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Abstract

The method BISSA, proposed by Bednarczuk, Miroforidis, and Pyzel, provides approximate solutions to the multiple-choice
knapsack problem. To fathom the optimality gap that is left by BISSA, we present a method that starts from the BISSA
solution and it is able to provide a better approximation and in consequence a tighter optimality gap. Like BISSA, the new
method is based on the multiobjectivization of the multiple-choice knapsack problem but instead of the linear scalarization
used in BISSA, it makes use of the Chebyshev scalarization. We validate the new method on the same set of problems as the
one used to validate BISSA.

Keywords: multiobjectivization, multiple-choice knapsack problem, Chebyshev scalarization, BISSA algorithm

1. Introduction and motivation

The knapsack problem (KP) is one of the best studied combinatorial optimization problems (see, e.g., [8, 14]).
The multi-dimensional knapsack problem and the multiple-choice knapsack problem (MCKP) are the
two most noted generalizations of KP and are applied to model many real-life problems, e.g., in project
(investments) portfolio selection [16, 20], capital budgeting [17], advertising [20], component selection
in IT systems [12, 18], computer networks management [13], adaptive multimedia systems [9], and other.

The multiple-choice knapsack problem is formulated as follows. Given are m sets (categories) N1, N2,

. . . , Nm of items, of cardinality Nj = nj, j = 1, . . . , m. Real-valued nonnegative profit pij ≥ 0 and
cost cij ≥ 0, j = 1, . . . , m, i = 1, . . . , nj , is assigned to each item of each set. The problem consists
in choosing exactly one item from each set Nj , so that the total cost does not exceed a given b > 0 and
the total profit is maximized.
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Let xij, j = 1, . . . , m, i = 1, . . . , nj, be defined as

xij =

{
1 if item i from set Nj is chosen

0 otherwise

Note that all xij form a vector x of length n =
m∑
j=1

nj, x ∈ {0, 1}n, where

x := (x11, . . . , xn11, x12, . . . , xn22, . . . , x1m , . . . , xnmm)
T.

The multiple-choice knapsack problem takes the form

max
m∑
j=1

nj∑
i=1

pijxij

subject to:

m∑
j=1

nj∑
i=1

cijxij ≤ b

x ∈ X := {(xij) |
nj∑
i=1

xij = 1

xij ∈ {0, 1}, j = 1, . . . , m, i = 1, . . . , nj}

(MCKP)

Elements x ∈ X are feasible solutions to MCKP if they satisfy

m∑
j=1

nj∑
i=1

cijxij ≤ b

and are infeasible solutions, if otherwise.
Various exact and approximate methods for solving MCKP are presented in monographs [8] and [14],

as well as in a recent review paper on knapsack problems [3], where the heuristic BISSA algorithm by
Bednarczuk et al. [1] is mentioned as one of the methods.

In the BISSA algorithm, an approximate solution to MCKP is sought by the problem multiobjectiviza-
tion and the linear scalarization. By multiobjectivization (see, e.g., [10]) here we mean the formulation
based on MCKP of a bi-objective optimization problem in which the second objective function is the
left-hand side of the first constraint of MCKP. In BISSA, an approximate solution to MCKP is derived
by providing Pareto optimal solutions to the resulting bi-objective optimization problem and exploiting

effectively the structure of set X . Namely, by the multiple-choice constraints
nj∑
i=1

xij = 1, the objective

function
m∑
j=1

nj∑
i=1

pijxij and the constraint function
m∑
j=1

nj∑
i=1

cijxij can be calculated in each jth category

independently. In other words, these two functions are additively separable. Thus, a linear scalarizing
function over these two functions is also additively separable. Clearly, this observation generalizes to
any number of functions structured analogously. The method BISSA provides an approximate solution
to MCKP together with the optimality gap estimation.
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A conceivable improvement of the method presented in [1] would be replacing the linear scalarization,
that can provide only a subset of Pareto optimal solutions, with the Chebyshev scalarization, that in the
case of the bi-objective optimization problem based on MCKP (it is a discrete optimization problem) can
provide all Pareto optimal solutions (cf. [4–7, 15]).

The use of the Chebyshev scalarization in the context of harnessing multiobjectivization to solve
constrained optimization problems has been advocated in ([10], p. 352–353), namely (...) approximation
methods based on the Chebyshev approach have appeared useful in the multicriteria context, and more
interesting results could be expected to be obtained in single criterion optimization by transfer of results
obtained in the multicriteria setting. By following this idea, in the current article, we aim to scan a part
of the solution space of the bi-objective optimization problem based on MCKP, as it has been proposed
in the concluding section of [1], i.e., we try to cope with (...) the issue of finding a better solution by a
smart ‘scanning’ of the triangle of uncertainty ([1], p. 908).

However, the Chebyshev scalarizing function, as it is easy to show by a counterexample (as that one
given in Appendix 7, cf. also [2]), is not additively separable. Thus, with the Chebyshev scalarization

the structure of set X and the additive separability of functions
m∑
j=1

nj∑
i=1

pijxij ,
m∑
j=1

nj∑
i=1

cijxij cannot be

directly exploited for solving MCKP. Nevertheless, as presented in the next sections, the Chebyshev
scalarization may provide better approximate solutions to MCKP than the linear scalarization.

In this work, we exploit the multiobjectivization of MCKP and the Chebyshev scalarization of the
resulting bi-objective problem (in the context of the two postulates quoted above, this constitutes our re-
search method), for constructing a method that attempts to find better approximate solutions to MCKP, as
compared to those that can be found by the method proposed in [1]. We validate the new method on the
same set of problems as the one used to validate BISSA. Despite that BISSA produces approximate solu-
tions within tight optimality gaps, especially for correlated objective function and constraint coefficients,
in 20% of instances of test problems our method was able to produce better results than that produced by
BISSA.

The main aim of the paper is to propose a Chebyshev scalarization-based procedure which allows one
to improve the approximate solution to MCKP and consequently to tighten the optimality gap of MCKP.

The outline of the paper is as follows. In Section 2, we present a bi-objective formulation of MCKP
and its Chebyshev scalarization. In Section 3, we discuss Pareto optimality of additively separable func-
tions. We exploit the Chebyshev scalarization in Section 4 where we present a procedure to narrow the
optimality gap to MCKP, as compared to the optimality gap provided by [1], together with its effective
implementation. Section 5 reports results of numerical experiments. Section 6 concludes.

2. Multiobjectivization of MCKP

Multiobjectivization has been proposed [11] to reduce local optima and facilitate improved optimiza-
tion in heuristic algorithms to solve constrained singleobjective optimization problems. Applications of
multiobjectivization in population-based metaheutristic algorithms to solve this class of problems are
discussed in [19]. The use of multiobjectivization and scalarization techniques to solve convex and non-
convex constrained singleobjective optimization problems has been elaborated in [10].
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In this section, we show how to apply the multiobjectivization technique for MCKP. Given function
F : X → Rk, F = (f 1, . . . , fk), f l : X → R, l = 1, . . . , k, solution x̄ ∈ X is Pareto optimal on X , if

(F (x̄) + R+
k ) ∩ F (X) = F (x̄)

where R+
k = {y ∈ Rk| yl ≥ 0, l = 1, . . . , k}.

We multiobjectivize MCKP as follows: we keep maximizing the original MCKP objective while
minimizing the new objective originated from the constraint. For the sake of clarity of the presentation,
in the sequel we replace minimization of the second objective function by maximization of its negative.
In this way, we obtain the following bi-objective (maximization) problem

vmax (f 1(x), f 2(x))

subject to:

x ∈ X

(MO_MCKP)

where f 1(x) =
m∑
j=1

nj∑
i=1

pijxij , f 2(x) = −
m∑
j=1

nj∑
i=1

cijxij , vmax denotes the operator of deriving Pareto

optimal solutions.
In this formulation, the structure of the multiple-choice set X is fully exposed. The advantage of such

a formulation is that now the feasible set of MO_MCKP is just X and not the set of x ∈ X restrained
by the additional linear inequality, as it is in the case of the original MCKP problem. For a general
reformulation of constrained singleobjective problems as multiobjective problems, see [10].

In the paper by Bednarczuk et al. [1], the search for approximate solutions to MCKP was conducted
among solutions to MO_MCKP that are Pareto optimal and derived by the linear scalarization (commonly
referred to as supported solutions). Since, as observed above, a linear scalarizing function over two
objective functions of MO_MCKP is additively separable, such solutions are Pareto optimal for Fj(x)

= (f 1
j (x), f

2
j (x)) =

( nj∑
i=1

pijxij,−
nj∑
i=1

cijxij

)
on Xj := {xj = (xij)|

nj∑
i=1

xij = 1, xij ∈ {0, 1}},

j = 1, . . . , m, and Pareto optimal for F (x) = (f 1(x), f 2(x)) on X . Sets Xj, j = 1, . . . , m, are referred
to as components of X . The structure of MO_MCKP and the adopted notation are presented in Table 1.

Table 1. The structure of MO_MCKP and the adopted notation

F (x) F1(x1) . . . Fj(xj) · · · F1(xm)

f1(x) f1
1 (x1) . . . f1

j (xj) · · · f1
1 (xm)

f2(x) f2
1 (x1) . . . f2

j (xj) · · · f2
1 (xm)

x1 ∈ X1 · · · xj ∈ Xj · · · xm ∈ Xm

X = X1 × · · ·× Xj × · · ·× Xm

The following result was proved by Bednarczuk et al. [1]. Let SP be the set of all Pareto optimal
solutions to MCKP.

Theorem 1. ([1], Theorem 3.1, p. 896). Let x∗ ∈ X be a Pareto optimal solution to MO_MCKP, such
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that
b− cTx∗ = min

x∈SP , b−cTx≥0
b− cTx

Then x∗ solves MCKP.

In [1], the considerations are limited to a subset of SP , namely to set SP̄ of the so-called supported
Pareto optimal solutions, i.e., solutions that can be derived by linear scalarizing functions, a task that in
the case of multiple-choice constraints reduces to sorting. In consequence, algorithm BISSA allows us
to establish the optimality gap with respect to SP̄ , that amounts to

b− cTx̄∗ = min
x∈SP̄ , b−cTx≥0

b− cTx

Since the set of supported Pareto optimal solutions SP̄ is in general smaller than set SP , one can only
expect the inequality b− cTx̄∗ ≥ b− cTx∗.

Actually, BISSA finds two solutions to MO_MCKP: x∗ and x
′∗ that solve the following problem

cTx∗ − cTx
′∗ = min

x∈SP̄ , b−cTx≥0, x′∈SP̄ , b−cTx≤0
cTx− cTx′ (1)

The idea developed in this work is to narrow the optimality gap defined by (1). In the next section, we
propose a procedure which narrows the optimality gap with the help of the Chebyshev scalarization. The
idea relies on exploiting x ∈ X , such that xj ∈ Xj , are Pareto optimal for Fj on Xj but not necessarily
supported on Xj , j = 1, . . . , k.

For completeness, we formulate the Chebyshev scalarization for MO_MCKP.

Let y∗1 > max
x∈X

m∑
j=1

nj∑
i=1

pijxij, y∗2 > max
x∈X

−
m∑
j=1

nj∑
i=1

cijxij . The Chebyshev scalarization takes the

following form

min
x∈X

max

 λ1(y
∗1 − f 1(x))

λ2(y
∗2 − f 2(x))

subject to:

x ∈ X

(2)

As observed, this function is not additively separable.

3. Pareto optimality of additively separable functions

Below, we provide the following general facts concerning additively separable functions. The following
theorem states the underlying fact for the procedure presented in Section 4.

Theorem 2. Given function F : Y → Rk, F = (f1, . . . , fk), defined on Y = Y1 × · · · × Ym, Yj ∈ Rnj ,

j = 1, . . . , m, each f l : Y → R, l = 1, . . . , k, is additively separable on Y , i.e., f l :=
m∑
j=1

f l
j, l = 1, . . . , k,

where f l
j : Yj → R, j = 1, . . . , m.
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Then, for every Pareto optimal solution xP = (xP
1 , . . . , x

P
m) of F on Y , xP

j ∈ Yj is a Pareto optimal
solution of Fj = (f 1

j , . . . , f
k
j ) on Yj, j = 1, . . . , m.

Proof. Suppose that on the contrary, for given Pareto optimal xP = (xP
1 , . . . , x

P
m) there exists index j,

j ∈ {1, . . . ,m}, such that xP
j ∈ Yj is not Pareto optimal of Fj on Yj . Then there exists xj ∈ Yj such that

f l
j(xj) ≥ f l

j(x
P
j ), l = 1, . . . , k, and f l

j(xj) > f l
j(x

P
j ) for some l. Hence, for x′ = (x′

1, . . . , xj , . . . , x
′
m),

one has f l(x′) ≥ f l(xP ), l = 1, . . . , k, and for some l, f l(x′) > f l(xP
j ), which contradicts Pareto

optimality of xP . □

The converse statement does not hold, i.e., it is not true that x composed of Pareto optimal solutions
xP
j of Fj on Yj, j = 1, . . . , m, xP = (xP

1 , . . . , x
P
m), is the Pareto optimal solution of F on Y (see the

example in the Appendix 7, cf. also [2]).
By Theorem 2, searching for Pareto optimal solutions of F on Y can be limited to the subset of Y ,

such that for all j = 1, . . . , m, xj is Pareto optimal of Fj on Yj .

Corollary 1. Given function F : Y → R2, F = (f 1, f 2), defined on Y = Y1 × · · · × Ym , each f i,
i = 1, 2, is additively separable with respect to Y .

Let xA ∈ Y and xB ∈ Y be such that f 1(xA) < f 1(xB).
If the set Φ := {x ∈ Y |f 1(x) > f 1(xA), f 2(x) > f 2(xB)} contains no element (x1, . . . , xm) such

that xj is Pareto optimal of Fj on Yj for each j = 1, . . . , m, then Φ contains no Pareto optimal solution
of F on Y .

Proof. The assertion of this corollary follows immediately from Theorem 2. □

4. A procedure to narrow the optimality gap to MCKP

We now deal with F = (f 1, f 2) where f 1(x) =
m∑
j=1

nj∑
i=1

pijxij , f 2(x) = −
m∑
j=1

nj∑
i=1

cijxij .

The procedure to narrow the optimality gap defined by (1) is based on Theorem 2.

4.1. The procedure

The procedure starts with two supported Pareto optimal solutions to MO_MCKP that solve problem (1):
x∗ that is feasible to MCKP (below denoted xA) and x

′∗ that is infeasible to MCKP (below denoted
xB). This choice of xA and xB guarantees that above the line passing through f(xA) and f(xB) there
is no f(x) such that x is a Pareto optimal solution. Thus, the set that can contain better (in the sense
of smaller optimal gap, cf. Theorem 1) feasible solutions to MCKP than xA is defined by f1(x

A) ≤
f1(x

B),f2(xA) ≥ f2(x
B), f(x) ≤R2

+
λf(xA) + (1− λ)f(xB), 0 < λ < 1.

Let ε > 0. To simplify the presentation, we assume for a while that the Chebyshev scalarization
always yields Pareto optimal solutions, whereas in general it provides weakly Pareto optimal solutions.

In the next subsection, we will show how to provide Pareto optimal solutions. With this assumption
the procedure is as follows.
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Let J1 be the set of all j ∈ {1, . . . ,m} such that f 1
j (x

A
j ) < f 1

j (x
B
j ), i.e.,

J1 := {j ∈ {1, . . . ,m}|f 1
j (x

A
j ) < f 1

j (x
B
j ), f

2
j (x

A
j ) > f 2

j (x
B
j )} (3)

Observe that at the starting iteration, J1 ̸= ∅. Indeed, if J1 were empty, then for all j = 1, . . . , m,

f 1
j (x

A
j ) < f 1

j (x
B
j ) and f 2

j (x
A
j ) ≤ f 2

j (x
B
j )

hence xA would be dominated by xB, a contradiction to Pareto optimality of xA.
Observe also that since on the first iteration xA is a Pareto optimal solution for (f 1, f 2) on X , then,

by Theorem 2, each xA
j is a Pareto optimal solution of Fj on Xj, j = 1, . . . , m. Hence, for each j ∈ J1,

we have
f 2
j (x

A
j ) > f 2

j (x
B
j ) (4)

This is illustrated in Figure 1.

Figure 1. “The layout” at the first iteration of the procedure for some j.
Element ◦ defines weights of the Chebyshev scalarization

sth iteration of the procedure, s ∈ N+ is as follows. Each iteration consists of two steps.
Step 1. Determine J1. For each j ∈ J1, determine a Pareto optimal solution xP

j by solving the
Chebyshev problem

min
xj∈Xj

max
i∈{1,2}

λj
i (y

∗i
j − f i

j(xj))

where:

y∗1j = max
xj∈Xj

f 1
j (xj) + ε, y∗2j = max

xj∈Xj

f 2
j (xj) + ε

λj
1 = (y∗1j − f 1

j (x
A
j ))

−1, λj
2 = (y∗2j − f 2

j (x
B
j ))

−1

Let J ⊆ J1 be such that for j ∈ J , f 1
j (x

A
j ) < f 1

j (x
P
j ). Observe that for each j ∈ J , we have

f 1(xA) < f 1(xAj), where xAj = (xA
1 , . . . , x

P
j , . . . , x

A
m)

Step 2. Let J b, J b ⊆ J , denote the set of indices j such that xAj are feasible, i.e., f 2(xAj) ≥ −b.
Choose any j∗ ∈ J b. Set xA := xAj∗ and proceed to the next iteration.
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Proposition 4.1. If J is empty and xA is a Pareto optimal solution to MO_MCKP, then xA is the
optimal solution to MCKP.

Proof. If J is empty, then by Corollary 1 the set

{x ∈ X|f 1
j (x

A
j ) ≤ f 1

j (x
B
j ), f

2
j (x

A
j ) ≥ f 2

j (x
B
j )}

contains only two Pareto optimal solutions to MO_MCKP, xA that is feasible to MCKP, and xB that is
infeasible to MCKP, thus xA is optimal to MCKP. □

Proposition 4.2. If J b is empty and xA is a Pareto optimal solution to MO_MCKP, then xA is the
optimal solution to MCKP.

Proof. If J b is empty, then by Corollary 1 the set

{x ∈ X|f 1
j (x

A
j ) ≤ f 1

j (x
B
j ), f

2
j (x

A
j ) ≥ f 2

j (x
B
j )}

contains only one Pareto optimal solution to MO_MCKP, namely xA, that is feasible to MCKP, thus xA

is optimal to MCKP. □

Figure 2. sth iteration of the procedure, s > 1, for some jb in the case the Pareto optimal solution xA,

derived by the Chebyshev scalarization in iteration s− 1, is feasible; xP
j , replaces xA

j from the previous iteration
(now in the light gray color); ◦ is the element defining new weights in the Chebyshev scalarization

Observe that starting from the second iteration there is no guarantee that xA is a Pareto optimal solu-
tion for (f 1, f 2) on X . Hence, from the second iteration on, it can happen that

f 2
j (x

A
j ) < f 2

j (x
B
j ) for some j ∈ J1 (5)

Different rules for selecting j∗ ∈ J b and thus xP
j can be proposed, for example x̃P

j∗ = argmax
j∈Jb

f 1(xP
j )

(the MAX-PROFIT rule). Figure 2 illustrates operations of one iteration of the procedure for some j∗.
The procedure stops when either set J or set J b becomes empty. The procedure to narrow the optimality
gap to MCKP described above we shall call KISSA.
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1 INPUT:
xA = (xA

1 , . . . , x
A
m) – a feasible solution to MCKP such that xA

j is Pareto optimal to Fj on Xj , j = 1, . . . , m,
provided by BISSA;

xB = (xB
1 , . . . , x

B
m) – an infeasible solution to MCKP such that xB

j is Pareto optimal to Fj on Xj , j = 1, . . . , m,
provided by BISSA (f1(xA) < f1(xB)).

2 OUTPUT: a feasible solution to MCKP with a greater than or equal value of the objective function for the input
feasible solution xA.

3 begin

4 Determine ρ.

5 while true do

6 Determine J1.

7 J := ∅.

8 for each j ∈ J1 do

9 Determine y∗j = (y∗1j , y∗2j ) by setting:

10 y∗1j := max
xj∈Xj

f1
j (xj) + ε,

11 y∗2j := max
xj∈Xj

f2
j (xj) + ε.

12 λj
1 := (y∗1j − f1

j (x
Aj ))−1.

13 λj
2 := (y∗2j − f2

j (x
Bj ))−1.

14 Solve min
xj∈Xj

max
i∈{1,2}

λi
j(y

∗i
j − f i

j(xj)) + ρ

m∑
i=1

(y∗ij − f i
j(xj))

to derive xP
j .

15 if f1
j (x

A
j ) < f1

j (x
P
j ) then

add j to J .
end

end
16 if J = ∅ then

break
end

17 Determine Jb ⊆ J .

18 if Jb = ∅ then
break

end

19 Select j∗ ∈ Jb.

20 xA := (xA
1 , . . . , x

P
j∗ , . . . , xA

m).

end

21 RETURN xA.

end
Algorithm 1. Procedure KISSA to solve MCKP
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4.2. The implementation of KISSA

Now, we have to correct for a temporary assumption we have made that solutions to the Chebyshev
problem, as above, are Pareto optimal, whereas they are in fact only weakly Pareto optimal. Pareto
optimal solutions on Xj, j = 1, . . . , m, can be derived by the following result [5], Theorem 4.6, p. 54)
adapted to the notation of this work.

Denote
γ = {t|xt

j ∈ Xj, x
t
j is Pareto optimal on Xj}

Theorem 3. Let

ρ < min
t∈γ


min

u∈γ\{t}


minl, f l

j(x
t
j)−f l

j(x
u
j )>0 f

l
j(x

t
j)− f l

j(x
u
j )

k∑
l=1

(f l
j(x

u
j )− f l

j(x
t
j))

∣∣∣∣ k∑
l=1

(f l
j(x

u
j )− f l

j(x
t
j)) > 0




(6)

Solution x̄j ∈ Xj is Pareto optimal on Xj if and only if there exists a vector λ, λ > 0, such that x̄j

solves

min
xj∈Xj

max
l∈{1, ..., k}

λl(y
∗j
l − f l

j(xj)) + ρ
k∑

s=1

(y∗ls − f s
j (xj))

where y∗jl > max
xj∈Xj

f l
j(xj), l = 1, . . . , k.

Let us denote the set of all Pareto optimal solutions by N . To make the formula for ρ, given in
Theorem 3, operational, we can use a conservative upper bound on ρ, namely δ, where

δ = min
xj∈Xj

 min
x′
j∈Xj\{xj}


min

l∈{1,2}, f l
j(xj)−f l

j(x
′
j)>0

(
f l
j(xj)− f l

j(x
′
j)
)

k∑
l=1

(
f l
j(x

′
j)− f l

j(xj)
)

∣∣∣∣ k∑
l=1

(
f l
j(xj)− f l

j(x
′
j)
)
> 0




In the case of MO_MCKP, function values are just values of single coefficients. Therefore, the above
formula takes the form

δ = min
i∈{1,...,nj}

 min
i′∈{1,...,nj},i′ ̸=i


min

l∈{1,2}, dlij−dl
i′j>0

(
dlij − dli′j

)
k∑

l=1

(
dlij − dli′j

)
∣∣∣∣ k∑
l=1

(
dlij − dli′j

)
> 0




where dlij = plij if l = 1, and dlij = −clij if l = 2.

5. Numerical experiments

We conducted numerical experiments on the same set of randomly generated test problems as in Bed-
narczuk et al. [1]. We considered three sets of 10 problems each with uncorrelated coefficients of the
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objective function and the constraint, with, respectively, 10 categories and 1000 variables, 100 categories
and 100 variables, 1000 categories and 10 variables. We also considered one set of 10 problems with
weakly correlated coefficients, notoriously hard to solve for BISSA, with 20 categories and 20 variables.
The results are given in Tables 2 and 3.

Table 2. KISSA’s results for uncorrelated instances

Instance EXACT-BISSA GAP [%] EXACT-KISSA GAP [%] #KISSA Improv.

Categories: 10, variables: 1000
1 0.024 0.006 1
2 0.005
3 0
4 0
5 0
6 0.019 0.012 1
7 0.019 0.002 2
8 0
9 0

10 0

Categories: 100, variables: 100

1 0.010
2 0.005
3 0.011
4 0.030
5 0
6 0.009
7 0.006
8 0.005
9 0.006

10 0.008

Categories: 1000, variables: 10

1 0.019
2 0.016 0.008 1
3 0.003
4 0.008
5 0.009
6 0.003
7 0.008
8 0.016
9 0.029 0.020 1

10 0.005

The second column of the tables is the relative gap between the objective function values of the
solutions obtained by the exact algorithm used in [1] and BISSA. The third column of the tables is the
relative gap between the objective function values of the solutions obtained by the exact algorithm used
in [1] and KISSA. The last column of the table shows the number of improvements in the objective
function value during KISSA’s operation. If empty, no improvement is observed. In the numerical
experiments, we used the following parameter values: ρ = 1E–7, ε = 1E–4. To select index j∗ (line 19
of Algorithm 1), we applied the MAX-PROFIT rule shown in Subsection 4.1.
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Table 3. KISSA’s results for weakly correlated instances

Instance EXACT-BISSA GAP [%] EXACT-KISSA GAP [%] #KISSA IMPROV.

Categories: 20, variables: 20

1 0.070
2 0.011
3 1.679
4 2.593 0.836 1
5 3.121 0.279 1
6 0
7 5.656 1.994 1
8 0.133
9 0
10 0.159

The results show that compared with BISSA, which provides very tight optimality gaps and often opti-
mal solutions, the room for improvements offered by KISSA is limited. Despite that, in 20% of instances
of test problems, our method was able to produce better results than that produced by BISSA. Significant
tightening of the optimality gaps can be observed for problems with weakly correlated coefficients, where
the optimality gaps provided by BISSA are much looser than in the case of uncorrelated coefficients.

As the computation time of KISSA for each of the problems tested was fractions of a second, it can
be used as a no-cost plug-in for BISSA.

6. Conclusions

In view of the very good performance of BISSA, the extra effort required by KISSA is worth the trouble
in problems where data are precise and the objective value reflects a practical problem of high stakes
consequences. In such cases, a quest for approximate solutions tightly close to the optimal one is justified,
and KISSA is a viable option. The decision of whether it is the case depends on the nature of practical
problems modeled as MCKP.

The advantage of the KISSA method is that, like BISSA, it provides not only an approximate solution
but also the optimality gap which is not the case with metaheuristic algorithms, for example. In practical
applications, this is an important feature of optimization algorithms. The disadvantage of KISSA is that
it must be used together with BISSA.

By applying multiobjectivization and the Chebyshev scalarization to MCKP, we pave the way to use
this technique to solve other singleobjective constrained combinatorial problems, where multiobjectiviza-
tion can uncover the structure of the feasible set, in the sense presented in this work.

In our future work, we want to explore other rules of selecting index j∗ (line 19 of Algorithm 1).
Developing a version of the algorithm that can work independently of BISSA is also a promising direction
for further research.
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7. Appendix

Example 7.1. Assume k = 2, m = 2, n1 = 2, n2 = 2,{
plij

− clij

}
=

{
2 3 4 2

−1.9 −3 −2 −1

}
.
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The values of the objective functions for all four feasible solutions X = {1010, 1001, 0110, 0101} are
given in Table A1.

Table A1. The values of the objective functions
for all four feasible solutions (Example 7.1)

Pareto optimal Dominated

Xj 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1
i = 1 6 4 7 5
i = 2 –3.9 –2.9 –5 –4

Now, we derive Pareto optimal solutions in each component separately. In the first component they
are (1 0), (0 1), and in the second component they are (1 0), (0 1), as shown in Table A2.

Table A2. Pareto optimal solutions in each component separately (Example 7.1).

j = 1 j = 2
Pareto optimal

X 1 0 0 1 1 0 0 1
i = 1 2 3 4 2
i = 2 –1.9 –3 –2 –1

The concatenation of the Pareto optimal solution on the component X1, (0 1), with the Pareto optimal
solution on component X2, (0 1), resulting in a feasible solution (0 1 0 1), is not Pareto optimal on
X = X1 ×X2.
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