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Abstract

The efficacy of machine learning algorithms significantly depends on the adequacy and relevance of features in the data set.
Hence, feature selection precedes the classification process. In this study, a hybrid feature selection approach, integrating
filter and wrapper methods was employed. This approach not only enhances classification accuracy, surpassing the results
achievable with filter methods alone, but also reduces processing time compared to exclusive reliance on wrapper methods.
Results indicate a general improvement in algorithm performance with the application of the hybrid feature selection approach.
The study utilized the Taiwanese Bankruptcy and Statlog (German Credit Data) datasets from the UCI Machine Learning
Repository. These datasets exhibit an unbalanced distribution, necessitating data preprocessing that considers this unbalance.
After acknowledging the datasets’ unbalanced nature, feature selection and subsequent classification processes were executed.
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1. Introduction

Blaise Pascal and Gottfried Wilhelm Leibniz, in the seventeenth century, developed machines that could
mimic human addition and subtraction, marking the historical beginnings of machine learning. Arthur
Samuel of IBM introduced the term machine learning in modern history, demonstrating the ability to
program computers to learn how to play checkers. Rosenblatt followed this by developing the perceptron
as one of the neural network architectures in 1958. However, Minsky’s observation that the percep-
tron’s classification ability was only applicable to linearly separable problems led to a decline in initial
intense interest in the perceptron. Werbos achieved a breakthrough in 1975 with the development of the
multilayer perceptron (MLP) [39]. Quinlan developed decision trees in 1986, while Cortes and Vapnik
developed support vector machines [35]. Subsequently, researchers proposed ensemble machine learn-
ing algorithms that combine multiple algorithms, such as Adaboost and random forests [3, 31]. More
recently, distributed multilayer learning algorithms have emerged under the concept of deep learning.
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Machine learning can be used to solve classification, regression, and clustering problems. In this
study, the classification problem is discussed. In classification problems, a model is created using data
whose classes are known (training data), and then this model is used to classify samples whose classes are
unknown and have not been encountered by the system before (test data). As examples of classification
problems, these might include determining whether an email is spam, determining whether a tumor is
malignant, or identifying the image of an animal as a cat, dog, or another animal.

Most data sets contain relevant, irrelevant, or redundant features (attributes). Feature selection is
a process aimed at extracting a smaller, yet significant subset of M features from the original N features,
thereby effectively minimizing the feature space based on specific evaluation criteria. This process is
crucial for enhancing the efficiency of classification algorithms. By selecting relevant attributes, not only
does the speed of these algorithms increase, but data quality and the algorithms’ performance are also
enhanced, leading to more comprehensible results.

Feature selection techniques are broadly categorized into three groups: filter, wrapper, and embedded
methods [24]. Filter methods focus on identifying a relevant subset of features from the original set,
independent of the learning algorithms. Wrapper methods, in contrast, select features based on their pre-
dicted performance in specific learning algorithms [41]. In this research, the initial feature selection was
conducted using filter methods due to their computational speed. This was followed by the application
of wrapper methods to refine the feature selection further. The classification was then performed using
the optimized feature set obtained through wrapper methods.

Since the purpose of a standard classifier is to maximize overall accuracy, the classifier will learn the
class with a large number of data points better, and the result of this training will be a “low error rate for
the majority class” but a “higher error rate for the minority class”. In summary, the classifier will tend to
classify all examples as the majority class, providing high accuracy, but meanwhile, it will miss minority
examples. In unbalanced data sets, accuracy is high, and we think that we made a very good prediction.
This situation is called the accuracy paradox. This metric, which shows prediction accuracy, has been
shown to be meaningless and insufficient in unbalanced data sets. Recall (sensitivity), specificity, and
precision values become important metrics to measure the performance of the model.

When handling unbalanced datasets, one initial strategy is to modify class distributions through data
resampling. This can be achieved through techniques such as undersampling, oversampling, and various
sophisticated sampling methods. Undersampling involves reducing instances of the more prevalent class
to balance the class distributions, but a notable drawback is the potential loss of valuable data if the
dataset already has limited observations. On the other hand, oversampling increases the instances of the
minority class to achieve balance. However, this often involves replicating minority class samples, which
can lead to overfitting, especially in large datasets with significant unbalanced. Moreover, oversampling
can be computationally demanding. Beyond these methods, there are also advanced sampling techniques
employing heuristic strategies to achieve a more balanced distribution. An alternative approach in dealing
with unbalanced datasets involves selecting appropriate performance metrics.

In the study, the Taiwanese Bankruptcy and Statlog (German Credit Data) datasets from the UCI
Machine Learning Repository database were used. Data sets have an unbalanced distribution. Data
preprocessing was carried out, taking into account the unbalanced distribution of the dataset, and then
feature selection and classification were carried out. While chi-square, information gain (IG) [11], gain
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ratio (GR), symmetric uncertainty coefficient (SU) [24], Correlation Based Feature Selection (CFS) [11]
and RELIEF [15] methods are used in the filtering step for feature selection; recursive feature elimination
(RFE) [10], Genetic Algorithm (GA) [38], Simulated Annealing (SA) [19] and BORUTA [16] were
used as wrapper methods. The classification process was performed using k-nearest neighbors (KNN),
naive Bayes (NB) [28], CART (rpart) [4], bagged CART (TREEBAG) [2], J48 [27], C5.0, eXtreme
Gradient Boosting (XGBTREE) [6], linear discriminant analysis (LDA), Multi-Layer Perceptron (MLP)
[39], Multivariate Adaptive Regression Spline (EARTH) [8], random forest (RF) [3], rotation forest [29],
gradient boosting machine (GBM) [31], support vector machines with linear kernel (SVMLINEAR) [35],
support vector machines with polynomial kernel (SVMPOLY), support vector machines with radial basis
function kernel (SVMRADIAL), tree models from genetic algorithms (EVTREE) [9], and generalized
linear model (GLM) [23] algorithms, and their performances were compared using model performance
criteria.

As for the contributions of this article, firstly, it presents a comprehensive study by combining various
filter and wrapper feature selection methods. In general, this hybrid technique has received little attention
in the literature, due in part to the lack of a defined standard for selecting specific methods, necessitating
extensive experimentation that takes a long time. These methods may serve as foundational feature
selection approaches for future related research. Secondly, the study examines the impact of feature
selection on different classification algorithms. There is no such comprehensive study in the literature.
Thirdly, it observes the effects of different strategies employed to address unbalances in datasets on
classification algorithms. Different approaches have been used in the literature to balance the data set.
However, in the study, the performance of feature selection on the unbalanced data set can be seen.

In the study, by combining the methods in the literature in the feature selection step, both a fewer
number of features, that is, a less complex model, and better performance were obtained with the se-
quential feature selection approach. There is no such comprehensive model attempt in the literature. In
the classification step, a very comprehensive model trial was conducted. Additionally, the performance
of classification models after sequential feature selection was examined. It has been observed that the
performance of classification models increases after sequential feature selection.

2. Literature review of datasets

The literature review for the datasets used in the study is presented in Table 1. This table features only
studies that have achieved high performance. It includes the bibliographic references of the articles and
the most commonly used performance criteria: Accuracy (Acc), Sensitivity (also known as Recall or
True Positive Rate – Sen), and Specificity (True Negative Rate – Spe).

In the study of [7] focuses on explaining a bankruptcy prediction model using a counterfactual exam-
ple. Counterfactual-based explanation provides consumers with an alternate instance in which they can
obtain the desired output from the model. This work presents a genetic algorithm (GA)-based counter-
factual generation technique that considers feature importance alongside other essential parameters. In
this study, the prediction model was trained using a balanced bankruptcy dataset. Experiments were car-
ried out on several bankruptcy datasets, employing machine learning techniques such as ANN and SVM.
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Empirical experiments show that the suggested method outperforms a basic counterfactual generating
algorithm. For the Taiwanese Bankruptcy Prediction dataset, the SVM algorithm gave the best results.

Table 1. Literature review of data sets

Data sets Studies Acc [%] Sen [%] Spe [%]

Taiwanese Bankruptcy Prediction

Cho and Shin, 2023 87 85
Liang et al., 2015 83
Brenes et al., 2022 87 87 89
Khemka et al., 2023 88
Almeida, 2023 94 94
Youness et al., 2023 94

Statlog, German Credit Data

Lin et al., 2009 82
Xiao et al., 2016 75
Tsai, 2014 89
Tsai et al., 2014 76
Quan and Sun, 2024 77 95 79
Seera et al., 2024 77
Herrera-Malambo et al., 2023 83
Gicić and Ðonko, 2023 87 87
Emmanuel et al., 2024 83

Liang et al. [17] examined the effect of applying filter and wrapper-based feature selection methods on
financial distress prediction. Two bankruptcy and two credit data sets were used in the experiments. Lin-
ear discriminant analysis (LDA), t-test, logistic regression (LR) as filter-based feature selection methods.
Two methods were used for wrapper-based feature selection: genetic algorithm (GA) and particle swarm
optimization (PSO). Six classification techniques were used as classifiers: linear SVM, RBF SVM, k-NN,
Naïve Bayes, CART and MLP. After GA feature selection, the linear SVM classifier gives the highest
accuracy value.

In the study of Brenes et al. [5] different setups of optimization algorithms, activation functions,
number of neurons, and number of layers were considered for the Multilayer Perceptron (MLP) algorithm.
Various evaluation metrics such as average accuracy, specificity, sensitivity, and precision were used to
find the parameter setup that achieved the best results. The MLP algorithm with the best performance has
two hidden layers, Adam optimization algorithm, ReLU activation function, two hidden layers and the
number of cells in the neurons in layer 1 is 3; It is the algorithm with the number of cells in the neurons
in layer 2 is 4.

Khemka’s et al. [14] study was conducted on Taiwanese Bankruptcy Prediction data set. The applica-
tion of various machine learning techniques, including SVM, naive Bayes, Decision Trees, and Logistic
Regression is examined in this article. The main goal of this article is to create a reliable and accurate
bankruptcy prediction model that financial institutions may use to identify businesses that are most likely
to fall behind on their payments. In this study, SVM classifier gives the highest accuracy value.

Almeida [1] to examine the variations in performance for the prediction of bankruptcy, the author
investigates and applies the functioning of several neural network approaches, including the fundamental
design and the use of regularization strategies, such as L1, L2, Dropout, and Early Stopping. To compare
their effectiveness with neural networks, other machine learning algorithms including SVM, random
forest, and XGBoost have also been put into practice. The accuracy values obtained for the L1, L2,
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Dropout, and Early Stopping approaches, as well as the regular neural network model, were 82%, 49%,
89%, 90%, and 94%, respectively. The accuracy of the remaining models, SVM, RF, and XGBoost, was
87%, 86%, and 85%, respectively.

Lin et al. [18] studied the Statlog data set. In order to choose a subset of useful features and find ap-
propriate parameter values for decision trees (DT) and support vector machines (SVM) without lowering
the classification accuracy rate, this work uses particle swarm optimization (PSO). The outcomes of the
experiments shown that the suggested methods may achieve a better parameter setting, eliminate unnec-
essary features, and greatly increase classification accuracy. SVM with FS gives the highest accuracy
value.

Xiao et al. [40] propose an ensemble classification method for credit scoring based on supervised
clustering. The suggested method divides the data samples of each class into a predetermined number of
clusters using supervised clustering. A set of training subsets was then created by pairwise combining
clusters from various classes. For every training subset, a unique base classifier is constructed. The
outputs of these base classifiers are coupled with weighted voting for an example whose class label
needs to be predicted. In the tests, two popular techniques for ensemble classification—bagging and
RSM—were utilized as comparisons. In terms of classification performance, Bagging and RSM are
contrasted with the suggested ECSC. The binary ensemble classification algorithms Bagging-RS, RS-
Bagging, and DCE-CC were contrasted with the suggested ECSC. the highest accuracy value. The
algorithm with the best performance is RS-Bagging ECSC (Logit as classifier).

The goal of Tsai’s [33] research is to create a novel hybrid financial distress model by merging clas-
sifier ensembles with the clustering technique. Specifically, these four different types of bankruptcy
prediction models are developed using three classification techniques (logistic regression, multilayer-
perceptron (MLP) neural network, and decision trees) and two clustering techniques (self-organizing
maps, or SOMs, and k-means). Consequently, the type I and II errors and average prediction accuracy
of 21 individual models are compared. The greatest results were obtained by merging MLP classifier
ensembles with Self-Organizing Maps (SOMs) across five related datasets.

Tsai et al. [34] examined classification ensembles based on two popular combination approaches,
bagging and boosting, with three widely used classification algorithms, including multilayer perceptron
(MLP) neural networks, support vector machines (SVM), and decision trees (DT). compared as. Three
general datasets have been used to conduct the experiments. Additionally, the Wilcoxon signed-rank
test demonstrates that DT ensembles outperform other classifier ensembles in a significant way through
reinforcement. Furthermore, an additional investigation was carried out using the Taiwan bankruptcy
dataset on a real-world scenario; this further proved the superiority of DT communities over others.
While DT ensembles using both boosting and bagging performed second best for the German dataset,
their accuracy rate was somewhat lower than that of MLP ensembles using bagging.

Quan and Sun [26] conducted studies on Statlog data set. The factorization machine model is used in
the field of credit risk assessment in this article. Numerical experiments are carried out on four real-world
credit risk evaluation datasets to demonstrate the efficacy of the factorization machine credit risk assess-
ment model and compare its performance with other classification techniques like logical regression,
Support Vector Machine, k-nearest neighbors, and artificial neural network. The experimental findings
demonstrated that, in comparison to previous machine-learning models, the suggested factorization ma-
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chine credit risk assessment model achieves higher accuracy and is computationally more efficient on
real-world datasets. The algorithm with the best performance for Statlog dataset is factorization machine
(FM) model.

In the study presented, by combining the methods in the literature in the feature selection step, both
a fewer number of features, that is, a less complex model, and better performance were obtained with the
sequential feature selection approach. There is no such comprehensive model attempt in the literature. In
the classification step, a very comprehensive model trial was conducted. Additionally, the performance
of classification models after sequential feature selection was examined. It has been observed that the
performance of classification models increases after successive feature selections.

3. Method

In this study, the Taiwanese Bankruptcy and Statlog (German Credit Data) datasets from the UCI Machine
Learning Repository database were used. Considering the unbalanced distribution of these datasets,
both undersampling and oversampling techniques were employed. Following hybrid feature selection,
classification was performed with various machine learning algorithms, and their performances were
compared.

3.1. Feature selection

Most data sets contain relevant, irrelevant, or redundant attributes (variables). Feature selection can be
defined as a process that selects a minimum subset of M features from the original set of N features, thus
optimally reducing the feature space according to a given evaluation criterion. Feature selection plays
an important role in the performance of classification algorithms. Attribute selection; It speeds up the
algorithms, improves the data quality and therefore the performance of the algorithms, and increases the
understandability of the results of the algorithms. Feature selection algorithms; It is divided into three:
filtering, wrapper, and embedded approach [24]. Filter methods essentially identify a subset of features
from the original feature set, with evaluation criteria given independently of the learning algorithms.
Wrapper methods, on the other hand, select features with high prediction performance predicted by the
specified learning algorithms [41]. Since embedded methods perform feature selection as part of the
model training process; They perform classification and feature selection simultaneously.

The main goal of feature selection is to reduce the number of features in order to achieve a high
accuracy value without using all of the data we have. The goals of feature selection are diverse, the most
important of which are (a) to avoid overfitting and improve model performance; (b) to be able to obtain
a simple model that is faster to calculate with little or no degradation in prediction accuracy; and (c) to
select the most informative features by the class label.

A typical feature selection process consists of four basic steps: subset creation, subset evaluation,
stopping criteria, and result validation. Subset creation is a search procedure that produces subsets of
candidate features for evaluation based on a specific search strategy. We evaluate each subset of candi-
dates against a specific evaluation criterion and compare them to the previous best candidate. We repeat
the process of creating a subset and evaluating it until we meet a specific stopping criterion. Figure 1
shows the four basic steps of feature selection.
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Figure 1. Steps of the feature selection process

Filter methods. These methods are known as the oldest feature selection method based on analyz-
ing the effects of the features one by one on the explanation or verification power of the model. These
methods choose features based on measurements of statistical factors such as distance, information, de-
pendency, and consistency; they don’t use any classification algorithms [30]. Separate and independent
processes carry out feature selection and classification. These methods, working with similar logic, cal-
culate a value for each attribute using statistical functions, and then select the attribute with the highest
value among these calculated values. We present the selected features as input data for classification
algorithms and evaluate the classification process performance using these features [32]. Examples of
filtering methods include Fisher score, chi-square, information gain, gain ratio, F-score, symmetric un-
certainty coefficient, correlation-based feature selection, and RELEFF. Figure 2 displays the diagram of
the filtering feature selection method.

Figure 2. Steps of the filter feature selection process

Wrapper methods. Features that show the best prediction performance are selected using various
learning algorithms, where efficiency is measured based on the correct classification rate for feature selec-
tion. In other words, the wrapper method uses machine learning algorithms, and the classifier’s accuracy
rate is the measure of feature selection. In each iteration, a classification result is obtained for a specific
feature subset [30]. Examples of wrapper methods are sequential forward selection, sequential backward
selection, sequential forward floating selection, sequential backward floating selection, recursive feature
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elimination, Genetic Algorithm, Simulated Annealing, and BORUTA. Figure 3 shows a diagram of the
wrapper feature selection method.

Figure 3. Steps of the Wrapperfeature selection process

Embedded method. Since the model performs feature selection as a part of the training process,
it performs classification and feature selection simultaneously. In other words, the machine learning
algorithm makes feature selection within itself. Decision trees are one example of this method. The
decision tree algorithm inherently performs feature selection because, at each training step, branching
is performed by selecting the best feature according to various criteria to split the tree. The LASSO is
another example of an embedded method. If we talk about the positive aspects of embedded methods,
embedded methods select model-specific attributes. In this sense, embedded methods strike a balance
between computational cost and quality of results, resulting in a high success rate. The disadvantages of
embedded methods include their direct dependence on the learning algorithm.

3.2. Machine learning classifiers

k-Nearest Neighbor (kNN). This non-parametric method calculates the distances between each obser-
vation in the sample set and the desired class value, then selects the k number of observations with the
smallest distance.

naive Bayes (NB), This algorithm is a simple probabilistic classifier that calculates a set of probabili-
ties by counting the frequency and combinations of values in a given data set. The algorithm uses Bayes’
theorem and assumes that all variables are independent given the value of the class variable [25]. Let
X = {x1, x2, . . . , xn} be a data sample with unknown class membership, and assume that there are m

classes. We calculate the probabilities related to C1, C2, . . . , Cn class values using equation:

P (Ci|X) =
P (X|Ci)P (Ci)

P (X)
(1)

Since it is assumed that the xi values of the example are independent of each other, equation (2) can
be used:

P (X|Ci) =
n∏

k=1

P (Xk|Ci) (2)
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To classify unknown example X , select the largest of the probability values calculated above, and the
class is defined as the class to which the unknown example belongs, as shown in equation (3).

argmax
C

{P (Ci|X)} (3)

Support Vector Machine (SVM). The first purpose of the Support Vector Machine classifier is to
determine the line (hyperplane) that will separate two classes. In other words, it is to create an optimal
separating hyperplane between two classes to minimize generalization error and thus maximize margin.
An infinite number of hyper-planes can separate any two classes (as shown in Figure 4), and SVM
attempts to identify the hyperplane that minimizes the generalization error (i.e., the error for unseen test
patterns).

Figure 4. An infinite number of hyperplanes
can separate any two classes. Source: [13], p. 340.

Figure 5. Example of two classes shown
in blue and purple.Source: [13], p. 344
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Data sets may or may not be linearly separable. In cases where the data cannot be separated lin-
early (as shown in Figure 5), non-linear classifiers can be used instead of linear classifiers. When SVM
cannot distinguish data linearly, it employs kernel functions to analyze the data by relocating it to higher-
dimensional spaces. Choosing the right kernel function is crucial, as it can lead to varying performances
[22]. Equation (4a)–(4d) [12] provides frequently used kernel functions:

K(xi, xj) = (xT
i xj) (4a)

K(xi, xj) = (γxT
i xj + 1)d (4b)

K(xi, xj) = exp(−γ∥xi − xj∥2) (4c)

K(xi, xj) = tanh(γxT
i xj + r) (4d)

where (4a) is linear kernel function, (4b) – d degree polynomial kernel function, (4c) – radial basis kernel
function, and (4d) – sigmoid kernel function

Decision tree. In its simplest definition, decision tree analysis is a split and managed approach to
distribution and regression. Mitchell [20] defined decision tree development as a method used to estimate
discrete value target functions in which the learned function is represented by a decision tree. Decision
tree learning is one of the most widely used and practical methods for inductive inference [20]. Decision
sets can be used to isolate features and extract patterns that are important in large databases for predictive
programming. A decision tree is formed by iteratively splitting the feature space of the training setup.
The goal is to provide a set of decision rules that partition the feature space to provide an informative and
robust evolving model. Once a decision rule is selected, the feature space is divided into two separate
subspaces. The partitioning process is then recursively applied to each of the resulting subspaces until
all resulting subspaces contain instances of a single class, preserving a broken decision tree [21]. Create
a tree for decision tree leaves, and then the attribute values of the entered data whose output value is
unknown are tested in the decision tree. A path is followed from the root to the leaf node, and as it
progresses, a prediction is made for the class [20].

Ensemble learning methods. We introduce the concept of ensemble learning to enhance the sta-
bility and prediction accuracy of a single learning algorithm in classification, clustering, and regression
problems. Ensemble learning methods aim to create models that can predict better performance by re-
ducing the generalization error of basic learning algorithms and increasing the correct classification rate.
Ensemble learning modeling is a current field of machine learning research that produces a single final
prediction by combining a set of individually trained base models using a specific additive rule. The
fact that the base, or basic, models are accurate and diverse ensures that the collection results give more
accurate results than individual models. The ensemble model can provide more reliable and accurate
predictions than the traditional individual prediction model [36]. The ensemble learning method can be
divided into two categories: heterogeneous ensemble and homogeneous ensemble, according to the basic
model-building strategy. In the heterogeneous community model, basic models are created by applying
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the same training data to different learning algorithms or the same algorithms with different parameter
settings. This is an example of stacking. The homogeneous ensemble model creates basic models by
applying different training data, resampled from the original data to the same learning algorithm with
the same parameter settings. Examples of this are bagging, boosting, random forest, and random sub-
space [37]. So, the heterogeneous ensemble model lets different learning algorithms work well with
each other, and the homogeneous ensemble model improves their ability to make accurate predictions by
teaching a chosen learning algorithm with a variety of training data sets.

3.3. Software

The algorithms in this study were applied using packages compatible with RStudio version 1.4, based on
R 3.6.1. Different algorithms can be explored at Machine Learning CRAN Task View. In the R program,
feature selection was conducted using the FSelector, FSelectorRcpp, FSinR, caret, and Boruta fea-
ture selection packages. Machine learning algorithms were implemented using caret, naivebayes,
kernlab, MASS, RSNNS, evtree, rpart, C50, plyr, Rweka, Earth, randomForest, gbm, xgboost,
ipred, e1071, fastAdaboost, mboost, caTools, rotationForest, and caretEnsemble packages.
It is also possible to implement algorithms using different packages.

3.4. Datasets

The Taiwanese Bankruptcy and Statlog (German Credit Data) datasets from the UCI Machine Learning
Repository database were utilized in the study. The first dataset comprises 6819 samples with 96 fea-
tures in total, including 95 descriptive features and output variables (bankrupt and non-bankrupt firms).
Six of the attributes are integer variables; the dependent variable is also an integer; and the remaining
eighty-nine attributes are continuous. The class distribution includes two sample clusters: 220 bankrupt
companies and 6599 non-bankrupt companies. The second dataset contains 1000 samples with 21 at-
tributes in total, including 20 descriptive features and output variables (good and bad credit). There are
twelve categorical features, six integers, two binary variables, and a binary dependent variable. This
dataset’s class distribution includes two clusters: 700 good and 300 bad credit cases. Both datasets are
unbalanced. Detailed information about the datasets is provided in Table 2 and Figure 6.

Table 2. Information on datasets

Characteristic Taiwanese Bankruptcy Prediction1 Statlog (German Credit)2

Data set characteristics multivariate multivariate
Feature type integer categorical, integer
Associated tasks classification classification
Subject area business social science
Number of instances 6819 1000
Number of features 96 21

1 https://archive.ics.uci.edu/dataset/572/taiwanese+bankruptcy+prediction
2 https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data

Both datasets are unbalanced. Initially, the data was analyzed without considering this unbalanced
distribution. Subsequently, the performance of the algorithms was evaluated in both datasets through
undersampling and oversampling techniques.

https://cran.r-project.org/web/views/MachineLearning.html
https://archive.ics.uci.edu/dataset/572/taiwanese+bankruptcy+prediction
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
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Figure 6. Dataset target class distribution

3.5. Hybrid feature selection approach

In this study, a hybrid feature selection method was employed, combining the advantages of both filter and
wrapper methods. Initially, candidate features were selected from the original feature set using computation-
ally efficient filter methods. This candidate feature set was then further refined using more accurate wrapper
methods. After sequential feature selection, classification was performed using the final features selected.
While chi-square, information gain, gain ratio, symmetric uncertainty coefficient, Correlation Based Feature
Selection and RELIEF methods are used in the filtering step for feature selection; recursive feature elimination,
Genetic Algorithm, Simulated Annealing, and BORUTA were used as wrapper methods. The classification
process was performed using k-nearest neighbors, naive Bayes, CART, bagged CART, J48, C5.0, eXtreme
Gradient Boosting, linear discriminant analysis, Multi-Layer Perceptron, Multivariate Adaptive Regression
Spline, random forest, rotation forest, gradient boosting machine, support vector machines with linear kernel,
support vector machines with polynomial kernel, support vector machines with radial basis function kernel,
tree models from genetic algorithms, and generalized linear model algorithms, and their performances were
compared using model performance criteria. By integrating filter and wrapper methods, we can improve clas-
sification accuracy beyond what is achievable with filter methods alone, while also reducing processing time
compared to using only wrapper methods. The flow diagram of the proposed feature selection approach is
presented in Figure 7. Generally, this hybrid approach has not been widely explored in the literature, partly
because there is no established standard for choosing specific methods.

4. Results

Considering the unbalanced distribution of the datasets, both undersampling and oversampling tech-
niques were employed. Subsequently, hybrid feature selection was conducted (Figure 7), followed by
classification using various machine learning algorithms, with their performances subsequently com-
pared. In general, all algorithms have improved performance after sequential feature selection. Only
the algorithms that give the best results are given in the study. The following repository provide all the
algorithm results: https://github.com/ipekdk/unbalanced_article.

https://github.com/ipekdk/unbalanced_article
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In the study, for the filter step of feature selection, methods such as chi-square, information gain
(IG), gain ratio (GR), symmetric uncertainty coefficient (SU), correlation-based feature selection (CFS),
and RELIEF were utilized. In contrast, recursive feature elimination (RFE), genetic algorithm (GA),
simulated annealing (SA), and BORUTA served as the wrapper methods.

Figure 7. Hybrid feature selection approach

For the classification process, algorithms including k-nearest neighbors (KNN), naive Bayes (NB),
CART (rpart), bagged CART (TREEBAG), J48, C5.0, eXtreme Gradient Boosting (XGBTREE), lin-
ear discriminant analysis (LDA), multi-layer perceptron (MLP), multivariate adaptive regression spline
(EARTH), random forest (RF), rotation forest, gradient boosting machine (GBM), support vector ma-
chines with linear kernel (SVMLINEAR), support vector machines with polynomial kernel (SVMPoly),
support vector machines with radial basis function kernel (SVMRADIAL), tree models from genetic
algorithms (EVTREE), and generalized linear model (GLM) were employed.

4.1. Unbalanced dataset results

In this section, we present the results obtained without performing any balancing operations on the
datasets. For the Taiwan Bankruptcy Prediction dataset, we report the outcomes of algorithms that
achieved a certain threshold in both accuracy and specificity (the correct prediction rate of the lower
class). Similarly, in the Statlog (German Credit Data) dataset, we detail the results of algorithms that
surpassed a specified level of accuracy and sensitivity (the correct prediction rate of the lower class).

Upon examining Table 3, it is observed that while the algorithms for the Taiwanese dataset generally
show high accuracy, their specificity values are notably low. The Treebag algorithm emerges as the one
with the highest accuracy and specificity. In our analysis, specificity represents the algorithm’s capability
to accurately identify bankrupt businesses. This suggests a significant weakness in the model’s prediction
of the negative class label, highlighting that relying solely on accuracy is insufficient for unbalanced
datasets.

Similarly, in the German dataset, focusing only on accuracy proves inadequate. The sensitivity values,
indicating the model’s prediction accuracy for the positive class label (bad examples), are low. The
algorithm with the highest accuracy in this dataset is random forest (rf).
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Table 3. Unbalanced dataset results

Data Set Results Algorithm Acc Sen Spe

Taiwanese Bankruptcy
Prediction

Algorithms
with accuracy values
of 0.97 and greater

naive_bayes 0.97 1 0
svmRadial 0.97 1 0

mlp 0.97 1 0
evtree 0.97 1 0
rpart 0.97 0.99 0.09
C5.0 0.97 0.99 0.23
earth 0.97 0.99 0.18

adaboost 0.97 1 0.23
rf 0.97 0.99 0.20

treebag 0.97 0.99 0.25
glmboost 0.97 0.99 0

rotationForest 0.97 0.99 0.14
Algorithms with specificity
values of 0.50 and greater

glm 0.93 0.95 0.55
lda 0.86 0.86 0.93

Statlog
(German Credit Data)

Algorithms with
accuracy values
of 0.70 and greater

glm 0.74 0.43 0.87
svmLinear 0.73 0.42 0.86
svmPoly 0.72 0.35 0.88

svmRadial 0.73 0.33 0.89
lda 0.73 0.43 0.86

evtree 0.72 0.30 0.90
rpart 0.70 0.42 0.81
C5.0 0.72 0.47 0.83
j48 0.73 0.42 0.86

earth 0.73 0.37 0.88
rf 0.75 0.30 0.94

gbm 0.72 0.42 0.84
xgbtree 0.72 0.40 0.86
treebag 0.72 0.40 0.85

adaboost 0.74 0.32 0.92
glmboost 0.73 0.32 0.91

LogitBoost 0.70 0.40 0.83
rotationForest 0.73 0.42 0.86

Algorithms withsensitivity
values of 0.40 and greater

glm 0.74 0.43 0.87
nb 0.69 0.62 0.72

svmLinear 0.73 0.42 0.86
lda 0.73 0.43 0.86

rpart 0.70 0.42 0.81
C5.0 0.72 0.47 0.83
j48 0.73 0.42 0.86

gbm 0.72 0.42 0.84
xgbtree 0.72 0.40 0.86
treebag 0.72 0.40 0.85

LogitBoost 0.70 0.40 0.83
rotationForest 0.73 0.42 0.86
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Further analysis of the Taiwanese dataset shows that among machine learning algorithms with speci-
ficity values of 0.50 and above, linear discriminant analysis (lda) holds the highest specificity. In the
German dataset, when considering algorithms with specificity values of 0.40 and above, the naive Bayes
(nb) algorithm leads in specificity.

Regarding the number of variables chosen through sequential feature selection in the Taiwanese
dataset, the CFS + SA algorithm results in the least complexity by selecting the fewest variables. The
same trend is observed in the German dataset with the CFS + SA algorithm.

Upon examining Table 4, it is noted that in the Taiwanese dataset, the algorithm demonstrating the
highest accuracy and specificity values is the LogitBoost algorithm, following the RELIEF + RFE sequen-
tial feature selection. When focusing on algorithms with high specificity values within this unbalanced
dataset, naive Bayes stands out as the top performer post RELIEF + RFE sequential feature selection.

Table 4 presents the results of machine learning algorithms after sequential feature selection, consid-
ering only those algorithms that surpassed a certain performance threshold in both datasets.

Table 4. Results of machine learning algorithms after sequential feature selection for unbalanced data set

Data set Results Feature selection method Algorithm Acc Sen Spe

Taiwanese
Bankruptcy
Prediction

algorithm
with accuracy ≥ 0.97

RELIEF + RFE adaboost 0.97 1 0.09
RELIEF + RFE LogitBoost 0.97 0.99 0.36
RELIEF + GA adaboost 0.97 1 0.16
SU + GA rf 0.97 1 0.16
SU + BORUTA adaboost 0.97 1 0.09

algorithm
with high
specifity value

RELIEF + RFE naive_bayes 0.90 0.91 0.64
RELIEF + GA naive_bayes 0.94 0.95 0.57
RELIEF + BORUTA naive_bayes 0.95 0.96 0.45
RELIEF + RFE LogitBoost 0.97 0.99 0.36

Statlog
(German Credit Data)

algorithm
with accuracy ≥ 0.75

SU + RFE earth 76 49 91
SU + RFE rf 77 54 89
SU + RFE xgbtree 76 51 89
SU + GA xgbtree 76 50 90

algorithm with
sensivity ≥ 0.55

SU + RFE C5.0 69 56 76
SU + RFE treebag 74 56 83
GR + SA treebag 69 60 73

In the context of the German dataset, the algorithm achieving the highest accuracy is the random
forest (RF) algorithm, subsequent to SU + RFE sequential feature selection. In terms of sensitivity, the
best-performing algorithm is Treebag following the GR + SA sequential feature selection process.

4.2. Balanced (undersampling) Data Set Results

This section presents the results obtained after balancing the datasets through undersampling. The Tai-
wanese dataset was balanced to include 440 samples, comprising an equal number of 220 bankrupt and
220 non-bankrupt cases. Similarly, the German dataset was balanced to consist of 600 samples, with an
equal split of 300 good and 300 bad credit cases.

When examining the number of variables selected as a result of sequential feature selection in the
Taiwanese undersampled dataset, the CFS + SA algorithm stands out for selecting the fewest variables,
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thereby indicating the least complexity. In the German dataset, the CFS + SA, SU + SA, and chi-square
+ SA sequential feature selection algorithms are noted for having the fewest variables.

Figures 8 and 9 illustrate the variables most frequently selected by the feature selection methods for
both datasets, highlighting the most important variables identified in the analysis.

Figure 8. Most frequently selected variables with feature selection methods
for the balanced (undersampling) Taiwanese dataset

Figure 9. Most frequently selected variables with feature selection methods
for the balanced (undersampling) German dataset

The performance of various algorithms was evaluated in the balanced dataset after applying different
sequential feature selection methods.
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Table 5. Results of machine learning algorithms after sequential feature selection
for balanced Taiwanese Bankruptcy Prediction dataset (undersampling)

Algorithm Feature selection method Acc [%] Sen [%] Spe [%]

glm
no feature selection 82 86 77
RELIEF + GA 93 93 93

knn
no feature selection 63 66 60
CFS + SA 90 89 91

nb
no feature selection 83 100 66
SU + RFE 91 91 91

svmLinear
no feature selection 48 52 43
RELIEF + GA 92 89 95

svmPoly
no feature selection 61 57 66
CFS + BORUTA 91 93 89
RELIEF + GA 91 89 93

svmRadial
no feature selection 61 57 66
GR + GA 90 86 93

lda
no feature selection 86 86 86
RELIEF + GA 92 89 95

mlp

no feature selection 81 86 75
CFS + SA 88 75 100
chi-square + BORUTA 82 64 100
SU + SA 88 96 79

evtree
no feature selection 89 86 91
SU + BORUTA 91 89 93

rpart
no feature selection 85 91 80
IG + GA 86 93 80

C5.0 no feature selection 89 91 86
RELIEF + GA 91 89 93

j48
no feature selection 84 86 82
SU + RFE 91 91 91

earth
no feature selection 85 82 89
GR + GA 91 89 93

rf
no feature selection 80 77 82
GR + GA 92 89 95

gbm
no feature selection 78 77 80
GR + GA 91 86 95

xgbtree
no feature selection 77 75 80
GR + GA 92 89 95

treebag
no feature selection 82 84 80
GR + GA 92 89 95

adaboost
no feature selection 80 80 80
RELIEF + SA 92 91 93

glmboost
no feature selection 83 82 84
RELIEF + GA 91 89 93

LogitBoost
no feature selection 74 80 68
GR + GA 89 89 89
RELIEF + BORUTA 89 89 89

rotationForest
no feature selection 82 82 82
SU + RFE 91 87 95
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Table 6. Results of machine learning algorithms after sequential feature selection
for balanced German Credit Dataset (undersampling)

Algorithm Feature Selection Method Acc [%] Sen [%] Spe [%]

glm
no feature selection 74 77 72
SU + RFE 77 83 73
IG + BORUTA 75 67 83

knn
no feature selection 57 63 50
CFS + SA 69 80 58
RELIEF + GA 65 68 62

nb

no feature selection 73 82 65
SU + RFE 80 77 82
GR + GA 63 42 85
RELIEF + RFE 58 85 30

svmLinear
no feature selection 74 77 72
IG + BORUTA 76 83 71
SU + RFE 76 70 82

svmPoly
no feature selection
chi-square + RFE 77 68 85
SU + RFE 74 85 67

svmRadial
no feature selection 78 78 77
chi-square + RFE 77 70 83
IG + SA 68 80 55

lda
no feature selection 73 77 70
SU + RFE 77 83 73
chi-square + RFE 74 67 82

mlp
no feature selection 50 100 0
CFS + SA 69 80 58
CFS + GA 69 80 58

evtree

no feature selection 71 75 67
chi-square + RFE 73 73 72
IG + RFE 70 65 75
IG + SA 69 90 48

rpart

no feature selection 69 68 70
IG + BORUTA 73 78 67
GR + SA 63 43 82
SU + BORUTA 62 87 45

C5.0
no feature selection 73 80 67
IG + BORUTA 74 65 83
IG + SA 71 88 53

j48

no feature selection 75 83 67
IG + BORUTA 76 78 73
chi-square + RFE 75 75 75
IG + SA 69 90 48

earth

no feature selection 73 77 68
SU + RFE 74 83 68
IG + BORUTA 74 75 73
IG + SA 69 90 48
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Table 6. Results of machine learning algorithms after sequential feature selection
for balanced German Credit Dataset (undersampling) (continued)

Algorithm Feature Selection Method Acc (%) Sen (%) Spe (%)

rf
no feature selection 78 80 77
chi-square + RFE 74 70 78
SU + RFE 72 83 64

gbm
no feature selection 74 82 67
IG + BORUTA 76 73 78

xgbtree
no feature selection 76 77 75
IG + RFE 75 70 80
chi-square + BORUTA 73 82 65

treebag
no feature selection 77 80 73
IG + RFE 70 62 78
SU + RFE 72 81 66

adaboost
no feature selection 75 73 77
chi-square + BORUTA 76 82 70
chi-square + RFE 72 65 78

glmboost

no feature selection 73 77 68
IG + BORUTA 76 68 83
GR + BORUTA 75 77 73
SU + RFE 78 83 74

LogitBoost
no feature selection 67 58 75
chi-square + RFE 73 70 77
RELİEF + GA 57 83 30

rotationForest

no feature selection 73 77 70
IG + BORUTA 77 80 73
IG + RFE 70 58 82
SU + RFE 73 83 66

Tables 5 and 6 show the performance of each algorithm both without feature selection (labeled as
no feature selection) and with the sequential feature selection method that yielded the best results. In
general, it was observed that compared to scenarios with no feature selection, all sequential feature
selection methods enhanced the performance of the algorithms.

Specifically, for the Taiwanese dataset, the generalized linear model (GLM) achieved the best perfor-
mance following the RELIEF + GA sequential feature selection. In the case of the German dataset, the
sequential feature selection method SU + RFE, combined with the naive Bayes (NB) algorithm, produced
the most favorable outcomes.

4.3. Balanced (oversampling) dataset results

This section details the results obtained after balancing the datasets through oversampling. The Taiwanese
dataset was balanced to include 13198 samples, with an equal distribution of 6599 bankrupt and 6599
non-bankrupt cases. Similarly, the German dataset was balanced with a total of 1400 samples, comprising
700 good and 700 bad credit cases.

In the analysis of the Taiwanese dataset post-oversampling, the IG + RFE algorithm was noted for
selecting the fewest variables, thus indicating the least complexity. In the German dataset, the CFS
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+ SA sequential feature selection algorithm was found to select the fewest variables. Figures 10 and
11 illustrate the variables most frequently identified by the feature selection methods in both datasets,
thereby highlighting the most significant variables.

Figure 10. Most frequently selected variables with feature selection methods
for the balanced (oversampling) Taiwanese dataset

Figure 11. Most frequently selected variables with feature selection methods
for the balanced (oversampling) German dataset

The performance of various algorithms in the balanced dataset, post-oversampling, was evaluated
after applying different sequential feature selection methods. Tables 7 and 8 provide insights into the
performance of each algorithm both without feature selection (labelled as "no feature selection") and
with the sequential feature selection method that yielded the best outcomes. Generally, it was found
that, in comparison to scenarios with no feature selection, all sequential feature selection methods led to
improved algorithm performance.
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Table 7. Results of machine learning algorithms after sequential feature selection
for balanced Taiwanese bankruptcy prediction dataset (oversampling)

Algorithm Feature selection method Acc [%] Sen [%] Spe [%]

glm
no feature selection 74 77 72
SU + RFE 77 83 73

knn

no feature selection 93 87 100
RELIEF + SA 96 92 100
SU + RFE 96 92 100
SU+BORUTA 96 92 100

nb

no feature selection 72 51 94
IG+BORUTA 96 99 11
GR+BORUTA 96 98 27
CFS + GA 61 99 23

svmRadial

no feature selection 81 79 84
IG+BORUTA 97 100 0
GR + GA 97 100 0
GR + SA 97 100 0
GR+BORUTA 97 100 0
SU + RFE 94 91 97

mlp

no feature selection 59 78 40
IG+BORUTA 97 100 0
GR + GA 97 100 0
GR + SA 97 100 0
GR+BORUTA 97 100 0
GR + RFE 83 74 92

rpart

no feature selection 85 88 83
IG+BORUTA 97 100 10
GR + SA 97 100 10
GR+BORUTA 97 100 10
chi-square + SA 83 72 95

C5.0
no feature selection 99 99 100
chi-square + RFE 99 99 100
GR+BORUTA 97 100 20

j48
no feature selection 99 97 100
SU + GA 99 97 100
GR + SA 97 100 10

earth
no feature selection 89 88 90
chi-square+BORUTA 98 96 100
GR + SA 96 99 11

rf
no feature selection 100 99 100
RELİEF + GA 100 99 100
GR + SA 97 100 18

gbm
no feature selection 96 92 100
SU + RFE 95 92 99
GR+BORUTA 97 99 20

xgbtree
no feature selection 99 98 100
SU + GA 99 98 100
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Table 7. Results of machine learning algorithms after sequential feature selection
for balanced Taiwanese bankruptcy prediction dataset (oversampling) (continued)

treebag
no feature selection 99 97 100
SU + SA 99 99 100

adaboost
no feature selection 99 99 100
SU + SA 100 100 100

glmboost
no feature selection 87 86 89
IG + RFE 97 99 0

LogitBoost
no feature selection 93 89 97
GR + GA 96 99 18
IG+BORUTA 96 99 32

rotationForest
no feature selection 93 89 97
GR+BORUTA 97 99 20

Table 8. Results of machine learning algorithms after sequential feature selection
for balanced German Credit Dataset (oversampling)

Algorithm Feature selection method Acc [%] Sen [%] Spe [%]

glm
no feature selection 73 69 76
IG + RFE 75 72 78
RELIEF +BORUTA 71 76 67

knn
no feature selection 66 54 77
IG + SA 71 65 78
CFS + RFE 68 58 79

nb
no feature selection 75 62 87
GR + RFE 75 79 70
SU + SA 62 33 87

svmLinear

no feature selection 73 69 78
chi-square + RFE 73 71 75
CFS + GA 68 54 81
RELIEF + SA 65 75 55

svmPoly
no feature selection 84 77 90
GR + SA 67 77 56

svmRadial
no feature selection 78 75 80
RELIEF +BORUTA 78 78 78
CFS + GA 68 53 84

lda
no feature selection 72 68 76
IG + RFE 75 71 78
IG+BORUTA 72 72 72

mlp
no feature selection 50 0 100
CFS + GA 69 70 68

evtree
no feature selection 76 71 81
chi-square+BORUTA 75 68 82
chi-square + RFE 75 74 75

rpart
no feature selection 72 66 78
GR + SA 61 95 28
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Table 8. Results of machine learning algorithms after sequential feature selection
for balanced German Credit Dataset (oversampling) (continued)

Algorithm Feature selection method Acc [%] Sen [%] Spe [%]

C5.0

no feature selection 86 79 93
SU+BORUTA 90 86 93
chi-square + GA 89 85 94
RELIEF + GA 88 86 89

j48
no feature selection 82 76 89
SU+BORUTA 85 77 93
chi-square + RFE 83 71 95

earth

no feature selection 74 72 76
IG + RFE 75 71 79
CFS + RFE 68 54 81
RELIEF + GA 74 76 71

rf
no feature selection 88 81 94
chi-square + SA 90 86 94
IG+BORUTA 89 81 96

gbm
no feature selection 77 76 78
RELIEF +BORUTA 88 80 96
SU+BORUTA 84 81 86

xgbtree
no feature selection 85 78 93
SU+BORUTA 88 82 93
IG+BORUTA 87 79 95

treebag

no feature selection 87 80 94
SU+BORUTA 89 81 95
IG+BORUTA 87 77 96
IG + SA 87 77 96
RELIEF + RFE 87 83 91

adaboost

no feature selection 89 86 93
GR+BORUTA 90 86 93
SU+BORUTA 90 88 91
IG + SA 89 83 96
chi-square + RFE 90 88 92

glmboost
no feature selection 73 69 76
IG + RFE 74 70 79
RELIEF +BORUTA 71 74 69

LogitBoost

no feature selection 70 69 71
SU + GA 73 70 76
RELIEF +BORUTA 72 57 87
IG + RFE 71 77 66

rotationForest
no feature selection 78 74 82
CFS + RFE 66 48 85
chi-square + RFE 77 74 79

Specifically, in the Taiwanese dataset, the ADABOOST algorithm, following the SU + SA sequential
feature selection, achieved the most favorable results. In the German dataset, the algorithm that demon-
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strated both the fewest variables and the best performance was the random forest (RF), subsequent to
chi-square + SA sequential feature selection.

5. Discussion

5.1. The impact of feature selection on classifier performance

When selecting a model, preference is given to algorithms that showcase the highest performance values,
minimal complexity, and the shortest calculation time. A dataset with fewer variables typically exhibits
less complexity. Feature selection improves data quality by removing unnecessary, irrelevant, or noisy
data. This process not only mitigates the risk of overfitting but also enhances the overall performance
of the models. Post sequential feature selection, a noticeable improvement in the performance of the
algorithms was observed in both datasets.

5.2. Optimal combinations of feature selection methods
and prediction models

In both datasets, the Symmetric Uncertainty (SU) algorithm, employed as the filter method, demonstrated
high performance. As for wrapper methods, the Genetic Algorithm (GA) and Simulated Annealing (SA)
algorithms showed the best performance. Specifically, the SU + SA combination yielded the best results
in the Taiwanese dataset, whereas the chi-square + RFE and chi-square + SA combinations excelled in
the German dataset. Moreover, the correlation-based feature selection (CFS) as a filtering method and
SA as a wrapper method generally resulted in the fewest variables.

5.3. Evaluating the impact of feature selection
on model performance and complexity

In Table 9, the algorithms that yield the best results are presented. Upon reviewing these results, it
becomes evident that heuristic approaches, commonly utilized as wrapper methods in feature selection,
not only reduce the number of variables but also enhance performance. Sequential feature selection
effectively improves the performance of machine learning algorithms while simultaneously reducing both
the model’s complexity and calculation time. The algorithm that gives the best results on the Taiwanese
dataset is the AdaBoost algorithm after SU + SA sequential feature selection after oversampling. The
algorithms that give the best results in the Statlog data set are the AdaBoost algorithm after chi-square
+ RFE sequential feature selection after oversampling and the random forest (RF) algorithm after chi-
square + SA sequential feature selection.
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Table 9. Best resulting algorithms for datasets

Data Sets Algorithm Feature selection method Acc [%] Sen [%] Spe [%]

Taiwanese Bankruptcy
Prediction (oversampling)

ADABOOST SU + SA 100 100 100

Statlog (German
Credit data) (oversampling)

ADABOOST chi-square + RFE 90 88 92
RF chi-square + SA 90 86 94

6. Conclusion

This study demonstrates the efficacy of hybrid feature selection methods, combining both filter and wrap-
per approaches, in enhancing the performance of machine learning algorithms. Initially, filter methods
were employed for their computational efficiency to select features from the original dataset. Subse-
quently, wrapper methods further refined these features, leading to the final feature set used for classifica-
tion. Notably, sequential feature selection was instrumental in improving algorithm performance while
concurrently reducing model complexity and calculation time.

A key insight from this research is the inadequacy of relying solely on accuracy as a performance
metric in unbalanced datasets. This study highlights the importance of considering both dataset balanc-
ing techniques and alternative performance metrics, such as specificity and sensitivity, to attain a more
comprehensive evaluation of model performance. In datasets like the Taiwanese Bankruptcy and Statlog
(German Credit Data), where class distribution was initially unbalanced, applying undersampling and
oversampling significantly impacted the algorithms’ performance.

Additionally, the study makes a significant contribution by demonstrating that heuristic approaches,
particularly when used as wrapper methods in feature selection, effectively reduce the number of vari-
ables while enhancing overall performance. This was evident in the superior results achieved by algo-
rithms such as SU + SA, chi-square + RFE, and ADABOOST, following sequential feature selection in
both the Taiwanese and German datasets.

The research further establishes that in dealing with complex, real-world datasets, both the choice
of feature selection methods and the strategy for handling data unbalances are crucial for optimizing
machine learning models. These findings lay a foundation for future studies, which will aim to explore
various approaches to balance unbalanced datasets and experiment with different heuristic wrapper meth-
ods, offering potential for deeper insights and further advancements in the field of machine learning.

In conclusion, this study not only enhances the understanding of feature selection in machine learning
but also provides practical solutions for effectively managing unbalanced datasets, thereby contributing
significantly to both the theoretical and practical aspects of machine learning research. It is meaningless
and insufficient to evaluate the performance of the model by looking at the accuracy value in unbalanced
data sets. When dealing with unbalanced data sets, it is crucial to focus on balancing the data set and
selecting the appropriate metric. In future studies, it is aimed to try different approaches to balance the
unbalanced data set and also to try different heuristic approaches, such as the wrapper method.
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