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Abstract

This paper researches differential cooperative games with a coalition structure. To show the payoffs of players, the Owen value
for traditional case is extended to the new cooperative model, and its existence and uniqueness are discussed. Furthermore,
the relationship between the core and the Owen value is shown. In addition, the sub-game consistency of the Owen value is
analyzed that maintains the efficiency of the payoff throughout the game. With the defined characteristic function, it is proved
that the Owen value is sub-game consistent. Finally, theoretical results of this paper are applied to solve the problem of cost
allocation of environmental governance.
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1. Introduction

In practical situations, the external environment usually varies with time, which leads to people’s strategic
choices being dynamic rather than static. Differential games (usually called continuous-time dynamic
games) can cope well with this case, presented by Isaacs [10] according to military tracking problem
in the 1940s. Pontryagin [24] studied differential games in an open-loop solution with the maximum
principle. Later, Bellman [5] adopted a dynamic programming technique to research the solutions of
discrete-time dynamic games (which were multi-stage counterparts of differential games). Since then,
research about the theory and application of differential games have rapidly developed in many areas
including mathematics, economics, biology, and environment.

Non-cooperative behaviors among players will usually result in a no-Pareto optimal solution. What
is worse, highly undesirable outcomes may be obtained (like the prisoner’s dilemma) when the players
in the game only care about their own interests. Cooperation offers the best promise to alleviate the
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problem and provide a group optimal and individually rational solution [31]. According to the coopera-
tion procedure, cooperative games include static cooperative games and differential cooperative games.
Compared with the former, differential games can investigate interactive decision-making over time. Stal-
ford [27] first discussed differential cooperative games on a convex control set and offered two criteria
to determine whether a Pareto-optimal control policy belongs to the boundary of the control set or the
interior. Reddy and Engwerda [25] offered the necessary and sufficient conditions for the existence of
Pareto solutions in infinite horizon cooperative differential games with an open-loop information struc-
ture. Petroysan [20] and Jorgensen et al. [11] discussed the time consistency in differential cooperative
games to maintain the stability of cooperation. Yeung et al. [32] analyzed sub-game consistent solutions
in cooperative stochastic differential games with nontransferable payoffs. The applications about cooper-
ative differential games can be referred to Huang et al. [9] and Li [14]. Filar and Petrosyan [6] defined the
characteristic functions of differential cooperative games, which make the theories of static cooperative
games extend to differential cooperative games.

In some cases, players usually form a prior union with other players to increase their voice and inter-
ests. Then, players in one union cooperate with other players as one player (for instance, trade coalitions,
currency blocs, and political and economic unions). People call this type of cooperation a cooperative
game with a coalition structure. Many scholars studied static cooperative games with a coalition structure,
and a series of results have been obtained [2–4, 12, 17]. Like other cooperative game models, the payoff
indices of static cooperative games with a coalition structure are the main research topic. Among them,
the Owen value [17] is one of the most important indices that can be seen as the extension of the Shapley
value [26]. Many scholars devoted themselves to studying its theory and application [1, 8, 13, 15, 16, 28].
On the other hand, some scholars studied non-cooperative differential games with a coalition structure.
For example, Petrosyan and Mamkina [22] explored the properties of multistage games with perfect in-
formation and coalition structures and proposed a new imputation value in terms of a PMS vector. Wang
et al. [30] investigated the problem of strategic stability of long-range cooperative agreements in differen-
tial games with coalition structure, and the conditions of Nash equilibrium and strong Nash equilibrium
were obtained.

In some situations,e differential cooperative games cannot cope with them sufficiently. For example,
environmental governance is a long-term activity (the Kyoto Protocol specifies emission targets for the
period 2008–2012). Countries’s strategic choices will change over time. Furthermore, different countries
will form a prior union to increase their voice and interests (such as the EU, NATO, BRICS, etc.), which
will act as one player. Then, how to distribute the cost of reducing emissions among the countries in
the environmental governance? This is a problem of differential cooperative games with a coalition
structure, which previous differential cooperative game models cannot solve. Therefore, we present
differential cooperative games with a coalition structure to extend the application. According to the
characteristic function defined by Gromavo and Petrosyan [7], the specific expression of the Owen value
of differential cooperative games with a coalition structure is defined, and its existence and uniqueness are
discussed. Furthermore, the relationship between the core and the Owen value is shown. Considering the
stability of differential cooperative games, an additional stringent condition on the solution is required:
the specific optimality principle must remain optimal at any instant of time throughout the game along the
optimal state trajectory chosen at the outset Yeung and Petrosyan [31]. Sub-game consistent solutions
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are derived to ensure sustainable cooperation. In particular, sub-game consistency guarantees that the
optimality principle agreed upon at the outset will remain effective throughout the game. Hence, there
is no incentive for any player to deviate from the cooperation scheme. Based on the research for sub-
game consistency in differential cooperative games [19, 21, 21, 31, 32] we further give the concept of
the sub-game consistent solution for differential cooperative games with a coalition structure. However,
the sub-game consistent solution does not always exist. Then, we obtain the Owen value with sub-game
consistency by modifying the defined characteristic function, which ensures that the players will not
terminate the contract or deviate from the original cooperation plan.

The paper is organized as follows. Section 2 presents the basic concepts of differential cooperative
games. Section 3 gives the definitions of characteristic function and differential cooperative games with a
coalition structure. Section 4 offers the specific expression of the Owen value and discusses its existence
and uniqueness. Section 5 studies the Owen value with sub-game consistency by modifying the charac-
teristic function. Section 6 provides an application in environmental management. Concluding remarks
are given in Section 7.

2. Preliminaries

Consider n-player nonzero-sum differential cooperative game Γ (x0, T–t0) with initial state x0 and dura-
tion T–t0, in which the state dynamics has the form [18]:

ẋ(t) = f(t, x(t), u1(t), u2(t), . . . , un(t)), x(t0) = x0 (1)

The payoffs of player i is

T∫
t0

gi (t, x(t), u1(t), u2(t), . . . , un(t))dt+ qi(x(T )) (2)

where gi (t, x(t), u1(t), u2(t), . . . , un(t)) ≥ 0, qi(x(T)) ≥ 0, x(t) ∈ X ⊂ Rn denotes the state variable
of game, ui ∈ Ui is the control of player i, i ∈ N = {1, 2, 3, . . . , n}. In particular, the players’ payoffs
are transferable. We assume that differential equation (1) satisfies all conditions necessary for the existence,
sustainability and uniqueness of the solution for any n-tuple control u∗(t) = (u∗1(t), u

∗
2(t), . . . u

∗
n(t)).

Definition 1. Suppose [18] that there are an n-tuple control u∗(t) = (u∗
1(t), u

∗
2(t), . . . u

∗
n(t)) and a tra-

jectory x∗(t), t ∈ [t0, T ], such that

max
u1(s), ..., un(s)

 n∑
i=1

T∫
t0

gi[t, x(t), u1(t), u2(t), . . . , un(t)]dt+
n∑

i=1

qi(x(T ))



=
n∑

i=1

T∫
t0

gi[t, x∗(t), u∗
1(t), u

∗
2(t), . . . , u

∗
n(t)]dt+

n∑
i=1

qi(x∗(T ))

(3)
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We call a trajectory {x∗(t)}Tt=t0
satisfying equation (3) an optimal cooperative trajectory. For simplicity,

we use x∗(t) and x∗
t interchangeably.

Assume that the players agree to adopt the control u∗(t) = (u∗
1(t), u

∗
2(t), . . . , u

∗
n(t)) and the differen-

tial cooperative game Γ (x0, T–t0) always develops along the optimal trajectory x∗(t).

Definition 2. The characteristic function of the differential cooperative game Γ (x0, T–t0) is defined
as [18]:

V (x0, T–t0, S) =



n∑
i=1

T∫
t0

gi[t, x∗(t), u∗
1(t), u

∗
2(t), . . . , u

∗
n(t)]dt+

n∑
i=1

qi(x∗(T )), S = N

ValΓS,N\S(x0, T–t0), S ⊂ N

0, S = ∅

where ValΓS,N\S(x0, T–t0) is the value of the zero-sum game when the coalition S acts as one player and
the coalition n|S acts as the other player. Furthermore, the value of the coalition S equals to

∑
i∈S

T∫
t0

gi[t, x(t), u1(t), u2(s), . . . , un(t)]dt+
∑
i∈S

qi(x(T ))

Let Γ (x0, T–t0, V, N) be an n-player differential cooperative game with V being the characteristic
function, and let ΨN (x0, T–t0) be the family of all n-player differential cooperative games with the initial
state x0 and the duration T–t0. Next, we review the imputation set and core of differential cooperative
games.

Definition 3. Let Γ (x0, T–t0, V, N) be an n-player differential cooperative game. Then, its imputa-
tion set is defined as [29]:

L(x0, T–t0, V, N) =

{
ξ = (ξ1, . . . , ξn) :

n∑
i=1

ξi = V (x0, T–t0, N), ξi ≥ V (x0, T–t0, i), i ∈ N

}

Definition 4. Let Γ (x0, T–t0, V, N) be an n-player differential cooperative game. Then, its core is
defined as [29]:

C(x0, T–t0, V, N)

=

{
ξ = (ξ1, ξ2, . . . , ξn) :

∑
i∈S

ξi ≥ V (x0, T–t0, S),∀S ⊂ N,
∑
i∈N

ξi = V (x0, T–t0, N)

}

To study the sub-game consistency, we consider the family of sub-games of the differential cooperative
game Γ (x0, T–t0, V, N) for the optimal trajectory Γ (x∗(t), T − t, V, N), i.e., the family of differential
cooperative games with the initial position x∗(t) that defines on the time interval [t, T ], t ∈ [t0, T ].

The characteristic function of Γ (x∗(t), T − t, V, N) is defined as:
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V (x∗(t), T − t, S) =



n∑
i=1

T∫
t

gi[t, x∗(t), u∗
1(t), u

∗
2(s), . . . , u

∗
n(t)]dt+

n∑
i=1

qi(x∗(T )), S = N

ValΓS,N\S(x
∗(t), T − t), S ⊂ N

0, S = ∅

Notations are as in Definition 2.
Accordingly, we can define the imputation set L(x∗(t), T–t, V, N) and the core C(x∗(t), T–t, V, N)

for the sub-game Γ (x∗(t), T–t, V, N). The key to deducing the cooperative solution of sub-games is to
establish an imputation distribution procedure (IDP), which is defined as:

Definition 5. Let ξ* = (ξ∗1 , ξ
∗
2 , . . . , ξ

∗
n) ∈ L(x0, T–t0, V, N). β(t) = {β1(t), β2(t), . . . , βn(t)} is

called an IDP if [19]

ξ∗i =

T∫
t0

βi(t)dt, βi(t) ≥ 0

for all i ∈ N .

Let ξ̄i(t) =

t∫
t0

βi(t)dt, i = 1, 2, . . . , n, and OP (x0, T–t0, V, N) ⊆ L(x0, T–t0, V, N) be any of

the known classical optimal principles from the cooperative game theory (core, Shapley value, Banzhaf
value or any other optimality principle). Consider C(x0, T–t0, V, N) as an optimality principle for
Γ (x0, T–t0, V, N). Similarly, define C(x∗(t), T–t, V, N) as an optimality principle for the game
Γ (x∗(t), T − t, V, N), t ∈ [t0, T ]. Then, we give the definition of sub-game consistency for differential
cooperative games as follows.

Definition 6. The optimality principle (OP) C(x0, T–t0, V, N) is sub-game consistent for the differ-
ential cooperative game Γ (x0, T–t0, V, N) if there exists an IDP β(t) = {β1(t), β2(t), . . . , βn(t)} such
that [19]

ξ∗ − ξ̄(t) ∈ C(x∗(t), T–t, V, N)

for all t ∈ [t0, T ]. C(x0, T–t0, V, N) is called strongly sub-game consistent if there exists an IDP
β(t) = {β1(t), β2(t), . . . , βn(t)} such that

ξ̄(t)⊕ C(x∗(t), T–t, V, N) ⊆ C(x0, T–t0, V, N)

for all t ∈ [t0, T ], where a⊕B is {a+ b| a ∈ Rn, b ∈ B,B ⊆ Rn}.

3. Differential cooperative games with a coalition structure

In this section, we introduce the definition of differential cooperative games with a coalition structure
and set up standard terminologies and notations.
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Let P = {S1, S2, . . . , Sm} be a partition of the player set N , i.e.,
m⋃
k=1

Sk = N and Sk

⋂
Sl = ∅, for

any k ̸= l, where k, l ∈ M = {1, 2, . . . , m}. A coalition structure in n is denoted by (n,P ). For any
S, S ∈ F (n, P ) is called a feasible coalition, where F (n, P ) denotes the set of all feasible coalitions in
(n, P ), i.e.,

F (n, P ) =

{
S ⊆ N |S = T

⋃
Q,∀T ⊆ Sk, k ∈ M,∀Q =

⋃
l∈H

Bl, H ⊆ M\k

}
Example 1. Llet N = {1, 2, 3, 4} and P = {S1, S2}, where S1 = 1, 2 and S2 = 3, 4, then

F (n, P ) = {∅, {i}(i ∈ N), {1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, N}.
Based on the above, we define differential cooperative games with a coalition structure as follows.

Definition 7. Let Γ (x0, T–t0, V, N) ∈ ΨN(x0, T–t0), and P = {S1, S2, . . . , Sm} be a partition of
the player set n. Player i takes equation (1) and equation (2) as the state dynamics and the payment
function, respectively. Let uS = {ui, i ∈ S} and xS = {xi, i ∈ S} be the control strategy and trajectory
of the feasible coalition S, S ∈ F (n, P ), respectively. Define

∑
i∈S

T∫
t0

gi (t, x(t), u1(t), u2(t), . . . , un(t))dt+
∑
i∈S

qi(x(T ))

as the payment function of feasible coalition S. We call the above game differential cooperative games
with a coalition structure denoted by Γ (x0, T–t0, V P , n, P ), and we denote ΨN(x0, T–t0, P ) as the
family of all n-player differential cooperative games with a coalition structure with the initial state x0

and duration T–t0.

Two essential properties that a cooperative scheme has to satisfy are group optimality and individ-
ual rationality. To satisfy group optimality, the players will maximize their joint payoff by solving the
dynamic optimization problem which maximizes

W (x0,t0, N)

= max
ui(t)
i∈N

∑
Sk∈P

∑
i∈Sk

T∫
t0

gi[t, x(t), u1(t), u2(t), . . . , un(t)]dt

+
∑
Sk∈P

(∑
i∈Sk

qi(x(T ))

) (4)

We can obtain the optimal control u∗(t) = (u∗
1(t), u

∗
2(t), . . . , u

∗
n(t)) satisfying equation (4) by Bell-

man’s dynamic programming theory. Denote x∗(t) = (x∗
1(t), x

∗
2(t), . . . , x

∗
n(t)) as the optimal trajectory

of equation (4).We use it to denote the optimal cooperative trajectory.

Definition 8. Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN(x0, T–t0, P ), if there exists an n-tuple control u∗(t)

= (u∗
1(t), u

∗
2(t), . . . u

∗
n(t)) and a trajectory x∗(t), t ∈ [t0, T ] such that
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max
ui(t)
i∈N

∑
Sk∈P

∑
i∈Sk

T∫
t0

gi
(
t, x(t), u1(t), u2(t), . . . , un(t)

)
dt

+
∑
Sk∈P

(∑
i∈Sk

qi(x(T ))

)

=
∑
Sk∈P

∑
i∈Sk

T∫
t0

gi
(
t, x∗(t), u∗

1(t), u
∗
2(t), . . . , u

∗
n(t)

)
dt+

∑
Sk∈P

∑
i∈Sk

qi(x∗(T ))

(5)

We call a trajectory {x∗(t)}Tt=t0
satisfying equation (5) an optimal cooperative trajectory for the game

Γ (x0, T–t0, V P , n, P ). For simplicity, we use x∗(t) and x∗
t interchangeably.

Then, similar to Definition 2 we define the characteristic function for Γ (x0, T–t0, V P , n, P ) as follows.

Definition 9. Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN(x0, T–t0, P ), the characteristic function of Γ (x0,

T–t0, V P , n, P ) is defined as:

V P (x0, T–t0, S) =


W (x0, t0, N), S = N

W (x0, t0, S), S ∈ F (n, P )

0, S = ∅

(6)

where the payoff W (x0, t0, S) of coalition S equals

W (x0, t0, S) = min
ui(t)=u∗

i (t),i∈S
uj(t),j∈N\S

∑
i∈S

T∫
t0

gi
(
t, x(t), u1(t), u2(t), . . . , un(t)

)
dt+

∑
i∈S

qi(x(T ))


u∗
i (t),i ∈ S are the optimal controls of equation (5) for the players who belong to coalition S.

Definition 9 is based on the fact that players from S use the control u∗
S(t) = u∗

i (t), i ∈ S from the
optimal n-tuple u∗(t), while the other players, those from the set n \ S, minimize the payoff of the
coalition S. The characteristic function equation (6) has the following advantages. First, the characteristic
function is superadditive [7]. Second, it can be computed in two stages using the expression of optimal
control, which greatly simplifies the computation process compared with Definition 2. Furthermore, the
new characteristic function can be used for the differential cooperative games with a coalition structure.

Based on above discussion for differential cooperative games with a coalition structure, we give the
following basic concepts for game Γ (x0, T–t0, V P , n, P ).

Definition 10. Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN(x0, T–t0, P ), if ξ = (ξ1, ξ2, . . . , ξn) satisfies
n∑

i=1

ξi = V P (x0, T–t0, N)

ξi ≥ V P (x0, T–t0, i), i ∈ N

then ξ is called an imputation in Γ (x0, T–t0, V P , n, P ), where ξi represents the payoff of player i. The
set of all imputations in Γ (x0, T–t0, V P , n, P ) is denoted by L(x0, T–t0, V P , n, P ), i.e.,
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L(x0, T–t0,V P , n, P )

=

{
ξ = (ξ1, . . . , ξn) :

n∑
i=1

ξi = V P (x0, T–t0, N), ξi ≥ V P (x0, T–t0, i), i ∈ N

}

Condition ξi ≥ V (x0, T–t0, i) (i = 1, 2, 3, . . . , n) shows that the payoff received by the players
under cooperation is not less than the payoff under non-cooperation (i.e., individual rationality), and
n∑

i=1

ξi = V P (x0, T–t0, N) represents that the sum of all the players’ payoff is equal to the grand coali-

tion’s payoff (i.e., efficiency). Therefore, similar to static cooperative games, imputation set in the game
Γ (x0, T–t0, V P , n, P ) refers to the set of all n-dimensional vectors ξ that satisfies individual rationality
and efficiency.

Definition 11. Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN(x0, T–t0, P ), define C(x0, T–t0, V P , n, P ) as the
core of Γ (x0, T–t0, V P , n, P ):

C(x0, XT–t0, V P , n, P ) =

{
ξ = (ξ1, ξ2, . . . , ξn) :

∑
i∈S

ξi ≥ V P (x0, TS–t0, S),

∀S ∈ F (n, P ),
∑
i∈N

ξi = V P (x0, T–t0, N)

}

For differential cooperative games, the core refers to a set of imputations in which no player can make
efforts to improve his payoff. If P = {{1} , {2} , . . . , {n}}, then the core of differential cooperative
games with a coalition structure degenerates into the core of traditional differential cooperative games.

We consider the family of sub-games of the game Γ (x0, T–t0, V P , n, P ) for the optimal trajectory
Γ (x∗(t), T–t, V P , n, P ), i.e., the family of differential cooperative games with a coalition structure from
the initial position x∗(t) that defines on the time interval [t, T ] (t ∈ [t0, T ]). We denote V P (x*(t), T–t, S)
as the characteristic function of Γ (x∗(t), T–t, V P , n, P ). Similarly, we can defi the imputation set
L(x*(t), T–t, V P , n, P ) and the core C(x*(t), T–t, V P , n, P ) for the sub-game Γ (x∗(t), T–t, V P , n, P ).

Assumed that the core C(x0, T–t0, V P , n, P ) is the optimality principle for Γ (x0, T–t0, V P , n, P ).

Let ξ∗i =

T∫
t0

βi(t)dt and ξ̄i(t) =

t∫
t0

βi(t)dt, i ∈ N , where ξ* = (ξ∗1 , ξ
∗
2 , . . . , ξ

∗
n) ∈ C(x0, T–t0, V P , n, P ).

Then, we can give the following definition of sub-game consistency for differential cooperative games
with a coalition structure.

Definition 12. The optimality principle (OP) C(x0, T–t0, V P , n, P ) is sub-game consistent for the
game Γ (x0, T–t0, V P , n, P ) if there exists an IDP β(t) = {β1(t), β2(t), . . . , βn(t)} such that

ξ∗ − ξ̄(t) ∈ C(x*(t), T–t, V P , n, P )

for all t ∈ [t0, T ]. C(x0, T–t0, V P , n, P ) is called strongly sub-game consistent if there exists an IDP
β(t) = {β1(t), β2(t), . . . , βn(t)} such that
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ξ̄(t)⊕ C(x*(t),T–t, V P , n, P ) ⊆ C(x0, T–t0, V P , n, P ) (7)

for all t ∈ [t0, T ], where a⊕B is {a+ b| a ∈ Rn, b ∈ B,B ⊆ Rn}.

If P = {{1} , {2} , . . . , {n}}, we can easily find that Definition 12 is equivalent to Definition 6.

4. The Owen value

In this section, we give the definition of the Owen value for differential cooperative games with a coalition
structure, and provide its explicit form.

The Owen value is computed in two steps. First, the Shapley value is used to distribute the payoff
of the grand coalition among the prior unions. At this stage, each prior union is regarded as one player.
Secondly, each prior union uses the Shapley value again to distribute the payoff obtained in the first stage
among its members. The specific steps are as follows:

Step 1. Allocate the total payoff among the prior unions as the Shapley value of induced game played
by the unions, When we calculate the payoff of the prior union Sk, the prior union Sk in P should be
regarded as one player to participate in differential cooperative game. Then, we give the definition of
differential quotient game as follows:

Definition 13. Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN (x0, T–t0, P ) and P = {S1, S2, . . . , Sm}, if we have
V M(x0, T–t0, R) = V P (x0, T–t0,

⋃
i∈Sk
k∈R

i) for any R ⊆ M , and take equation (1) and

∑
i∈Sk

T∫
t0

gi[t, x(t), u1(t), u2(t), . . . , un(t)]dt+
∑
i∈Sk

qi(x(T ))

as the state dynamics and the payment function of player k, k ∈ M , then we call the above game
differential quotient game denoted by Γ (x0, T–t0, V M ,M).

Then, according to Definition 7, we find that uSk
= {ui, i ∈ Sk} and xSk

= {xi, i ∈ Sk} are the
control strategy and trajectory of player k in Γ (x0, T–t0, V M ,M), respectively.

It can be known from the definition of differential quotient game that the payoff obtained by prior
union Sk is the Shapley value of player k in differential quotient game Γ (x0, T–t0, V M ,M), i.e.,
Shk(x0, T–t0, V M ,M).

Step2. Distribute the payoff within each prior union by means of Shapley value. Based on the Shapley
value of the prior union Sk obtained in Step 1, this step discusses how to distribute the total payoff of the
prior union Shk(x0, T–t0, V M ,M) among its members.

LetP (S) = {S1, S2, . . . , Sk−1, S, Sk−1, . . . , Sm}, for anyS ⊆ Sk\∅, and defineΓ (x0, T–t0, V P (S),M)

as the differential quotient game on P(S), in which the characteristic function V P (S)(x0, T–t0,C), C ⊆ M

is defined as:

V P (S)(x0, T–t0,C) = V P (x0, T–t0,
⋃
l∈C
i∈Sl

i)



260 J. Zhao and Z. Li

∀S ⊂ Sk, let Γ (x0, T–t0, V Sk , Sk) denote the differential cooperative games defined on the prior union
Sk. The characteristic function for the game Γ (x0, T–t0, V Sk , Sk) is defined as V Sk(x0, T–t0, S) =

Shk(x0, T–t0, V P (S),M), where Shk(x0, T–t0, V P (S),M) represents the Shapley value of player k in
differential quotient game Γ (x0, T–t0, V P (S),M).

From the above two steps, we can define the Owen value in differential cooperative games with a
coalition structure as follows:

Definition 14. Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN (x0, T–t0, P ). Define the Owen value as Ow(x0, T–t0,
V P , n, P ) = (Ow1(x0, T–t0, V P , n, P ), Ow2(x0, T–t0, V P , n, P ), . . . , Own(x0, T–t0, V P , n, P )),
where Owi(x0, T–t0, V P , n, P ) represents the Owen value of player i, and

Owi(x0, T–t0, V P , n, P ) = Shi(x0, T–t0, V Sk , Sk) (8)

Then, we can calculate the specific expression of the Owen value by the equation (8)as follows:

Owi(x0, T–t0,V P , n, P ) =
∑
R⊆M
k/∈R

∑
i∈S⊆Sk

|R|!(|M | − |R| − 1)!

|M |!
(|S| − 1)!(|Sk| − |S|)!

|Sk|!

×

(
V P (x0, T–t0,

⋃
l∈R

Sl

⋃
S)− V P (x0, T–t0,

⋃
l∈R

Sl

⋃
(S\i))

) (9)

Similarly, the Owen value for the sub-game Γ (x∗(t), T−t, V P , n, P ) (t ∈ [t0, T ])is defined as follows.

Owi(x(t), T − t,V P , n, P ) =
∑
R⊆M
k/∈R

∑
i∈S⊆Sk

|R|!(|M | − |R| − 1)!

|M |!
(|S| − 1)!(|Sk| − |S|)!

|Sk|!

×

(
V P (x(t), T − t,

⋃
l∈R

Sl

⋃
S)− V P (x(t), T − t,

⋃
l∈R

Sl

⋃
(S\i))

)

Note 1. Since gi[t, x(t), u1(t), u2(t), . . . , un(t)] ≥ 0, qi(x(T )) ≥ 0, the characteristic function
V P ≥ 0. In addition, the characteristic function is superadditive, for any S, T ∈ S(n, P ), we have

V P (x0, T–t0, S)+V P (x0, T–t0, U) ≤ V P (x0, T–t0, S
⋃

U) + V P (x0, T–t0, S
⋂

U)

where S
⋃

U, S
⋂

U ∈ S(n, P ). Thus, Γ P (x0, T–t0, V P , N) is called differential convex cooperative
game. We can know from the relationship between the Owen value and the core in static cooperative
games that Owi(x0, T–t0, V P , n, P ) ∈ CP (x0, T–t0, V P , N). Therefore, there is no player can make
his own payoff greater than the Owen value without reducing other players’ payoff.

Note 2. The Owen value considers the possibility of cooperation among coalitions, which is more in
line with the actual situation. It greatly expands the application scope of differential cooperative games in
practical situations. In addition, the results of this section can also be applied to differential cooperative
games with infinite-horizon. According to the property of Owen value in static games, the uniqueness
of the Owen value in differential cooperative games is also characterized by Efficiency, Intra-coalitional
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symmetry, Coalitional symmetry, Additivity and Null. Since Additivity is not easy to satisfy, we give a
new characterization on the Owen value in differential cooperative games with a coalition structure based
on the definition of Intra-coalitional balanced contributions for the Shapley value [15].

Denote w(x0, T–t0, V P , n, P ) =
(
wi(x0, T–t0, V P , n, P )

)
i∈N as an imputation vector or coalitional

value for differential cooperative games with a coalition structure Γ (x0, T–t0, V P , n, P ).
In static cooperative games, unanimity game is the important tool to prove the uniqueness of imputa-

tion value. Therefore, we give the following definition of differential unanimity game:

Definition 15. Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN(x0, T–t0, P ), for any H ⊆ N\∅, if H ⊆ S, then
uH(x0, T–t0, S) = 1, or uH(x0, T–t0, S) = 0, we call Γ (x0, T–t0, uH , N) the differential unanimity
game.

Since the family
{
Γ (x0, T–t0, uH , N)

}
H∈2N\∅ is a basis for ΨN(x0, T–t0), for any Γ (x0, T–t0,

V P , N) ∈ ΨN(x0, T–t0), there are unique coefficients {cH}H∈2N\∅ such that

V (x0, T–t0, S) =
∑

H∈2N\∅

cHu
H(x0, T–t0, S)

where cH =
∑
S⊆H

(−1)h−sV (x0, T–t0, S). Moreover, Shi(x0, T–t0, uH,N) =
1

h
, where h = |H| and s = |S|.

Similar to the description of the axioms in static cooperative games, we introduce the following ax-
ioms used to characterize the Owen value for the game Γ (x0, T–t0, V P , n, P ).

Efficiency (EFF). Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN(x0, T–t0, P ), we have

∑
i∈N

wi(x0, T–t0, V P , n, P ) = V (x0, T–t0, n, P )

Coalitional symmetry (CSY): Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN(x0, T–t0, P ), for any Sk, Sl ∈ P ,
which satisfy V M(x0, T–t0, R

⋃
k) = V M(x0, T–t0, R

⋃
l), for all R ⊆ M\ {k, l}, then

∑
i∈Sk

wi(x0, T–t0, V P , n, P ) =
∑
i∈Sl

wi(x0, T–t0, V P , n, P )

Coalitional marginality (CMA). Let Γ (x0, T–t0, Ṽ P , n, P ), Γ (x0, T–t0, V P , n, P ) ∈ ΨN(x0,

T–t0, P ), if V P (x0, T–t0, S
⋃

Sk) − V P (x0, T–t0, S) = Ṽ P (x0, T–t0, S
⋃

Sk) − Ṽ P (x0, T–t0, S),
for all S ⊆ N\Sk, then

∑
i∈Sk

wi(x0, T–t0, V P , n, P ) =
∑
i∈Sk

wi(x0, T–t0, Ṽ P , n, P )

Intra-coalitional balanced contributions (IBC). Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN (x0, T–t0, P ), for
all i, j ∈ Sk ∈ P with i ̸= j,

wi(x0, T–t0, V P , n, P )− wi(x0, T–t0, V P , N\j, PN\j)

= wj(x0, T–t0, V P , n, P )− wj(x0, T–t0, V P , N\i, PN\i)
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where PN\j = {Sl ∈ P : l ̸= k}
⋃

{Sk\j}.

Lemma 1. Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN(x0, T–t0, P ), for all i ∈ Sk with Sk ∈ P , a coalitional
value w satisfies IBC if and only if [15]

wi(x0, T–t0, V P , n, P ) = Shi(x0, T–t0, Sk, V
Sk)

where V Sk (x0, T–t0, S) =
∑
i∈S

wi

(
x0, T–t0, V P , (N\Sk)

⋃
S, P(N\Sk)

⋃
S

)
, for all S ⊆ Sk.

Theorem 1. Let Γ (x0, T–t0, V, n, P ) ∈ ΨN (x0, T–t0, P ), the coalitional value w in Γ (x0, T–t0, V, n, P )

is called the Owen value if and only if w satisfies EFF, IBC, CSY and CMA.

Proof. It can be known easily from the equation (9) that the Owen value satisfies the four axioms listed,
and the existence is established. The following proof is unique.

First, we prove that if the coalitional value w satisfies EFF, CSY and CMA, then

∑
i∈Sk

wi(x0, T–t0, V P , n, P ) = Shk(x0, T–t0,M, V M)

Given Γ (x0, T–t0, V P , n, P ) ∈ ΨN(x0, T–t0, P ), we know that

V P (x0, T–t0) =
∑

H∈2N\∅

cHu
H(x0, T–t0)

Then, for all H ⊆ N , with H ̸= ∅, let ΓM(x0, T–t0, V M ,M) us denote Hk = Sk

⋂
H , and MH =

{k ∈ M : Hk ̸= ∅}. The differential quotient game can also be expressed in terms of differential una-
nimity games as V M(x0, T–t0) =

∑
H∈2N\∅

cHu
MH (x0, T–t0) since, for all R ⊆ M

V M(x0, T–t0, R) = V P (x0, T–t0,
⋃
k∈R

Sk)

=
∑

H∈2N\∅

cHu
H(x0, T–t0,

⋃
k∈R

Sk) =
∑

H∈2N\∅

cHu
MH (x0, T–t0, R)

Thus, since the Shapley value satisfies the axiom of ADD, the proof is finished if we prove that

∑
i∈Sk

wi(x0, T–t0, V P , n, P ) = Shk(x0, T–t0,
∑

H∈2N\∅

cHu
MH ,M)

=
∑

H∈2N\∅:k∈MH

cH
|MH |

For any differential cooperative games with a coalition structure Γ (x0, T–t0, V P , n, P ), let us denote
I as the minimum number of unanimity games necessary to represent V P in terms of these differential
unanimity games. Also in both cases, the proof will be done by induction on the cardinality of I.
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If I = 0, then V P (x0, T–t0, S) = 0, for all S ⊆ N . According to EFF,

∑
i∈N

wi(x0, T–t0, V P , n, P ) =
∑
Sk∈P

∑
i∈Sk

wi(x0, T–t0, V P , n, P ) = 0

Since any pair of unions in this game are symmetric, by CSY we deduce that

∑
i∈Sk

wi(x0, T–t0, V P , n, P ) = Shk(x0, T–t0,M, V M) = 0,∀Sk ∈ P

Let us now assume that
∑
i∈Sk

wi(x0, T–t0, V P , n, P ) = Shk(x0, T–t0, V M ,M) for I ≤ q, where q is

a non-negative integer.

Next, consider the case I = q + 1, i.e., V P (x0, T–t0) =
∑q+1

l=1
cHl

uHl(x0, T–t0), and denote

H =

q+1⋂
l=1

H l. For each Sk ∈ P , we distinguish two possibilities:

Case 1. k /∈ MH , define the differential cooperative games with a coalition structure Γ (x0, T–t0,
V k, n, P ), where V k(x0, T–t0) =

∑
l∈{1,2, ..., q+1}:k∈M

Hl

cHluHl

(x0, T–t0). Obviously, I ≤ q. By induction

hypothesis

∑
i∈Sk

wi(x0, T–t0, V k, n, P ) =
∑

l∈{1,2, ..., q+1}:k∈M
Hl

cHl

|MHl |

For any S ⊆ N\Sk,

V k(x0, T–t0, S
⋃

Sk)− V k(x0, T–t0, S) =
∑

l∈{1,2, ..., q+1}:k∈M
Hl

cHluHl
(
x0, T–t0, S

⋃
Sk

)

= V P (x0, T–t0, S
⋃

Sk)− V P (x0, T–t0, S)

Thus, by CMA∑
i∈Sk

wi(x0, T–t0, V P , n, P ) =
∑
i∈Sk

wi(x0, T–t0, V k, n, P ) =
∑

l∈{1,2, ..., q+1}:k∈M
Hl

cHl

|MHl |

Case 2: k ∈ MH , By EFF∑
k∈MH

∑
i∈Sk

wi(x0, T–t0, V P , n, P ) = V P (x0, T–t0, N)−
∑

k/∈MH

∑
i∈Sk

wi(x0, T–t0, V P , n, P )

=

q+1∑
l=1

cHl −
q+1∑
l=1

(|MHl | − |MH |)
cHl

|MHl |
= |MH |

q+1∑
l=1

cHl

|MHl |

When |MH | ≥ 2, for all r ∈ MH , V P (x0, T–t0, S
⋃

Sk) = V P (x0, T–t0, S
⋃

Sr), and CSY implies

that
∑
i∈Sk

wi(x0, T–t0, V P , n, P ) =

q+1∑
l=1

cHl

|MHl |
.
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Thus, we have
∑
i∈Sk

wi(x0, T–t0, V P , n, P ) = Shk(x0, T–t0, V M ,M).

Because the coalitional value w satisfies IBC, by Lemma 1 we have that for all i ∈ Sk ∈ P ,

wi(x0, T–t0, V P , n, P ) = Shi(x0, T–t0, Sk, V
Sk)

where for all S ⊆ Sk

V Sk (x0, T–t0, S) =
∑
i∈S

wi

(
x0, T–t0, V P , (N\Sk)

⋃
S, P(N\Sk)

⋃
S

)
= Shk

(
x0, T–t0, V P (S),M

)
It means that w is uniquely determined and leads us to deduce that for all Γ (x0, T–t0, V P , n, P )

∈ ΨN(x0, T–t0, P ) and all i ∈ Sk ∈ P

wi(x0, T–t0, V P , n, P ) = Owi(x0, T–t0, V P , n, P )

□

It should be noted that, different from static cooperative games, due to the particularity of characteris-
tic functions for differential cooperative games (which change with time), the axioms given in this paper
are also based on the dynamic perspective.

5. Sub-game consistency

As described in the introduction, when the game proceeds along the "optimal" trajectory, we should
guarantee that the initially agreed optimality principle is still optimal for all players. Therefore, in this
section, we will consider the sub-game consistency of the Owen value.

From the definition of sub-game consistency for the differential cooperative games with a coalition
structure, it can be known that the optimal solution ξ needs to satisfy

ξ̄(t)⊕ C(x∗(t), T − t, V P , n, P ) ⊆ C(x0, T–t0, V P , n, P ), t ∈ [t0, T ]

Suppose that the set C(x0, T–t0, V P , n, P ) consists of the unique imputation: the Owen value. In
this case from sub-game consistency the strong sub-game consistency follows immediately. Condition
ξ̄(t)⊕ C(x∗(t), T − t, V P , n, P ) ⊆ C(x0, T–t0, V P , n, P ) can be rewritten in the form

Ow(x0, T–t0, V P , n, P ) =

t∫
t0

β(τ)dτ +Ow(x∗(t), T − t, V P , n, P )

(here Ow(x∗(t), T−t, V P , n, P ) represents the Owen value for the sub-game Γ (x∗(t), T−t, V P , n, P )),
which give us the expression for β(t)

β(t) = −Ow′(x∗(t), T − t, V P , n, P )
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If we suppose the differentiability of V P (x∗(t), T − t, S), t ∈ [t0, T ] along x∗(t), then

βi(t) = −Ow′
i(x

∗(t), T − t, V P , n, P )

= −
∑
R⊆P
k/∈R

∑
i∈S⊆Sk

|R|!(|M | − |R| − 1)!

|M |!
(|S| − 1)!(|Sk| − |S|)!

|Sk|!

×

[
(V P )

′
(x∗(t), T − t,

⋃
l∈R

Sl

⋃
S)− (V P )′(x∗(t), T − t,

⋃
l∈R

Sl

⋃
(S\i))

]

The above expression shows that condition βi(t) ≥ 0, i ∈ {1, 2, . . . , n} may not take place, since the
differences in brackets may take negative values. Thus βi(t) may not be an IDP, which means that the
Owen value for characteristic function V P (x∗(t), T − t, S), t ∈ [t0, T ] may be not sub-game consistent.
To this end, we construct a new characteristic function V̄ P (x0, T–t0, S), S ⊆ N by the formula

V̄ P (x0, T–t0, S) = −
T∫

t0

V P (x∗(t), T − t, S)
(V P )′(x∗(t), T − t, N)

V P (x∗(t), T − t, N)
dt

In the same way, for t ∈ [t0, T ]

V̄ P (x∗(t), T − t, S) = −
T∫
t

V P (x∗(t), T − t, S)
(V P )′(x∗(t), T − t, N)

V P (x∗(t), T − t, N)
dt (10)

We can find easily that the characteristic function V̄ P (x0, T–t0, S), S ⊆ N is superadditive for the
superadditivity of V P (x0, T–t0, S), S ⊆ N , which is proofed in Theorem 1.

Theorem 2. Let Γ(x0, T–t0, V P , n, P ) ∈ ΨN(x0, T–t0, P), the characteristic function V̄ P (x0, T–t0, S),
S ⊆ N defined by equation (10) is superadditive for Γ (x0, T–t0, V P , n, P ).

Proof.

V̄ P (x0, T–t0, S1

⋃
S2) = −

T∫
t0

V P (x∗(t), T − t, S1

⋃
S2)

(V P )′(x∗(t), T − t, N)

V P (x∗(t), T − t, N)
dt

≥ −
T∫

t0

V P (x∗(t), T − t, S1)
(V P )′(x∗(t), T − t, N)

V P (x∗(t), T − t, N)
dt

−
T∫

t0

V P (x∗(t), T − t, S2)
(V P )′(x∗(t), T − t, N)

V P (x∗(t), T − t, N)
dt

= V̄ P (x0, T–t0, S1) + V̄ P (x0, T–t0, S2)

for any S1 ⊂ N , S2 ⊂ N , S1

⋂
S2 = ∅. □
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Theorem 3. Let Γ (x0, T–t0, V P , n, P ) ∈ ΨN(x0, T–t0, P ), the Owen value defined for the "refined"
characteristic function V̄ P (x0, T–t0, S), S ⊆ N is sub-game consistent for Γ (x0, T–t0, V P , n, P ).

Proof. For any ξ(t) ∈ C(x∗(t), T − t, V P , n, P ), define the IDP β(t), t ∈ [t0, T ] by the formula

βi(t) =

ξi(t)
∑

Sk∈P

∑
i∈Sk

(gi[t, x∗(t), u∗
1(t), u

∗
2(t), . . . , u

∗
n(t)] + qi(x∗(T ))

V P (x∗(t), T − t, N)

= −ξi(t)(V
P )′(x∗(t), T − t, N)

V P (x∗(t), T − t, N)
≥ 0

If the optimal principle C(x∗(t), T − t, V P , n, P ) consists of the unique imputation, the Owen value, i.e.,

C(x∗(t), T − t, V P , n, P ) = Ow(x∗(t), T − t, V P , n, P ) = ξ(t)

where

Owi(x
∗(t), T − t, V P , n, P ) =

∑
R⊆M
k/∈R

∑
i∈S⊆Sk

|R|!(|M | − |R| − 1)!

|M |!
(|S| − 1)!(|Sk| − |S|)!

|Sk|!

×

[
V P (x0, T–t0,

⋃
l∈R

Sl

⋃
S)− V P (x0, T–t0,

⋃
l∈R

Sl

⋃
(S\i))

]

the formula for βi(t) gives us

βi(t) = −ξi(t)(V
P )′(x∗(t), T − t, N)

V P (x∗(t), T − t, N)

= −
∑
R⊆M
k/∈R

∑
i∈S⊆Sk

|R|!(|M | − |R| − 1)!

|M |!
(|S| − 1)!(|Sk| − |S|)!

|Sk|!

×

[
V P (x∗(t), T − t,

⋃
l∈R

Sl

⋃
S)− V P (x∗(t), T − t,

⋃
l∈R

Sl

⋃
(S\i))

]
(V P )′(x∗(t), T − t, N)

V P (x∗(t), T − t, N)

= −
∑
R⊆M
k/∈R

∑
i∈S⊆Sk

|R|!(|M | − |R| − 1)!

|M |!
(|S| − 1)!(|Sk| − |S|)!

|Sk|!

×

[
V P (x∗(t), T − t,

⋃
l∈R

Sl

⋃
S)

(V P )′(x∗(t), T − t, N)

V P (x∗(t), T − t, N)

−V P (x∗(t), T − t,
⋃
l∈R

Sl

⋃
(S\i))(V

P )′(x∗(t), T − t, N)

V P (x∗(t), T − t, N)

]
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At the same time, we have

V̄ P (x∗(t), T − t, S) = −
T∫
t

V P (x∗(t), T − t, S)
(V P )′(x∗(t), T − t, N)

V P (x∗(t), T − t, N)
dt

The Owen value computed for this characteristic function V̄ P (x∗(t), T − t, S) in every sub-game
Γ (x∗(t), T − t, V P , n, P ), t ∈ [t0, T ] is equal to

Owi(x
∗(t), T − t, V P , n, P ) =

T∫
t

βi(t)dt

and trivially we have

Ow(x0, T–t0, V P , n, P ) =

t∫
t0

β(τ)dτ +Ow(x∗(t), T − t, V P , n, P )

which is equivalent to equation (7), i.e.,

Ow(x0, T–t0, V P , n, P ) = C(x0, T–t0, V P , n, P ) = ξ

T∫
t

βi(t)dt = ξ(t), Owi(x
∗(t), T − t, V P , n, P ) = C(x∗(t), T − t, V P , n, P )

which means the sub-game consistency of the Owen value for the refined characteristic function
V̄ P (x0, T–t0, S),⊆ N . The theorem is proved. □

In the case under consideration, the IDP βi(t) ≥ 0, i ∈ {1, 2, . . . , n} has a natural interpretation
as an Owen value in the instantaneous game (small game) with the characteristic function equal to
(V̄ P )′(x∗(t), T − t, S), S ⊂ N . At the same time, βi(t), ∀i ∈ {1, 2, . . . , n} divides the instantaneous
common payoff∑

Sk∈P

∑
i∈Sk

gi[t, x∗(t), u∗
1(t), u

∗
2(t), . . . , u

∗
n(t)] = −(V P )′(x∗(t), T − t, N)

proportional to the Owen value for the sub-game Γ (x∗(t), T − t, V P , n, P ) starting from x∗(t), and with
the duration T − t, and characteristic function V P (x∗(t), T − t, S). Thus the "refined" characteristic
function and the corresponding Owen value may be considered as differential optimality principles in
differential cooperative games [18]. It is easily seen that the Banzhaf–Owen index [7] will also be sub-
game consistent for the refined characteristic function V̄ P (x0, T–t0, S).

In differential cooperative games with a coalition structure, not only optimal imputation sets (core,
stable set), or imputations (Owen value, Banzhaf–Owen value) have to be found, but also the additional
imputation distribution procedures (IDP) β(t), to define the earnings of the players on the time interval
[t0, T ]. To follow the optimal trajectory x∗(t), the players must be sure that the future earnings on the time
interval [t, T ] remain optimal in the sense they were in the initial game Γ (x0, T–t0, V P , n, P ). This is
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the sub-game consistent condition. If we do not require β(t) ≥ 0, the sub-game consistency problem can
be easily solved, as it was in the case of the Owen value, by putting β(t) = −Ow′(x∗(t), T−t, V P , n, P ).
But negative β(t) does not have much sense, since no player would like to give back his earnings.

6. Application in environmental governance

In this section, we provide an application of differential cooperative games with a coalition structure
in environmental governance. Take the ecological economics model discussed by Petrosyan and Zac-
cour [23]. Denote n as the set of countries involved in the game of emission reduction. Emission of
player i ∈ {1, 2, . . . , n} = N at time t ∈ [0,+∞) is denoted as mi(t). Let x(t) denote the stock of
accumulated pollution by time t. The evolution of this stock is governed by the following differential
equation:

ẋ(t) =
∑
i∈N

mi(t)− δx(t), x(0) = x0 (11)

where δ denotes the natural rate of pollution absorption.
The emission reduction cost of country i ∈ {1, 2, . . . , n} equals

J i(m,x) =

∞∫
0

e−rt (Ci(mi(t)) +Di(x(t)))dt (12)

where m = {m1,m2, . . . , mn}, r is the common social discount rate, Ci(mi) denotes the emission reduc-
tion cost incurred by country i when limiting its emissions to level mi, and Di(x) denotes its damage cost.
We assume that e−rt {Ci(mi(t)) +Di(x(t))} ≥ 0, and both functions Ci(mi) and Di(x) are continuously
differentiable and convex, with C ′

i(mi) < 0, D′
i(x) > 0.

Let N = {1, 2, 3, 4}, and the coalition structure P = {{1, 2, 3} , {4}}. Thus, F (n, P ) = {∅, {4},
{1, 4}, {2, 4}{3, 4}, {1, 2, 3, 4}}. The emission and damage cost functions are as follows:

Ci(mi) =
γ

2
(mi − m̄i)

2, 0 ≤ mi ≤ m̄i, γ > 0, i ∈ {1, 2, 3, 4}

Di(x) = ηx(t), η > 0, i ∈ {1, 2, 3, 4}

From the definition of the game Γ (x0, T–t0, V P , n, P ), the emission reduction cost of the feasible
coalition S is

JS(m,x) =
∑
i∈S

J i(m,x) =
∑
i∈S

∞∫
0

e−rt
{γ
2
(mi − m̄i)

2 + ηx(t)
}

dt

However, we will not adopt the method of Definition 9 to construct the characteristic function in the
context of environmental problems. It is unlikely that if a subset of players forms a coalition to tackle an
environmental problem, then the remaining players would form an antagonistic anti-coalition. Therefore,
we still adopt the method in Petrosyan and Zaccour [23] to construct the characteristic function, which
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assumes that the remaining players stick to their feedback Nash strategies. Then we have the following
definition of the characteristic function:

V P (x0, T–t0, S) =


W (x0, t0, S), S ∈ F (n, P )

W (x0, t0, {i}), i ∈ N

0, S = ∅

(13)

where

W (x0, t0, {i}) = min
ui(t)

 T∫
t0

gi[t, x(t), u1(t), u2(t), . . . , un(t)]dt+ qi(x(T ))

 , i ∈ N

W (x0, t0, S) = min
uj(t)=ūj(t),j∈N\S

ui(t),i∈S

∑
i∈S

T∫
t0

gi[t, x(t), u1(t), u2(t), . . . , un(t)]dt+
∑
i∈S

qi(x(T ))


ūj(t), i ∈ N\S are the feedback Nash equilibrium optimal strategies of the players who belong to
coalition N\S.

Then, we can obtain the characteristic function of the differential cooperative game (11), (12) as
follows:

V P (x(t), T − t, S) =



sη

r(r + δ)

(
3∑

i=1

m̄i −
s2η

2γ(r + δ)
− (n− s)η

γ(r + δ)
+ rx∗(t)

)
, S ∈ F (n, P )

η

r(r + δ)

(
η

2γ(r + δ)
+

3∑
i=1

m̄i −
nη

γ(r + δ)
+ rx*(t)

)
, i ∈ N

0, S = ∅

where s = |S|,

x*(t) = e−rtx(0) +
1

δ

{(
3∑

i=1

m∗
i

)(
1− e−rt

)}

m∗
i = m̄i −

3η

γ(r + δ)
, i ∈ {1, 2, 3, 4}

The detailed calculation process can be referred to Petrosyan and Zaccour [23]. Therefore, the Owen
value can be obtained by the equation (9) as follows

Owi(x
∗(t), T − t, V P , n, P ) =

∑
R⊆M
k/∈R

∑
i∈S⊆Sk

|R|!(|M | − |R| − 1)!

|M |!
(|S| − 1)!(|Sk| − |S|)!

|Sk|!

×

(
V P (x∗(t), T − t,

⋃
l∈R

Sl

⋃
S)− V P (x∗(t), T − t,

⋃
l∈R

Sl

⋃
(S\i))

) (14)



270 J. Zhao and Z. Li

=
1

2

(
1

6
V P (1) +

1

3
(V P (1, 2)− V P (2)) +

1

3
(V P (1, 3)− v(3)) +

1

6
(V P (1, 2, 3)− V P (2, 3))

)
+

1

2

(
1

6
V P (1, 4) +

1

3

(
V P (1, 2, 4)− V P (2, 4)

)
+

1

3

(
V P (1, 3, 4)

−V P (3, 4)
)
+

1

6

(
V P (1, 2, 3, 4)− V P (2, 3, 4)

))

=
1

12
[V P (1, 2, 3, 4) + 4V P (1, 2, 3)− 3V P (1)]

=
4η

r(r + δ)

(
3∑

i=1

m̄i + rx∗(t)

)
− 29η2

6rγ(r + δ)2
, ∀i ∈ {1, 2, 3}

Ow4(x
∗(t), T − t, V P , n, P ) =

1

12

(
V P (1, 2, 3, 4)− 4V P (1, 2, 4) + 3V P (3)

)
=

4η

r(r + δ)

(( 3∑
i=1

m̄i + rx*(t)
))

− 7η2

rγ(r + δ)2

(15)

If we adopt the Shapley value, then

Shi(x
∗(t), T − t, V P , N)

=
∑

i∈S⊆N

|S|!(|N | − |S|)!
|N |!

[
V P (x∗(t), T − t, S)− V P (x∗(t), T − t, S\i)

]
=

6

24
v(1) +

4

24
(v(1, 2)− v(2) + v(1, 3)− v(3) + v(1, 4)− v(4))

+
6

24
(v(1, 2, 3)− v(2, 3) + v(1, 3, 4))

− v(3, 4) + v(1, 2, 4)− v(2, 4)) +
4

24
(v(1, 2, 3, 4)− v(2, 3, 4))

=
4η

r(r + δ)

(( 3∑
i=1

m̄i + rx*(t)
))

− 127η2

3γ(r + δ)2
, ∀i ∈ {1, 2, 3, 4}

By comparing the calculation results in this paper (Owen value) with the results calculated by using
the Shapley value, we can find that

Owi(x
∗(t), T − t, V P , n, P ) < Shi(x

∗(t), T − t, V, N), i = {1, 2, 3}

Ow4(x
∗(t), T − t, V P , n, P ) > Sh4(x

∗(t), T − t, V, N)

It shows that when countries 1, 2, and 3 cooperate to form a prior union before the game starts, environ-
mental governance costs are lower than without prior cooperation. However, the cost of environmental
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governance of country 4 is relatively higher, which is consistent with the practical significance. Although
this result is somehow expected, our approach permits us to compute the actual savings resulting from
prior cooperation. In addition, Γ (x0, T–t0, V P , n, P ) is a differential convex game [23], so the Owen
value belong to the core C(x0, T–t0, V P , n, P ). That is, players cannot make the management cost lower
than the Owen value through their own efforts. This means that all countries prefer to choose the Owen
value as the payoff distribution mechanism.

Next, we provide a time-dependent allocation over time of Owi(x0, T–t0, V P , n, P ). As natural
discount rate r is considered in the emission reduction model we studied, the IDP function β(t) is given
by

Owi(x0, T–t0, V P , n, P ) =

t∫
t0

e−rτβi(τ)dτ +Owi(x
∗(t), T − t, V P , n, P )

Straightforward calculations lead to

βi(t) = rOwi(x
∗(t), T − t, V P , n, P )−Owi

′(x∗(t), T − t, V P , n, P )

Substituting the Owen value (equations (14) and (15)) into the above equation leads to

βi(t) = ηx∗(t) +
29η2

6γ(r + δ)2
, i = {1, 2} , β3(t) = ηx∗(t) +

7η2

γ(r + δ)2

Obviously, βi(t) ≥ 0, i ∈ {1, 2, 3, 4}. Therefore, the Owen value calculated according to the char-
acteristic function defined by the equation (13) is sub-game consistent. So we don’t have to modify
the characteristic function by the equation (10). Obviously, the allocation mechanism depends on the
accumulated pollution and cost parameters as it should be expected.

7. Conclusion

This paper presents a new class of differential cooperative games in which players form prior unions to
increase their payoff, i.e., the differential cooperative games with a coalition structure. By defining its
characteristic function and calculating the specific expression of the Owen value, the method of calculat-
ing the income distribution of each player in this kind of game model is obtained. However, since the
Owen value cannot ensure IDP β(t) ≥ 0, we propose a "refinement" of the characteristic function based
on the idea of local optimality which is also a characteristic function. It is proved that the Owen value de-
fined for the "refined" characteristic function is sub-game consistent. The differential cooperative games
with a coalition structure extends the application of differential cooperative games to a wider spectrum
of real-life scenarios. For instance, the redistribution of interests among the countries for Brexit, the
cost distribution among the countries in environmental governance, the formation of coalitions in supply
chain management and the threat of nuclear war, etc, which can be solved by the model presented in this
paper. Therefore, the calculation results of this paper have important practical significance.

This is the first time that differential cooperative games with a coalition structure are formulated and
further research along this line is expected. We supposed that the player participates in the coalition
throughout the game, and once the coalition is formed, it will not change during the game. Well, in fact,
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in order to maximize their own interests, players may participate in different unions in the differential
cooperative games, which results in the change of the coalition structure. Therefore, further research on
the game is to allow the changes of coalition structure in differential cooperative games.
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