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Abstract

We study a queueing model with disasters, working breakdowns, balking, reneging, and vacations. This is a novel and
realistic queueing model that captures the complex dynamics and behaviors of an automatic manufacturing system (AMS)
with various uncertainties and disruptions. The system loses all customers when a disaster occurs and repairs start immediately.
New customers get slower service during breakdowns. We use matrix methods to find the system’s steady state along with
performance measures like the expected number of customers lost, the expected waiting time, and system reliability. We
also optimize the system parameters (system capacity, number of servers, service rates) to minimize the cost function using
a combined direct search method and quasi-Newton method. Our results can enhance the AMS’s performance, profit, and
customer satisfaction.
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1. Introduction

This paper focuses on the study of an unreliable machining system modeled as a continuous-time
M/M/c/N queueing model with single and multiple vacation policies, waiting servers, disasters, re-
pair, working breakdowns, reneging, and balking. Continuous-time queues have proven to be powerful
tools for analyzing the performance of various systems. Their broad range of applications and versatility
has made them a key area of research in fields such as computer science, communication systems, and
manufacturing [11, 12, 17, 26].

Disasters, also called queue flushing [31] or mass exodus [9] break down the server and clear the
system of all work. However, they have no effect when the system is empty. These models can be
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applied to computer networks or industrial systems that are vulnerable to virus infections or reset failures.
Extensive literature exists on this subject (e.g., [4, 14, 19, 20, 24, 32]).

Another aspect of queueing models with disasters is the possibility of working breakdowns. These
are situations where the service does not stop completely but slows down due to a server malfunction.
For example, a computer virus may reduce the system’s performance without shutting it down. Many
service sectors, such as transportation, telecommunications, and healthcare, encounter this problem when
a backup server takes over the main server until it is repaired. Kalidass ans Kastouri [21] pioneered
this concept in queueing systems, and [22] applied it to a M/G/1 queue with disasters and working
breakdown services. Later [3], they studied an M/G/1 preemptive priority retrial queue with the same
features. Recently, Kim ans Lee [13] explored state-dependent arrival and optional re-service in an
MX/G/1 queue with disasters and working breakdown service.

Vacation queues are an important class in which the server may take a break once the system gets
empty. These queues are widely studied in queueing theory, as they can be used to improve the efficiency
of many real-world systems, such as call centers, healthcare facilities, industry, and transportation. Some
of the early notable works on this topic were presented in [16, 28–30].

A significant amount of papers have been devoted to the study of customers’ impatience in different
contexts of vacation queueing models. Customers may balk, meaning they do not join the queue if it is
too long or for other reasons. They may also renege, meaning they leave the queue before being served
if they wait too long. These phenomena have been well discussed in the case of vacation, where the
server does not serve any customers during the vacation period (cf. [1, 2, 8, 15, 25, 27]) and in the
case of working vacation; the server acts at a slow rate of service during the vacation of the server (cf.
[5–7, 10, 18, 23, 33]).

This paper proposes a new M/M/c/N queueing model that incorporates various features and adap-
tations to capture the dynamics of real-world systems, such as multiple and single vacation policies,
disasters, working breakdowns, and impatience (balking and reneging). The queueing system has po-
tential applications in different industrial settings, such as manufacturing plants and assembly lines. It
combines several characteristics that have not been studied together in the literature. This makes the
model complex and challenging to analyze.

We employ the Q-matrix method, a powerful numerical technique for analyzing the steady-state be-
havior of Markov chains, to conduct the steady-state analysis of the model. We calculate the steady-state
probabilities and derive closed-form expressions for various performance measures of the queueing sys-
tem. It is worth pointing out that there are different techniques for solving mathematical problems, such
as analytical approaches that use probability-generating functions or maximum entropy approaches, and
matrix-analytic approaches that compute the stationary distribution of Markov chains. In our paper, we
use the Q-matrix method because it is suitable for complicated queueing problems that lack straight-
forward analytical solutions. This method simplifies the construction of system transition probability
matrices and expresses the steady-state probabilities as functions of specific state probabilities.

We also construct a cost model and formulate an optimization problem to determine the optimal operating
values of different system parameters such as the system capacity, the number of servers, and the service rates
during repair and regular busy periods, that minimize the total expected cost of the system. We use the direct
search method and the quasi-Newton method to solve the optimization problem.
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The remainder of the paper is organized as follows. Section 2 describes the queueing model. Section 3
represents the practical example of the proposed queueing model. Section 4 derives the steady-state
distribution of the queueing system. Section 5 determines different performance measures. Section 6, on
the other hand, develops a cost model and offers numerical results. In Section 7, we conclude the paper.

2. Mathematical description of the model

An M/M/c/N unreliable multi-server queueing system has been considered. Different assumptions
required for the formulation of the model are as:

• The system has c servers that provide service to incoming customers who arrive independently
according to Poisson processes with rate λ. The service times follow i.i.d. exponential distributions
with parameter 1µB and are independent of the arrivals. When a customer arrives and sees that one
of the c servers is free, he is immediately served according to the first-come-first-served (FCFS)
discipline. Otherwise, the customer has to wait for his turn to receive service.

• After serving all customers, the servers enter a waiting period before going on vacation. The waiting
period follows an exponential distribution with parameter ϖ. Once this period ends, the servers go on
vacation for a random duration following an exponential distribution with rate ϕ. The system operates
in two vacation modes: multiple vacation (MV) and single vacation (SV). In MV mode, if there are no
waiting customers at the end of the vacation period, another vacation period begins. Otherwise, the system
enters a service phase. On the other hand, in SV mode, when the vacation period ends, the servers switch
to the busy period and remain idle until a new arrival occurs. The Kronecker δ is given as:

δ =

{
1 for the single vacation model
0 for the multiple vacation model

• While the system is operational, there is a possibility of experiencing a catastrophic failure at any mo-
ment, resulting in the loss of all current jobs within the system. This catastrophic event is modeled as
a Poisson process with an occurrence rate of γ. If such a disaster occurs, the system promptly enters a
repair process to recover from the damage. The repair time of the server has an exponential distribution
with rate η.

• During the repair period, the main servers are replaced by the substitute ones which serve new failed
machines at a slow rate. The service times during this period are exponentially distributed with rate
µR, where µR < µB.

• Upon arrival, if a customer finds some servers working and others free, he is served immediately. How-
ever, during vacation, regular busy, or repair periods, customers have the option to join the queue with a
probability of θn or choose not to join (balk) with a probability of θ′n = 1−θn. Here, 0 ≤ θn+1 ≤ θn ≤ 1

holds for c ≤ n ≤ N − 1 in the case of repair and regular busy periods, and 1 ≤ n ≤ N − 1 during the
vacation period. It is important to note that θ0 = 1, . . . , θc−1 = 1; for repair and regular busy periods,
and θ0 = 1 for the vacation period. Additionally, it should be noted that θN = 0 for both cases. Then, in
the case of the vacation period, we can express the arrival rate as:

λn = θnλ, for 1 ≤ n ≤ N
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For the system in the down or regular operative mode, the arrival rate can be defined as:

λn =

{
λ, for n < c

θnλ, for c ≤ n ≤ N

• Upon arrival, if the servers are in the regular working or working breakdown period, the customer
activates an impatience timer, either TB or TR depending on the period. If the customer’s service is
not completed before the timer expires, the customer has the option to abandon the system. During
the vacation period, a new arrival activates its own timer, denoted as TV . Customers may choose
to give up if the service is unavailable before their impatience timer expires. The impatience times,
denoted as TV , TB, and TR are random variables that follow exponential distributions with rates
χV , χB, χR > 0, respectively. The customers’ timers are i.i.d. random variables and independent of
the number of waiting customers.

• Different stochastic processes involved in the system are supposed to be independent of each other.

3. Motivation and illustration
of the queueing model for an AMS

In this section, we motivate and illustrate the practical application of the proposed queueing model by
considering an Automatic Manufacturing System (AMS) as an example. An AMS consists of several
machines or workstations that process the arrival of jobs or products according to FCFS policy. These
machines can be modeled as servers in the queueing system, and the jobs or products can be modeled as
customers. The AMS is subject to various modes and customer behaviors that affect its performance and
cost.

One of the failure modes is a disaster, which may occur suddenly in the form of an electrical failure,
fire, cyber attack, or other event causing major damage to the production facility. Such a disaster results
in all jobs or products waiting or currently being processed in the system being lost. This is where our
queueing model comes into play. It models this disaster as a Poisson process, allowing to predict and plan
for such events. Then, it is necessary to develop a repair and recovery plan that minimizes the downtime
and loss of work-in-progress inventory. During the repair period following a disaster, new arrivals may
be served at a lower rate (working breakdown). Our model captures this through the use of substitute
servers, which serve new failed machines at a slow rate during the repair process. This ensures that
production continues as smoothly as possible, maintaining the efficiency of the system and avoiding the
loss of potential customers.

Another factor that affects the AMS is vacation periods, which may occur when the machines need
downtime for preventive maintenance, upgrades, or periodic breaks after completing all current jobs.
During vacations, the machines take a temporary leave from processing new jobs and return after a
random period. A vacation can be either single or multiple. When the servers go, simulatively, on break,
they leave the system temporarily and return after a random time. Before going on vacation, the servers
may wait for a while if there are no customers in the system. A vacation can have both positive and
negative effects on the AMS. On one hand, it can improve the performance of the servers. On the other
hand, it can increase the workload and waiting time of the remaining servers and customers. Therefore,
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it is essential to schedule vacations appropriately and balance their benefits and costs. Our queueing
model can help with this task by providing useful performance measures such as the expected number of
customers in the system during a break period, the expected waiting time of a customer during a break
period, and the expected number of impatient customers during a break period.

Customer behavior also affects the AMS. Customers may choose not to enter the system or leave the
system before being served due to various reasons. These behaviors are known as balking and reneging,
respectively. Balking occurs when a customers decides not to join the queue because he perceives it to
be too long or too slow. Reneging occurs when a customers abandons his place in the queue because he
becomes impatient or dissatisfied with their waiting time. Both balking and reneging can cause financial
losses for the AMS, as there may be costs associated with preparing the order or reserving the place in
the queue. Moreover, balking and reneging can reduce the demand and reputation of the AMS, as well
as the satisfaction and loyalty of the customers. Therefore, it is crucial to prevent or reduce balking and
reneging by improving the service quality and efficiency of the AMS, as well as the satisfaction and
loyalty of the customers.

N 3 2 1

µ

µ

µ

µ

· · · · · ·
...

Vacation

Repair facility

coming back from vacation
Going on vacation after the waiting

servers time is over

System requests repair after a
disaster has occurred

The system has been repaired

joining the queue

balking reneging

Exit

Figure 1. An AMS modeled as M/M/c/N queue with single and multiple vacations,
waiting servers, disasters, and working breakdowns

Therefore, it is well noted that our model can provide valuable insights and guidance for practitioners
and researchers who are interested in improving the performance and cost-effectiveness of such systems.
Figure 1 exemplifies the automated manufacturing system.

4. Derivation of the steady-state distribution

We formulate the process as a special quasi-birth-and-death (QBD) process. The state space of the
queueing model at time t is defined by {J(t), N(t); t ≥ 0}. J(t) denotes the server state at time t such
that

J(t) =


0, if the system is on vacation (V)
1, if the system is in a regular busy period
2, if the system is in a reparation period

and N(t) is the number of customers in the system at that time.
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Thus {J(t), N(t); t ≥ 0} is a bivariate Markov process, and the corresponding state space is

Ω =


(j, n) : j = 0, 1, 2, . . .

n = 0, 1, . . . , N


To study the steady-state behavior of the queueing system, let πj,n = lim

t→∞
P{J(t) = j;N(t) = n} be

the steady-state system probabilities of our system, where (j;n) ∈ Ω. Next, we depict the transition rate
diagram of the proposed queueing system (see Figure 2). For this, the following notion is needed:

ψ0, n = nχV , ψ1, n =

 n(µB + χB), 1 ≤ n ≤ c− 1

cµB + nχB, c ≤ n ≤ N

ψ2, n =

 n(µR + χR), 1 ≤ n ≤ c− 1

cµR + nχR, c ≤ n ≤ N

Then, we set the Chapman–Kolmogorov equations specifying the Markov model:

(λ+ δϕ)π0,0 = ϖπ1, 0 + χV π0,1, n = 0

(θ1λ+ ϕ+ χV )π0,1 = λπ0,0 + 2χV π0,2, n = 1

(θnλ+ ϕ+ nχV )π0, n = θn−1λπn−1,0 + (n+ 1)χV π0,n+1, 2 ≤ n ≤ N − 1

(ϕ+NχV )π0, n = θN−1λπ0,N−1, n = N

(λ+ϖ)π1, 0 = ηπ2,0 + χBπ1,1 + δϕπ0,0, n = 0

(λ+ γ + n(µB + χB))π1, n = λπ1,n−1 + (n+ 1)(µB + χB)π1,n+1 + ηπ2, n + ϕπ0, n, 1 ≤ n ≤ c− 1

(λθc + γ + n(µB + χB))π1, n = λπ1,n−1 + (cµB + (n+ 1)χB)π1,n+1 + ηπ2, n + ϕπ0, n, n = c

(λθn+γ+cµB+nχB)π1, n = θn−1λπ1,n−1+(cµB+(n+1)χB)π1,n+1+ηπ2, n+ϕπ0, n, c+1 ≤ n ≤ N−1

(γ + cµB +NχB)π1, n = θN−1λπ1,N−1 + ηπ2, n + ϕπ0, n, n = N

(λ+ η)π2,0 = γ
N∑

n=1

π1, n + (µR + χR)π2,1, n = 0

(λ+ η + n(µR + χR))π2, n = λπ2,n−1 + (n+ 1)(µR + χR)π2,n+1, 2 ≤ n ≤ c− 1

(λθc + η + n(µR + χR))π2, n = λπ2,n−1 + (cµR + (n+ 1)χR)π2,n+1, n = c

(λθc + η + (cµR + nχR))π2, n = θn−1λπ2,n−1 + (cµR + (n+ 1)χR)π2,n+1, c+ 1 ≤ n ≤ N − 1

(η + cµR +NχR)π2, n = θN−1λπ2,N−1, n = N

The normalizing condition is as:
N∑

n=0

π0, n +
N∑

n=0

π1, n +
N∑

n=0

π2, n = 1.
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The following notions are needed for the sequel of analysis:

αn =


−(λ+ δϕ), n = 0

−(θnλ+ ψ0, n + ϕ), 1 ≤ n ≤ N − 1

−(ψ0, n + ϕ), n = N

βn =



−(λ+ϖ), n = 0,

−(λ+ ψ1, n + γ), 1 ≤ n ≤ c− 1

−(θcλ+ ψ1, n + γ), n = c,

−(θnλ+ ψ1, n + γ), c+ 1 ≤ n ≤ N − 1

−(ψ1, n + γ), n = N,

and

εn =



−(λ+ η), n = 0,

−(λ+ ψ2, n + η), 1 ≤ n ≤ c− 1,

−(θcλ+ ψ2, n + η), n = c

−(θnλ+ ψ2, n + η), c+ 1 ≤ n ≤ N − 1

−(ψ2, n + η), n = N.

After having arranged the system’s states, we construct the infinitesimal generator matrix denoted by Q

Q =

 Λ1 Λ2 Λ3

Θ1 Θ2 Θ3

Ω1 Ω2 Ω3


with

Λ1 =



α0 λ0

ψ0,1 α1 λ1

ψ0,2 α2 λ2
. . . . . . . . .

ψ0,N−1 αN−1 λN−1

ψ0, n αN


N+1×N+1

Λ2 =


δϕ 0 . . . . . . 0

0 ϕ . . . . . . 0

0 0 . . . . . . 0
...

... 0

0 0 . . . . . . ϕ


N+1×N+1

,

Θ1 =


ϖ

0
. . .

0


N+1×N+1
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Θ2 =



β0 λ

ψ1,1 β1 λ

ψ1,2 β2 λ
. . . . . . . . .

ψ1,c−1 βc−1 λ

ψ1,c βc λc
. . . . . . . . .

ψ1,N−1 βN−1 λN−1

ψ1, n βN


N+1×N+1

Θ3 =


0 0 . . . . . . 0

γ 0 . . . . . . 0

γ 0
... 0

γ . . . . . . 0


N+1×N+1

Ω3 =



ε0 λ

ψ2,1 ε1 λ

ψ2,2 ε2 λ
. . . . . . . . .

ψ2,c−1 εc−1 λ

ψ2,c εc λc
. . . . . . . . .

ψ2,N−1 εN−1 λN−1

ψ2, n εN


N+1×N+1

and

Ω2 =

 η
. . .

η


N+1×N+1

The matrices Λ3 and Ω1 are zero matrices of order N +1×N +1. Next, we concentrate on the steady-
state distribution of the process {J(t), N(t), t ≥ 0}. Let Π be the steady-state probability vector of the
matrix Q, where Π = (Π0, Π1, Π2) such that Π0 = (π0,0, π0,1, . . . π0, n), Π1 = (π1, 0, π1,1, . . . π1, n),

Π2 = (π2,0, π2,1, . . . π2, n). The steady-state equations

ΠQ = 0 (1)
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must be verified by the vector Π and the normalisation condition:

Πe = 1 (2)

with 0 a zero row vector, e = (e1, e2, e3) is an (3N + 3) column vector with ones, and ej, j = 0, 1, 2 are
an (N+1) columns vectors.

Making use of equations (1) and (2) and the fact that Λ3 and Ω1 are zero matrices, we obtain

Π0Λ1 +Π1Θ1 = 0 (3)

Π0Λ2 +Π1Θ2 +Π2Ω2 = 0 (4)

Π1Θ3 +Π2Ω3 = 0 (5)

Π0e1 +Π1e2 +Π2e3 = 1 (6)

The matrices Λ2, Θ1 and Θ3 can be written as follows:

Λ2 =

(
δϕ O1

O2 ϕIN

)
, Θ1 =

(
ϖ O1

O2 O3

)
, Θ3 =

(
O4

γJN O3

)
whereOi, i = 1, 2, 3, 4 are zero matrices and IN an identity matrix, whereO1, O2, O3, O4 of order 1×N,
N × 1, N ×N, 1×N + 1, respectively, and JN is N-dimensional column vector with ones.

From equation (3), we get

Π0 = −Π1

(
ϖo

O5

)
= −π1, 0ϖo (7)

where O5 is an N ×N + 1 matrix and o = (o0, õ) such that õ = (o1, . . . , oN) is an N row vector of the
matrix Λ−1

1 .
From equation (5), we have

Π2 = −Π1Θ3Ω
−1
3 (8)

By replacing equation (7) and equation (8) into equation (4), we find −π1, 0ϖoΛ2 +Π1Θ̃ = 0, where
Θ̃ = (Θ2 − ηΘ3Ω

−1
3 ).

Therefore,

Π1 = π1, 0ϖΛ2oΘ̃
−1 =

 π1, 0ϖϕoΘ̃
−1, δ = 1

π1, 0ϖϕ ˙̃oΘ̃
−1, δ = 0

(9)

and

Π2 = −Π1γΩ̇
−1 =

 −π1, 0ϖϕoΥΘ̃−1, δ = 1

−π1, 0ϖϕ ˙̃oΥΘ̃−1, δ = 0
(10)

where ˙̃o = (0, o1, . . . , oN) and Υ = Θ3Ω
−1
3 .
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Finally, based on the above analysis, from (7), (9), and (10), we obtain the expressions for πj,n in
terms of π1, 0, for single and multiple vacation policies, then use normalization condition to derive this
latter. We summarize our results in the following theorem.

Theorem 1. For a finite source-multiserver Markovian queueing system with single and multiple vaca-
tion policies, waiting servers, disasters, working breakdowns, and impatience, the stationary probabilities
πj,n can be expressed as:

1. For single vacation policy (δ = 1)

πj,n =



−ϖonπ1, 0, j = 0, 0 ≤ n ≤ N

ϖϕ

N∑
i=0

oiθ̃inπ1, 0, j = 1, 0 ≤ n ≤ N

−ϖϕ
N∑
j=0

N∑
i=0

oiθ̃ijωjnπ1, 0, j = 2, 0 ≤ n ≤ N

where

π1, 0 =
(
−ϖ

N∑
n=0

on +ϖϕ

N∑
n=0

N∑
i=0

oiθ̃in −ϖϕ

N∑
n=0

N∑
j=0

N∑
i=0

oiθ̃ijωjn

)−1

2. For multiple vacation policy case (δ = 0)

πj,n =



−ϖonπ1, 0, j = 0, 0 ≤ n ≤ N,

ϖϕ

N∑
0=1

˙̃oiθ̃inπ1, 0, j = 1, 0 ≤ n ≤ N

−ϖϕ
N∑
j=0

N∑
i=0

˙̃oiθ̃ijωjnπ1, 0, j = 2, 0 ≤ n ≤ N

where

π1, 0 =
(
−ϖ

N∑
n=0

on +ϖϕ
N∑

n=1

N∑
i=0

˙̃oiθ̃in −ϖϕ
N∑

n=1

N∑
j=0

N∑
i=0

˙̃oiθ̃ijωjn

)−1

such that ωjn are the elements of the matrix Υ = Θ3Ω
−1
3 and θ̃ij are the elements of matrix Θ̃ =

(Θ2 − ηΘ3Ω
−1
3 ), o = (o0, õ), where õ = (o1, . . . , oN) is an N row vector of the matrix Λ−1

1 , and
˙̃o = (0, o1, . . . , oN)

Proof. The theorem has been proved in the above. □

5. Performance measures

In this section, based on the steady-state probabilities, we obtain different performance measures. The
results are presented as follows
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• The probability that the service is available

PB =



N∑
n=0

π1, n = ϖϕ

N∑
n=0

N∑
i=0

oiθ̃inπ1, 0, δ = 1

N∑
n=0

π1, n = ϖϕ

N∑
n=0

N∑
i=0

˙̃oiθ̃inπ1, 0, δ = 0

• The probability that the service is unavailable due to vacation

PV =
N∑

n=0

π0, n = −ϖ
N∑

n=0

onπ1, 0

• The probability that the service is under repair

PR =
N∑

n=0

π2, n =


−ϖϕ

(
N∑

n=0

N∑
j=0

N∑
i=0

oiθ̃ijωjn

)
π1, 0, δ = 1

−ϖϕ

(
N∑

n=0

N∑
j=0

N∑
i=0

˙̃oiθ̃ijωjn

)
π1, 0, δ = 0

• The mean system size

Ls =
N∑

n=1

n(π0, n + π1, n + π2, n)

=


−ϖ

(
N∑

n=1

non − ϕ
N∑

n=1

N∑
i=0

noiθ̃in + ϕ
N∑

n=1

N∑
j=1

N∑
i=0

noiθ̃ijωjn

)
π1, 0, δ = 1

−ϖ

(
N∑

n=1

non − ϕ
N∑

n=1

N∑
i=0

n ˙̃oiθ̃in + ϕ
N∑

n=1

N∑
j=0

N∑
i=0

n ˙̃oiθ̃ijωjn

)
π1, 0, δ = 0

• The effective arrival rate

λ̇ =
N∑

n=0

λn(π0, n + π1, n + π2, n)

• The mean waiting time of a customer in the system

Ws =
Ls

λ̇

• The average balking rate
Rb = λ− λ̇
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• The system reliability

Pre = 1− PR = 1−
N∑

n=0

π2, n =


1 +ϖϕ

(
N∑

n=0

N∑
j=0

N∑
i=0

oiθ̃ijωjn

)
π1, 0, δ = 1

1 +ϖϕ

(
N∑

n=0

N∑
j=0

N∑
i=0

˙̃oiθ̃ijωjn

)
π1, 0, δ = 0

• The average reneging rate

Rren =


−ϖ

(
χV

N∑
n=1

non − χBϕ

N∑
n=1

N∑
i=0

noiθ̃in + χRϕ
N∑

n=1

N∑
j=0

N∑
i=0

noiθ̃ijωjn

)
π1, 0, δ = 1

−ϖ

(
χV

N∑
n=1

non − χBϕ
N∑

n=1

N∑
i=0

n ˙̃oiθ̃in + χRϕ
N∑

n=1

N∑
j=0

N∑
i=0

n ˙̃oiθ̃ijωjn

)
π1, 0, δ = 0

• The mean number of customers served per unit time

Es = µB

(
c−1∑
n=1

nπ1, n + c
N∑
n=c

π1, n

)
+ µR

(
c−1∑
n=1

nπ2, n + c
N∑
n=c

π2, n

)

6. Optimization analysis

Now, we focus on the cost parameter optimization. We aim to find the values of the decision variables
(optimum system capacity, minimum number of servers, and optimum service rates during both repair
and regular busy periods) that minimize the objective function (the total expected cost of the system)
while satisfying the constraints. Combined with the above results, we then investigate the effects of
main system parameters on different performance measures given above as well as on the expected cost
function per unit time Tc and on the total expected profit per unit time of the system Tep that are given as:

Tc = cBPB + cV PV + cRPR + chE(Ls) + cl(Rren +Rb) + c× cf + c× (µBcs1 + µRcs2)

where
cB − cost per unit time when the system is in a normal busy period,
cV − cost per unit time when the system is in vacation period,
cR − cost per unit time when the system is under repair,
ch − holding cost per unit time when a customer enters the queue, and waits for service,
cs1 − cost per service per unit time in a normal busy period,
cs2 − cost per service per unit time in repair period,
cl − cost per service per unit time when a customer is lost,
cf − fixed purchase cost of the server per unit,, and

Tep = Tev − Tc
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Tev = R×Es denotes the total expected revenue per unit time of the system and R represents the revenue
earned by providing service to a customer.

The objective function (11) is complex and highly non-linear. In this case, it is beneficial to use the
direct search method and quasi-Newton method for finding good approximations to the optimal solution.
For the numerical analysis, we consider the different cost elements as: cV = $18, cB = $50, cR = $60,
ch = $18, cs1 = $1, cs2 = $1, cl = $18, cf = $1, and R = 50.

6.1. Direct search method

In this subsection, we aim to obtain the joint optimal values (c∗, N∗) by employing the direct search
method. If the function Tc(c,N) is convex (unimodal), a single relative minimum exists. In order to
get Tc(c∗, N∗), we have to prove that the Tc(c,N) is convex. We take different parameters as follows:
λ = 3, χV = 0.5, χB = 0.3, χR = 0.7, µR = 1, µB = 4, ϕ = 1.2, η = 0.5, γ = 0.2, ϖ = 0.5,

θ = 1− (n/N) and vary the system capacity (N) as well as the number of servers in the system (c). The
obtained numerical results have been presented in the following figures and tables.

Figure 3. The expected cost vs. c, N for SVP Figure 4. The expected cost vs. c, N for MVP

Figures 3 and 4 clearly show the convexity of the curves for both single and multiple vacation policies;
there exist certain values of the number of servers (c) and the system capacity (N) that minimize the total
expected cost function for the chosen set of model parameters. More precisely, from Table 1, we have
the combined optimal solution is (c∗, N∗) = (2, 7) with Tc = $88.2949, in single vacation policy, and
(c∗, N∗) = (2, 5) with Tc = $88.6103, in multiple vacation policy.

6.2. Quasi-Newton method

After determining the optimal values of c and N using the direct search method, we proceed to search
for the optimal service rates (µ∗

B,µ∗
R). This is achieved using the quasi-Newton method. Our focus then

shifts to examining the effects of different system parameters on optimization results.
Next, we conduct a sensitivity analysis. This analysis evaluates the impacts of various system param-

eters. These parameters include the arrival rate (λ), vacation (ϕ), waiting servers rate (ω), disaster rate
(γ), and repair rate (η). We also consider the reneging rates during vacation, busy, and repair periods,
represented by ξV , ξB, and ξR respectively. Additionally, we look at the non-balking probability (θn).
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Table 1. N/c for various Tc

N /c 1 2 3 4 5 6 7 8

SVP 1 90.1648 – – – – – – –
2 90.4144 88.7606 – – – – – –
3 91.0930 88.4810 91.9394 – – – – –
4 91.7545 88.3668 91.9066 97.1769 – – – –
5 92.3352 88.3182 91.8922 97.2018 103.0250 – – –
6 92.8344 88.2993 91.8862 97.2214 103.0509 109.0118 – –
7 93.2633 88.2949 91.8845 97.2372 103.0712 109.0322 115.0239 –
8 93.6337 88.2979 91.8849 97.2501 103.0874 109.0484 115.0399 121.0381

MVP 1 89.7226 – – – – – – –
2 90.3297 88.8882 – – – – – –
3 91.1546 88.6897 92.1756 – – – – –
4 91.9022 88.6248 92.1708 97.4343 – – – –
5 92.5414 88.6103 92.1756 97.4727 103.2904 – – –
6 93.0836 88.6167 92.1837 97.5023 103.3246 109.2835 – –
7 93.5456 88.6320 92.1927 97.5258 103.3513 109.3097 115.3009 –
8 93.9423 88.6508 92.2017 97.5449 103.3726 109.3306 115.3213 121.3195

Table 2. ϕ and λ vs. different performance measures and Tc
for χV = 0.5,χB = 0.3,χR = 0.7, η = 0.5, γ = 0.2,ϖ = 0.5

ϕ λ c∗ N∗ µ∗
B µ∗

R PV PB PR Ls Ws Rb Rren Pre Es Tc

SVP 1 3.5 2 4 6.5707 1.3195 0.1962 0.6862 0.1175 0.8085 0.2677 0.4804 0.3550 0.8824 4.0728 92.0711
4 2 4 6.9933 1.6311 0.1894 0.6872 0.1234 0.8566 0.2511 0.5883 0.3760 0.8766 4.6001 97.2001

4.5 2 4 7.4020 1.9396 0.1834 0.6881 0.1285 0.8987 0.2366 0.7009 0.3942 0.8715 5.1145 101.9905

1.5 3.5 2 10 6.9049 1.6298 0.1425 0.7346 0.1229 0.7833 0.2360 0.1813 0.3385 0.8771 4.5158 89.1947
4 2 7 7.4295 1.8682 0.1386 0.7341 0.1273 0.8058 0.2180 0.3038 0.3484 0.8727 5.0619 93.6769

4.5 2 6 7.9318 2.1329 0.1350 0.7336 0.1315 0.8325 0.2037 0.4134 0.3600 0.8685 5.6114 98.0306

2 3.5 2 13 7.1081 1.6889 0.1132 0.7628 0.1240 0.7168 0.2121 0.1202 0.3060 0.8760 4.6930 87.7859
4 2 9 7.6670 1.9484 0.1100 0.7614 0.1286 0.7468 0.1969 0.2081 0.3192 0.8714 5.2793 91.9320

4.5 2 7 8.2296 2.1929 0.1074 0.7603 0.1323 0.7686 0.1835 0.3105 0.3288 0.8677 5.8540 96.0738

MVP 1 3.5 2 4 6.3678 1.2905 0.2386 0.6457 0.1157 0.8699 0.2940 0.5413 0.3856 0.8843 3.8935 93.1785
4 2 4 6.7694 1.6092 0.2248 0.6532 0.1221 0.9141 0.2731 0.6527 0.4043 0.8779 4.4117 98.2658

4.5 2 4 7.1620 1.9237 0.2134 0.6589 0.1277 0.9527 0.2553 0.7683 0.4205 0.8723 4.9235 103.1658

1.5 3.5 2 8 6.8076 1.5410 0.1923 0.6880 0.1197 0.8361 0.2576 0.2539 0.3655 0.8803 4.3304 89.9404
4 2 7 7.2652 1.8421 0.1800 0.6943 0.1256 0.8726 0.2389 0.3468 0.3809 0.8744 4.8878 94.5163

4.5 2 6 7.7347 2.1122 0.1707 0.6991 0.1302 0.8943 0.2217 0.4653 0.3900 0.8698 5.4270 99.0260

2 3.5 2 12 7.0610 1.6350 0.1672 0.7118 0.1210 0.7798 0.2329 0.1518 0.3372 0.8790 4.5440 88.0928
4 2 8 7.5837 1.8809 0.1563 0.7177 0.1260 0.7996 0.2141 0.2652 0.3456 0.8740 5.1072 92.5729

4.5 2 7 8.0844 2.1661 0.1471 0.7222 0.1306 0.8276 0.1996 0.3538 0.3575 0.8694 5.6821 96.7991

The impacts of these parameters on different performance measures and Tc(c∗, N∗, µ∗
B, µ

∗
R) are con-

sidered. The numerical results of this analysis are provided in Tables 2–5. Furthermore, the impact of
these system parameters on Tep(c∗, N∗, µ∗

B, µ
∗
R) is illustrated in Figures 5–10. The numerical study is

presented for both SVP and MVP.
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Table 3. γ, ϖ, and η vs. different performance measures and Tc
for χV = 0.5,χB = 0.3,χR = 0.7, λ = 3,ϕ = 1.2

γ ϖ η c∗ N∗ µ∗
B µ∗

R PV PB PR Ls Ws Rb Rren Pre Es Tc

SVP 0.2 0.6 0.8 2 17 6.2955 0.2096 0.2093 0.7163 0.0744 0.8803 0.3050 0.1142 0.3806 0.9256 3.7719 83.8095
1 2 35 6.1974 0.0001 0.2101 0.7283 0.0616 0.9063 0.3080 0.0577 0.3842 0.9384 3.8184 82.5542

0.8 0.8 2 10 6.2265 0.0834 0.2557 0.6721 0.0721 0.9083 0.3250 0.2053 0.3969 0.9279 3.6018 84.3462
1 2 15 6.0834 0.0001 0.2559 0.6841 0.0600 0.9350 0.3271 0.1419 0.3999 0.9400 3.6523 83.1603

0.4 0.6 0.8 2 12 5.9993 1.3056 0.1930 0.6667 0.1404 0.8398 0.2945 0.1481 0.3718 0.8596 3.5953 86.3136
1 2 44 6.0669 0.8200 0.1974 0.6861 0.1165 0.9080 0.3073 0.0456 0.3978 0.8835 3.6570 84.9475

0.8 0.8 2 8 5.9284 1.2086 0.2364 0.6273 0.1363 0.8655 0.3130 0.2347 0.3863 0.8637 3.4395 86.8294
1 2 16 6.0019 0.7196 0.2416 0.6453 0.1131 0.9354 0.3262 0.1320 0.4135 0.8869 3.5003 85.5008

MVP 0.2 0.6 0.8 2 9 6.1993 0.0462 0.2718 0.6568 0.0714 0.9201 0.3325 0.2330 0.4033 0.9286 3.5451 84.5228
1 2 13 6.0446 0.0001 0.2715 0.6690 0.0595 0.9468 0.3342 0.1671 0.4061 0.9405 3.5978 83.3578

0.8 0.8 2 6 6.0559 0.0001 0.3242 0.6069 0.0689 0.9316 0.3528 0.3592 0.4110 0.9311 3.3392 85.0607
1 2 8 5.9007 0.0001 0.3233 0.6191 0.0576 0.9653 0.3551 0.2814 0.4174 0.9424 3.3996 83.9861

0.4 0.6 0.8 2 7 5.9024 1.1697 0.2519 0.6133 0.1348 0.8707 0.3191 0.2715 0.3896 0.8652 3.3808 87.0042
1 2 13 5.9774 0.6843 0.2568 0.6312 0.1119 0.9426 0.3325 0.1648 0.4179 0.8881 3.4448 85.6799

0.8 0.8 2 5 5.8095 1.0461 0.3023 0.5679 0.1298 0.8845 0.3394 0.3936 0.3989 0.8702 3.1894 87.5230
1 2 8 5.8880 0.5675 0.3074 0.5846 0.1079 0.9623 0.3536 0.2786 0.4304 0.8921 3.2578 86.2343

Table 4. χR, χB , and χV vs. different performance measures and Tc
for λ = 3, η = 0.5, γ = 0.2,ϕ = 1.2,ϖ = 0.5

χR χB χV c∗ N∗ µ∗
B µ∗

R PV PB PR Ls Ws Rb Rren Pre Es Tc

SVP 0.1 0.4 0.3 2 3 6.3288 1.2313 0.1810 0.7091 0.1098 0.6926 0.2707 0.4420 0.2152 0.8902 3.6733 86.7194
0.5 2 3 6.3080 1.2289 0.1813 0.7091 0.1096 0.6747 0.2619 0.4238 0.2499 0.8904 3.6547 86.6412

0.6 0.3 2 3 6.4353 1.1848 0.1847 0.7090 0.1063 0.6815 0.2659 0.4375 0.2766 0.8937 3.6057 87.5144
0.5 2 3 6.4134 1.1824 0.1849 0.7090 0.1061 0.6633 0.2570 0.4191 0.3118 0.8939 3.5869 87.4303

0.3 0.4 0.3 2 3 6.3817 1.1099 0.1817 0.7091 0.1092 0.6857 0.2674 0.4355 0.2396 0.8908 3.6576 86.7539
0.5 2 4 6.2940 1.2454 0.1801 0.7091 0.1108 0.7071 0.2661 0.3428 0.2913 0.8892 3.6831 86.5679

0.6 0.3 2 3 6.4879 1.0613 0.1853 0.7090 0.1057 0.6749 0.2628 0.4312 0.3003 0.8943 3.5904 87.5400
0.5 2 3 6.4658 1.0588 0.1856 0.7090 0.1055 0.6567 0.2538 0.4128 0.3355 0.8945 3.5715 87.4553

MVP 0.1 0.4 0.3 2 3 6.1713 1.1966 0.2346 0.6581 0.1073 0.7518 0.3020 0.5107 0.2329 0.8927 3.4993 87.2180
0.5 2 3 6.1319 1.1905 0.2390 0.6542 0.1068 0.7327 0.2921 0.4920 0.2801 0.8932 3.4617 87.1493

0.6 0.3 2 2 6.3540 0.8976 0.2443 0.6550 0.1007 0.6651 0.2823 0.6439 0.2667 0.8993 3.3380 88.0555
0.5 2 2 6.3175 0.8894 0.2496 0.6502 0.1002 0.6525 0.2749 0.6264 0.3092 0.8998 3.3012 88.0154

0.3 0.4 0.3 2 3 6.2240 1.0731 0.2355 0.6579 0.1066 0.7452 0.2986 0.5045 0.2571 0.8934 3.4833 87.2463
0.5 2 3 6.1845 1.0666 0.2400 0.6539 0.1061 0.7261 0.2888 0.4858 0.3044 0.8939 3.4456 87.1763

0.6 0.3 2 2 6.3994 0.7920 0.2450 0.6548 0.1002 0.6601 0.2793 0.6366 0.2882 0.8998 3.3250 88.0741
0.5 2 3 6.2854 1.0167 0.2446 0.6527 0.1026 0.7160 0.2844 0.4822 0.3650 0.8974 3.3773 87.9385

Table 5. θn vs. different performance measures, Tc, and Tep
for λ = 3, η = 0.5, γ = 0.2,ϕ = 1.2,ϖ = 0.5,χV = 0.5, χB = 0.3,χR = 0.7

c∗ N∗ µ∗
B µ∗

R PV PB PR Ls Ws Rb Rren Pre Es Tc Tep

SVP 1 1 9.1546 0.0001 0.2187 0.7080 0.0733 0.3751 0.1539 0.5626 0.1614 0.9267 6.4818 73.6724 250.4176
2 7 6.2488 1.1907 0.1766 0.7092 0.1142 0.7623 0.2741 0.2189 0.3325 0.8858 3.7517 86.0172 101.5661
2 5 6.2026 1.2486 0.1752 0.7093 0.1156 0.7862 0.2779 0.1706 0.3431 0.8844 3.7782 85.8523 103.0591

MVP 1 1 8.8091 0.0001 0.2984 0.6317 0.0698 0.4149 0.1745 0.6224 0.1825 0.9302 5.5651 72.9149 205.3381
2 5 6.1487 1.0532 0.2337 0.6563 0.1100 0.7957 0.2983 0.3325 0.3512 0.8900 3.5396 86.6557 90.3234
2 4 6.1121 1.1163 0.2309 0.6576 0.1115 0.8255 0.3026 0.2718 0.3646 0.8885 3.5775 86.4957 92.3810

For the 1st and 4th row of the table θn = 1/(n + 1), for the 2nd and 5th row θn = 1 – (n/N ), and for the 3rd and 6th
row θn = 1 – (n/N)2.
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Figure 5. Tep near (c∗, N∗, µ∗
B , µ

∗
R)

for δ = 1 and different values of ϕ and λ
Figure 6. Tep near (c∗, N∗, µ∗

B , µ
∗
R)

for δ = 0 and different values of ϕ and λ
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Figure 7. Tep near (c∗, N∗, µ∗
B , µ

∗
R)

for different values of ϖ, γ, and δ = 1
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Figure 8. Tep near (c∗, N∗, µ∗
B , µ

∗
R)

for different values of ϖ, γ, and δ = 0
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Figure 9. Tep near (c∗, N∗, µ∗
B , µ

∗
R)

for different values of χV ,χB , χR and δ = 1
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Figure 10. Tep near (c∗, N∗, µ∗
B , µ

∗
R)

for different values of χV ,χB ,χR and δ = 0

6.2.1. Discussion

The cost optimization analysis of the queueing model can help determine optimal values for the capacity,
number of servers, and service rates in the AMS to minimize overall costs. The optimized system capacityN∗

guides setting the number of machines/workstations in the production line to balance investment and inventory
holding costs. The optimal number of servers c∗ helps determine the server capacity that minimizes costs due
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to disruptions and customer abandonment. The optimized service rates µ∗B, µ
∗
R help define scheduling policies

for production and repair operations that maximize throughput while controlling labor expenses.
Taking into account various cost tradeoffs, the optimization framework identifies the ideal combina-

tion of capacity, staffing, and service rates for AMS to maintain high quality, throughput, and customer
satisfaction while keeping costs in control. The visualization of costs further helps illustrate the impact
of different decisions and failure dynamics on the bottom line. This connects the analytical model to tan-
gible planning, configuration, and control policies for real-world flexible manufacturing systems. From
the above results, Tables 2–5 and figures 5–10, the following impacts are observed:

• The total cost and the total profit increase whenever λ increases. Since the arrival rate is growing up,
there will be a high number of customers arriving in the system (Ls ↗). Thus, the total cost will be
increased along with the total profit. This is indeed the case as the higher number of jobs entering
the service unit will be placed and served resulting in the enhanced total profit.

• (If the vacation completion rate (ϕ) increases, the respective total expected cost (total expected
profit) decreases (increases). This is because an increase in the vacation completion rate leads to
a decrease in the server’s vacation time (PV ↘), and thus an increase in its availability to serve
customers (PB ↗). Therefore, (Es ↗). This in turn reduces the number of customers in the
system(Ls ↘), resulting in a decrease in Tc and in an increase in Tp. This is obvious, as the machines
are available for production and processing, the queueing time will be less and further generated
more profits from the system point of view.

• The waiting servers rate (ϖ) impacts the total cost by raising it as it increases: A decrease in
the waiting server rate can increase the waiting time for customers (Ws ↗), which can augment
customer impatience and a decreases in the product value. This in turn increases the total expected
cost and decreases the total expected profit.

• The increase of the failure rate (γ) means that fewer customers are being served, which can lead to
a decrease in the mean number of customers served (Es ↘). This leads to a decrease in revenue
and an increase in costs and a decrease in the total expected profit.

• Obviously, high repair rate (η) has a nice impact on the total expected cost function and total expected
profit. When the repair rate increases, it means that the failure can be quickly addressed and resolved.
This leads to less downtime which results in a reduction of the repair time (PR ↘) and an increase in
the station’s availability to serve customers (PB ↗). As a result, the system can serve more customers
and generate more revenue, which can increase the total expected profit. Additionally, a higher repair
rate can lead to lower maintenance costs, as regular maintenance can prevent failures and reduce the
need for repairs. This can also contribute to a decrease in the total expected cost function.
However, it is important to note that an excessively high repair rate can also lead to higher costs.
This is because maintaining a high repair rate may require expensive equipment or highly skilled
technicians. Moreover, there may be diminishing returns as the cost of increasing the repair rate
further may outweigh the benefits. Therefore, it is important to balance the repair rate with the costs
involved in order to optimize the total expected cost function and total expected profit.

• The impatience rates of customers (χV , χB, χR) have several negative impacts on the system’s per-
formance and profitability; abandoning the system can result in a decrease in the total number of
customers served and revenue generated, which can negatively impact the system’s profitability.
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• A higher non-balking probability (θn) indicates a higher willingness of customers to join the system,
which can increase the number of customers served and the revenue generated. This can positively
impact the optimal performance measures and increase the total expected profit.

• From the above observations it is important to note that the majority of the results agree with our
intuition while others are not so straightforward to interpret. For instance, we remark that when the
joining probability increases from θn = 1

n+1
to θn = 1− n

N
, the total expected profit decreases. This

contradicts our intuition, and it can be due to the chosen costs and parameters. It is well known that
higher join probability would normally increase profitability (more customers being served). But in
this case, perhaps the higher loads lead to disproportionately higher holding costs that outweigh the
gains.

• Further, the values of PV , Rren, Rb, Ls, Ws, Pre, Tc for single vacation are lower than those for
multiple vacation, and the values of PR, PB, Es, Tep for multiple vacation are lower than those for
single vacation.

Remark 1. The obtained results align with intuitive expectations—the single vacation model demon-
strates better performance measures versus the multiple vacation model.

7. Conclusion

We proposed a queueing model tailored to machining systems within automated manufacturing envi-
ronments. Our model integrates critical factors, including disasters, working breakdowns, single and
multiple vacations, waiting servers, and customer impatience (balking and reneging). Unlike existing
literature models that often isolate specific dynamics, our unified framework captures the interplay of
multiple uncertainties.

Our contributions extend beyond theory. By directly applying our queueing model to automated man-
ufacturing systems (AMS), production and quality managers gain practical insights. They can optimize
critical parameters such as system capacity, the number of servers, and service rates during disruptions to
maximize throughput while balancing costs. Moreover, our customer-centric design accounts for behav-
iors like impatience and service refusal, ensuring AMS facilities meet operational goals while enhancing
overall effectiveness.
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