p (5)

and for the priors for each parameter, the mean µj will take the information we have from the traditional
GLM with prior distribution data, and the variance parameter σ2

j will follow the uniform distribution
uniform(0, 10).

3.2.2. Severity model

As stated before, we make a separate model for claim severity, with its own predicted variable and rating
factors. The rating factors are denoted as the frequency as xi = (x1i, . . . , x1i)

′, however, the rating
factors used here can differ from the frequency model if need be. Here we take an unorthodox approach,
that is we use the log-normal regression. This decision is primarily based on the data at hand, which
exhibits a better fit with the lognormal distribution

Zi ∼ lognormal(µi, σi) for i = 0, 1, . . . , p (6)

µi = γ0 + γ1x1i + · · ·+ γqxqi (7)

and
σ2
i ∼ uniform(0, 10) (8)
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As with the frequency model, we are interested in determining the coefficient γ0, γ1, . . . , γq with both
frequentist and Bayesian approaches. For the Bayesian approach, we choose the normal distribution as
the weakly informative prior for the aforementioned regression coefficients

γj|µj, σ
2
j ∼ normal(µj, σ

2
j ) for j = 0, 1, . . . , q (9)

where equivalently as the frequency method, the mean µj will follow the information we have from the
coefficient of the traditional GLM model with prior data, and the variance parameter follows the uniform
distribution as such that σ2

j ∼ uniform(0, 10).

3.3. Implementation of Bayesian GLM
in adjusting insurance pricing models

Both the frequency and severity models are implemented using Python with the package PyMC by [17].
The advantage that this package has compared to others is its ease and flexibility. The package is equipped
with several built-in packages, such as Arviz by [10], that support its users even further in model con-
struction and analysis.

Regarding the rating factors for our GLM models, both traditional and Bayesian, we refer to the
Financial Services Authority Circular Letter No. 6/SEOJK.05/2017. According to this circular letter,
there are five categories of vehicles for non-bus and non-truck types, which are determined by the Sum
Insured as outlined in Table 1. It is important to note that our data do not include policies for buses and
trucks. We have selected vehicle category 1 as the base variable.

Table 1. Sum insured for each vehicle category [106 IDR]

Category 1 2 3 4 5
Sum insured 0–125 125–200 200–400 400–800 > 800

3.3.1. Frequency model

As a part of the three-period pricing principle, we initially construct a traditional GLM model. This choice
is primarily based on the availability of sufficient prior data, which allows us to employ the frequentist
method. The results obtained from the traditional GLM method are summarized in Table 2.

Table 2. Traditional GLM for frequency with prior data (2016–2020)

Estimate Standard error 95% CI

Intercept –1.9021 0.0758 –2.0287 –1.7793
Vehicle category 2 0.8166 0.0902 0.6695 0.9662
Vehicle category 3 0.5634 0.0836 0.4274 0.7023
Vehicle category 4 0.9936 0.0851 0.8549 1.1351
Vehicle category 5 0.9560 0.1043 0.7850 1.1281

As our objection, here is to use the prior data as our judgment basis for the Bayesian GLM, we use
the parameter estimates found from the traditional GLM as the value of parameter mean µj , which is the
mean parameter of the prior distribution of the BGLM coefficients. Meanwhile, as we do not have any



Adapting the insurance pricing model. . . 75

information on the variance parameter σ2
j , we leave it as it is, which follows the uniform distribution. By

using MCMC from the package PyMC, we obtained the result given in Table 3. The parameter estimates
are obtained from 24,000 MCMC iterations; 4 chains of 5,000 draws and 1,000 tuning iterations each.

Table 3. Bayesian GLM for frequency with post-expansion data
(first half of 2021)

Estimate Standard error 95% CI

Intercept –5.7988 0.0011 –5.9273 –5.6763
Vehicle category 2 2.6959 0.0013 2.5417 2.8418
Vehicle category 3 2.6780 0.0012 2.5370 2.8286
Vehicle category 4 2.7166 0.0014 2.5447 2.8956
Vehicle category 5 2.5844 0.0025 2.1958 2.9511

3.3.2. Severity model

While the method we use here for the severity model mirrors the one for frequency, modeling severity
requires some adjustments to the data we are using. We only model claims that have incurred, this means
that we only use claims that are greater than zero. We construct a traditional GLM using the data from
pre-expansion, that is year 2016–2020, and the result is illustrated in Table 4

Table 4. Traditional GLM for severity with prior data (2016–2020)

Estimate Standard error 95% CI

Intercept 15.0553 0.07627 14.9297 15.1808
Vehicle category 2 –0.0153 0.0891 –0.1619 0.1314
Vehicle category 3 0.0284 0.0848 –0.1112 0.1679
Vehicle category 4 0.1167 0.0924 –0.0354 0.2688
Vehicle category 5 0.2054 0.1089 0.0261 0.3846

Next, we use the parameter estimation result for building the Bayesian GLM. This model is con-
structed using the information we obtained in the first year of expansion, that is the first half of 2021. To
get the results, we ran 4 chains of MCMC iterations, with each chain containing 5,000 draws and 1,000
tuning draws. The estimation from the Bayesian GLM model is provided by Table 5.

Table 5. Bayesian GLM for severity with post-expansion data (first half of 2021)

Estimate Standard error 95% CI

Intercept 14.8757 0.0014 14.7500 14.9912
Vehicle category 2 0.0578 0.0014 -0.0750 0.1977
Vehicle category 3 –0.0054 0.0013 –0.1388 0.1351
Vehicle category 4 0.1820 0.0017 –0.0052 0.3684
Vehicle category 5 0.6045 0.0044 0.2140 0.9790
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3.4. Comparison with traditional pricing models

In this section, we compare each model with their traditional GLM counterparts. For each BGLM model
that was constructed with the year 2020 data, we also made their mirroring GLM model, which we then
compare their errors and predictive powers to.

For the frequency model, we obtain the GLM model as presented in Table 6. The results reveal a no-
table contrast in the standard errors between the two models. In Table 3, the BGLM model demonstrates
significantly smaller errors compared to its GLM counterpart. Moreover, while the confidence intervals
from the traditional GLM still encompass 0 for some variables, the Bayesian GLM’s confidence intervals
do not. These findings collectively demonstrate that the Bayesian model exhibits superior capability in
describing limited data compared to the traditional approach.

Table 6. Traditional GLM for the frequency with post-expansion data
(2016–early 2021)

Estimate Standard error 95% CI

Intercept –4.9810 0.0709 –5.0999 –4.8665
Vehicle category 2 2.6168 0.0835 2.4807 2.7557
Vehicle category 3 2.7804 0.0782 2.6534 2.9109
Vehicle category 4 3.4666 0.0796 3.3372 3.5993
Vehicle category 5 3.8192 0.0994 3.6563 3.9834

The same was done for the severity model which also compares our approach to the traditional one
with the same post-expansion data constructed. The results we got for this traditional approach are
provided by Table 7.

Table 7. Traditional GLM for severity model with post-expansion data
(2016–early 2021)

Estimate Standard error 95% CI

Intercept 14.9281 0.0549 14.8378 15.0184
Vehicle category 2 0.0565 0.0636 -0.0482 0.1612
Vehicle category 3 0.0750 0.0626 -0.0279 0.1781
Vehicle category 4 0.2201 0.0724 0.1011 0.3392
Vehicle category 5 0.4012 0.0918 0.2501 0.5523

We can assess the performance of each model by comparing the results in Tables 5 and 7, particularly
focusing on the standard error and confidence interval. Notably, the Bayesian GLM exhibits considerably
smaller standard errors for each variable, providing a clear indication that it outperforms the traditional
GLM method.

From Tables 8 and 9, we can see how parameter estimates were updated from the GLM prior by
traditional and Bayesian GLM.
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Table 8. Parameter change for each method (frequency)

GLM with prior GLM with post-expansion Bayesian GLM

Intercept –1.9021 –4.981 –5.802
Category 2 0.81663 2.61683 2.669
Category 3 0.56336 2.78041 2.681
Category 4 0.99357 3.46662 2.720
Category 5 0.95601 3.81923 2.588

Table 9. Parameter change for each method (severity)

GLM with prior GLM with post-expansion Bayesian GLM

Intercept 15.05525 14.92818 14.8757
Category 2 –0.01526 0.05649 0.0578
Category 3 0.02835 0.07508 –0.0054
Category 4 0.11672 0.22013 0.182
Category 5 0.20541 0.40124 0.6045

We also tested the prediction power of each model both for frequency and severity models. Because
our data only contains claim frequencies of 0 and 1, we utilize the true positive rate (TPR) and true
negative rate (TNR) to assess the accuracy of both frequency models. TPR calculates the probability that
a policyholder submits a claim when they do, whereas TNR signifies the probability that a policyholder
does not submit a claim when they indeed do not. Whereas, for comparing the performance of severity
models, we employ mean absolute error (MAE) and mean absolute percentage error (MAPE). As we
can see from Table 10, the Bayesian GLM outperforms the traditional one. As a reminder, our approach
involves utilizing data from 2016 to 2020 as the prior dataset, using the first half of 2021 as the data to
compute the posterior, and reserving the second half of 2021 for testing the models, which includes the
calculation of MAE and MAPE.

Table 10. Prediction errors

TPR [%] TNR [%] MAE MAPE

Traditional GLM (2016–2020) 89.252 73.83 3,144,814 1.3705
Traditional GLM (2016–early 2021) 89.252 73.83 3,107,431 1.2694
Bayesian GLM (early 2021) 93.614 78.94 3,073,123 1.1465

Table 11. Pure premium with traditional GLM and Bayesian GLM

Traditional GLM with prior Traditional GLM Bayesian GLM

Category 1 448,663.09 20,749.48 8,696.56
Category 2 872,212.75 261,472.48 120,576.10
Category 3 717,598.15 303,308.44 121,970.23
Category 4 992,534.58 548,495.65 126,608.30
Category 5 1,186,495.32 1,083,088.62 204,186.96
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Furthermore, the pure premium estimated by the Bayesian GLM is lower than that of the traditional
GLM as given by Table 11, indicating that it offers a cost advantage. Aside from the model advantage,
the explanation behind the striking difference in premium prices can be credited to the massive increase
in policy numbers after the expansion of distribution channels.

Therefore, by utilizing Bayesian GLM, insurers can maintain better competitiveness in the market.
The improved performance and cost-effectiveness of the Bayesian GLM make it a valuable tool for
accurately estimating premiums and staying competitive in the insurance industry.

4. Conclusion

In this research, we have shown how the Bayesian GLM performs as an updating model to accommodate
a shift in the risk landscape, in this case from an expansion of distribution channels. The results are
shown in the model we constructed present clear evidence that in terms of prediction ability, the Bayesian
model surpasses its traditional GLM counterpart. The evidence is presented in the Bayesian GLM’s
larger accuracy score for the frequency model, where the Bayesian GLM yields a greater true positive
rate (TPR) and true negative rate (TNR) compared to the traditional GLM. For the severity model, we
compared their prediction ability through mean absolute error (MAE) and mean absolute predicted error
(MAPE), the Bayesian GLM performs better than the traditional GLM. The Bayesian GLM also performs
well to illustrate new and lower premium prices from an increase in the number of policies, which has
happened as a consequence of the channel of distribution’s expansion.

The GLM also offers a high level of interpretability, that can give an insight into the relationship and
risks related to each variable. This is particularly helpful as a tool for statisticians and actuaries to explain
their findings to business persons who might not be familiar with statistics and actuarial methods. In the
future, this model may be further explored to see its performance in other aspects of insurance pricing,
such as making a model pricing for a newly opened class of business, with prior data borrowed from
other existing classes of business.
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