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Abstract

A new bounded distribution called the unit Weibull loss distribution has been studied. The corresponding probability density
function plots reveal that it is suitable to analyze data that exhibit right skewness, left skewness, and approximately symmetric
and decreasing shapes. Furthermore, the corresponding hazard rate function plots indicate that it is adequate to fit data that
have J, bathtub, and modified bathtub hazard rate shapes. This makes the new distribution suitable for modeling data with
complex characteristics. Statistical properties such as the quantile, moments, and moment-generating function are determined.
Risk measures, including the value-at-risk, tail value-at-risk, and tail variance are also calculated. Furthermore, different prin-
ciples are derived for the computation of insurance premiums. The parameters of the distribution are estimated using different
methods, and their performance is assessed via Monte Carlo simulations. The accuracy of the estimates is thus empirically
demonstrated. A quantile regression model with responses following the unit distribution is developed. Applications of the
proposed distribution and its corresponding regression model to three insurance data sets are carried out, with their perfor-
mance compared with other models. The results show that they outperform the competitors. Thus, the new methodology can
serve as an alternative option to analyze insurance data.

Keywords: loss models, claims, risk measures, premium principles, regression models

1. Introduction

In several fields, accurate data analysis is very important for decision-making. For instance, in actuarial
science, the measurement of risk for management purposes and analyses for premium calculations are
crucial. Also in the health sciences, understanding the prevalence of a disease is primordial. A notable
example is the recent COVID-19 outbreak. Although many distributions have been developed and used,
new distributions must be created to model the increasingly complex data, the possibility of distinct
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features in data from different domains, and the inability of a single distribution to provide a universal
model (in the sense “for any type of data”).

In particular, several distributions have been developed with positive support or on the whole real
line. However, some of the data generated are defined on the unit interval only. These include per-
centages, ratios, rates, and proportions. Thus, researchers elaborated on several distributions defined on
bounded intervals, specifically unit intervals, for modeling such data. Popular unit distributions are the
beta and Kumaraswamy [23] distributions. Some other unit distributions include the Topp–Leone (TL)
distribution [37], log–Lindley distribution [13], unit Birnbaum–Saunders distribution [25], unit Weibull
(UW) distribution [26], unit Lindley (UL) distribution [27], log–extended exponential-geometric distri-
bution [15], unit Rayleigh (UR) distribution [7], unit gamma/Gompertz distribution [8], unit Burr XII
distribution [19], unit Chen distribution [18], unit folded normal distribution [20], unit Teissier distribu-
tion [22], unit exponentiated Fréchet distribution [1], Marshall-Olkin reduced Kies distribution [2], gener-
alized unit half-logistic geometric distribution [32], and power unit Burr XII distribution [39]. Others in-
clude the unit-improved second-degree Lindley distribution [5], unit logistic distribution [29], logit slash
distribution [17], unit exponential Pareto distribution [14], arctan power distribution [31], log-cosine-
power unit distribution [33], unit Mirra distribution [4], and unit log-log distribution [21]. Also, [34]
developed the unit ratio-extended Weibull family of distributions and derived several special distribu-
tions.

Figure 1. Diagram on the framework of the study
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In this study, a new unit distribution called the unit Weibull loss (UWL) distribution is elaborated
based on the Weibull loss distribution [3] with an emphasis on actuarial properties and applications. Our
motivation for the formulation of this distribution stems from the fact that it can exhibit different desirable
shapes, which makes it a competitive solution for analyzing data defined on the unit interval with the least
loss of information. In addition, the tractable nature of the corresponding quantile function makes it easier
to generate random observations from it and formulate a quantile regression model. Thus, the main aim
of this study is to provide a distribution on the unit interval that possesses desirable properties and can
also serve as an alternative to other unit distributions, especially for analyzing actuarial data.

The remainder of the article is organized as follows: Section 2 describes the UWL distribution. Some
of its statistical measures and properties, including the quantile function and moments, are given in
Section 3. Actuarial properties, including risk measures and premium principles, are determined in
Section 4. Section 5 presents seven methods for estimating the parameters of the distribution. Also,
simulation studies are performed to assess the performance of the estimates in this section. Section 6
focuses on a quantile regression model. Applications of the unit distribution and its regression model are
shown in Section 7. Section 8 gives the conclusion of the study. An illustration of the study framework
is offered in Figure 1 for a direct and schematic view.

2. Unit Weibull loss distribution

The UWL distribution is derived in this section using the Weibull loss (WL) distribution proposed by [3].
To comprehend its construction, we recall that a random variable X that follows the WL distribution has
the following cumulative distribution function (CDF):

FX(x) = 1− αe−βxλ

α + βxλ
, x ≥ 0, α > 0, β > 0 (1)

Now, let us consider the following transformation of X: Y =
X

X + 1
. Then the distribution of Y

corresponds to the UWL distribution. It is defined with the CDF given as

FY (y) = 1− αe−β( y
1−y )

λ

α + β

(
y

1− y

)λ
, y ∈ (0, 1), α > 0, β > 0 (2)

The probability density function (PDF) is obtained by differentiating Equation (2) with respect to y.
This is given as

fY (y) = αβλ

(
y

1− y

)λ−1(
1

1− y

)2

e−β( y
1−y )

λ

[
α + 1 + β

(
y

1− y

)λ
]

[
α + β

(
y

1− y

)λ
]2 , y ∈ (0, 1) (3)
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The corresponding survival and hazard rate functions are given, respectively, as

SY (y) =
αe−β( y

1−y )
λ

α + β

(
y

1− y

)λ
, y ∈ (0, 1) (4)

and

τY (y) = βλ

(
y

1− y

)λ−1(
1

1− y

)2

[
α + 1 + β

(
y

1− y

)λ
]

[
α + β

(
y

1− y

)λ
] , y ∈ (0, 1) (5)

To comprehend the modeling capabilities of the UWL distribution, let us perform a graphical analysis.
Figure 2 shows some shapes of the corresponding PDF and hazard rate function for some parameter

values. It can be observed that the PDF can have decreasing, left-skewed, right-skewed, and approx-
imately symmetric shapes. The hazard rate function exhibits J, bathtub, and modified bathtub shapes.
These observations validate the remarkable flexibility inherent in the UWL distribution.
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Figure 2. PDF plots (left) and hazard rate function plots (right)

3. Statistical properties

Some statistical properties of the UWL distribution are presented in this section. These include the
quantile function, ordinary moments, incomplete moments, and moment generating function.

3.1. Quantile function

The quantile function of the UWL distribution is useful for the generation of random numbers and some
characterization of the distribution. It is obtained as the inverse function of the CDF of the UWL distri-
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bution given in Equation (2). Let us determine this function, step by step. Equating the CDF of the UWL
distribution to u ∈ (0, 1) and simplifying yields

1− αe−β( y
1−y )

λ

α + β

(
y

1− y

)λ
= u

so that
αe−β( y

1−y )
λ

+ (1− u) log e−β( y
1−y )

λ

= α(1− u)

Letting z = e−β( y
1−y )

λ

, we obtain

αz + (1− u) log z = α(1− u)

Dividing by (1− u) gives(
α

1− u

)
z + log z = α thus log e(

α
1−u)z + log z = α

Simplifying further, we obtain
ze(

α
1−u)z = eα

Using the Lambert function W (x) defined as W (x)eW (x) = x, we have

z =

(
1− u

α

)
W

[(
α

1− u

)
eα
]

Noting that z = e−β( y
1−y)

λ

and making y the subject gives the quantile function of the UWL distribution as

QY (u) =

1 +

[
− 1

β
log

{(
1− u

α

)
W

[(
α

1− u

)
eα
]}]−1

λ

 e−1, u ∈ (0, 1) (6)

The skewness and kurtosis of the UWL distribution can be obtained via its quantile function. This can
be achieved using Moor’s kurtosis and Bowley’s skewness, respectively, indicated as

MK =

QY

(
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8

)
−QY
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)
+QY
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)
−QY
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BS =

QY
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We can evaluate them numerically or graphically. To this end, Figure 3 displays Moor’s kurtosis and
Bowley’s skewness plots for α = 0.5 and different values of β and λ. It is seen that the UWL distribution
can exhibit both right- and left-skewed shapes and different degrees of kurtosis.
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Figure 3. Skewness plot (left) and kurtosis plot (right)

3.2. Moments

The characterization of a distribution through the moments of random variables is a well-established
approach. In this subsection, we present the ordinary moment of the UWL distribution as a key element
in understanding its statistical properties.

3.2.1. Ordinary moment

For any positive integer r, the rth ordinary moment of a random variable Y with support on the unit
interval, PDF fY (y), and CDF FY (y), can be expressed as

µ′
r = E(Y r) =

1∫
0

yrfY (y)dy = −
1∫

0

yrd (1− FY (y)) = r

1∫
0

yr−1 (1− FY (y)) dy (7)

Thus, the rth ordinary moment associated with the UWL distribution is obtained by substituting its
survival function in Equation (4) into the definition in Equation (7). This gives

µ′
r = αr

1∫
0

yr−1 e−β( y
1−y )

λ

α + β

(
y

1− y

)λ
dy (8)

The integral in Equation (8) can be determined numerically using various software such as R, Python,
Mathematica, and Matlab.

The mean of Y , denoted by µ, is obtained by putting r = 1 into Equation (8). Various central moments,
defined as E[(Y −µ)r] can be obtained using the non-central moment. For r = 2, 3 and 4, they are given
as E[(Y−µ)2] = σ2 = µ′

2−µ2, E[(Y−µ)3] = µ′
3−3µ′

2µ+2µ3 and E[(Y−µ)4] = µ′
4−4µ′

3µ+6µ′
2µ

2−3µ4,
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respectively. These moments are useful for obtaining the coefficients of skewness (CS) and kurtosis
(CK) of the distribution, given, respectively, as

CS =
E[(Y − µ)3]

σ3
and CK =

E[(Y − µ)4]

σ4

As a numerical indicator, Table 1 presents the first four ordinary moments, the standard deviation
(SD), CS, and CK of the UWL distribution. It is noticed that the distribution can exhibit both right and
left skewness and various degrees of kurtosis.

Table 1. Moments, SD, CS and CK of the UWL distribution

µ′
r α = 0.03, β = 4.5, λ = 2.8 α = 1.1, β = 2.45, λ = 2.5 α = 1.5, β = 1.8, λ = 2.1

µ′
1 0.15245 0.31889 0.33215

µ′
2 0.02856 0.11206 0.12447

µ′
3 0.00633 0.04213 0.05047

µ′
4 0.00161 0.01668 0.02168

SD 0.07292 0.10183 0.11895
CS 0.90765 -0.20339 -0.15992
CK 3.97506 2.62565 2.50537

3.3. Moment generating function

The moment generating function (MGF) of Y is defined as MY (t) = E(etY ) and it can be presented
using Taylor series expansion as

MY (t) =
∞∑
r=0

tr

r!
µ′
r

where µ′
r is the associated rth ordinary moment. Substituting the rth ordinary moment associated with

the UWL distribution in Equation (8) into the definition gives

MY (t) =
∞∑
r=1

αtr

(r − 1)!

1∫
0

yr−1 e−β( y
1−y )

λ

α + β
(

y
1−y

)λdy (9)

provided it converges in the series sense.

4. Actuarial properties

In this section, several actuarial properties are derived with respect to the UWL distribution. These
properties include risk measures and premium principles. For each of these notions, the related general
formula is recalled by taking into account a random variable Y with PDF fY (y), CDF FY (y), and quantile
function QY (y).
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4.1. Risk measures

Risk measures are used to quantify risks. Among the most useful are the value-at-risk, tail value-at-risk,
and tail variance. These risk measures are presented in this section when the loss distribution follows the
UWL distribution.

4.1.1. Value-at-risk

Given a probability p, the value-at-risk (V aR) measures losses that will not be exceeded. V aR can be
defined as the quantile function of a distribution, that is, V aRp = QY (p). Thus, for the UWL distribution,
owing to Equation (6), the quantile function is defined as

Varp =

{
1 +

[
− 1

β
log

{(
1− p

α

)
W

[(
α

1− p

)
eα
]}]− 1

λ

}
e−1, p ∈ (0, 1) (10)

4.1.2. Tail value-at-risk

The tail value-at-risk (TV aR) measures losses above V aR. Given that the probability of losses being
less than or equal to V aR is p, then the TV aR measures the expected value of 1− p of the losses, which
is the worst case of the loss. The TV aR is therefore defined as

TV aR =
1

1− p

1∫
V aRp

yfY (y)dy (11)

Substituting the PDF of the UWL distribution in Equation (3) into Equation (11) gives

TV aR =
αβλ

1− p

1∫
V aRp

y

(
y

1− y

)λ−1(
1

1− y

)2

e−β( y
1−y )

λ

[
α + 1 + β

(
y

1− y

)λ
]

[
α + β

(
y

1− y

)λ
]2 dy (12)

4.1.3. Tail variance

The tail variance (TV ) measures the variability of losses beyond the V aR. This is very important for the
overall measure of the risk of a company. The TV is defined as

TV = E(Y 2 | Y > V aRp)− (TV aRp)
2 =

1

1− p

1∫
V aRp

y2fY (y)dy − (TV aRp)
2 (13)

Again, substituting the PDF of the UWL distribution in Equation (3) and TV aR in Equation (12) into
Equation (13) gives
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TV =
αβλ

1− p

1∫
V aRp

(
y

1− y

)λ−1(
y

1− y

)2

e−β( y
1−y )

λ

[
α + 1 + β

(
y

1− y

)λ
]

[
α + β

(
y

1− y

)λ
]2 dy

−


αβλ

1− p

1∫
V aRp

y

(
y

1− y

)λ−1(
1

1− y

)2

e−β( y
1−y )

λ

[
α + 1 + β

(
y

1− y

)λ
]

[
α + β

(
y

1− y

)λ
]2 dy


2

(14)

4.2. Premium principles

Premium principles are used to obtain premiums for insurance coverage for events, taking into consid-
eration the level of risk of the event. Several premium principles have been developed over the decades.
Some of them are presented in this subsection with a loss distribution following the UWL distribution.
In this subsection, let ρ denote the non-negative risk loading parameter.

4.2.1. Expected value principle

The expected value principle (EVP) is defined as

EVP = (1 + ρ)E(Y )

Therefore, substituting the expected value of the UWL distribution, obtained by letting r = 1 in Equation
(8), into the definition yields the EVP of the distribution as

EVP = (1 + ρ)α

1∫
0

e−β( y
1−y )

λ

α + β

(
y

1− y

)λ
dy

That is, the EVP defines the premium as being proportional to the expected value of the loss. When
ρ = 0, the simplest premium principle, known as the equivalence premium principle, is obtained.

4.2.2. Tail variance premium principle

The tail variance premium (TV P ) principle was developed to take into consideration tail losses. The
TV P was proposed by [12] and is defined as

TV P = TV aR + ρTV

In the context of the UWL distribution, TV aR and TV are given by equations (12) and (14), respectively.
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4.2.3. Exponential premium principle

The exponential principle (ExP) is obtained by solving for ExP in the equation u(w−ExP) = E(w−Y ),
where w represents the wealth of an individual and u(y) = −e−ρy is the exponential utility function.
Therefore, the ExP is obtained as

ExP =
1

ρ
MY (ρ),

where MY (ρ) is the MGF of Y . Substituting the MGF of the UWL distribution given in Equation (9)
into the definition gives

ExP =
α

ρ

∞∑
r=0

ρr

(r − 1)!

1∫
0

yr−1 e−β( y
1−y )

λ

α + β
(

y
1−y

)λdy.
4.2.4. Esscher premium principle

The Esscher principle (EsP) is defined as

EsP =
E(Y eρY )

MY (ρ)

where MY (ρ) is the MGF of Y . The EsP associated with the UWL distribution is specified as

EsP =

αβλ

1∫
0

eρY
(

y

1− y

)λ−1(
1

1− y

)2

e−β( y
1−y )

λ

[
α + 1 + β

(
y

1− y

)λ
]

[
α + β

(
y

1− y

)λ
]2 dy

∞∑
r=1

αρr

(r − 1)!

1∫
0

yr−1 e−β( y
1−y )

λ

α + β

(
y

1− y

)λ
dy

.

4.3. Numerical simulation of measures

This section presents a Monte Carlo simulation of the risk measures and premium principles. The follow-
ing process is used to carry out the simulation:

1. Using the quantile function of the UWL distribution given in Equation (6), generate a random
sample of size 100.

2. Estimate the parameters of the distribution using the maximum likelihood (ML) method.
3. Repeat steps 1 and 2 2000 times. Compute the risk measures V aR, TV aR, and TV and the premium

principles EV P , TV P , ExP , and EsP for each repetition.
4. Repeat steps 1 to 3 for the confidence levels p = (0.50, 0.55, 0.60, . . . , 0.999) for the risk measures

and risk loading ρ = (0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5) for the premium principles.
5. Repeat steps 1 to 4 for the three sets of parameter values: (α, β, λ) = (1.1, 0.8, 0.5), (α, β, λ)

= (1.5, 1.2, 0.8) and (α, β, λ) = (2.1, 1.8, 0.3).
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Figure 4 exposes the plots of the risk measures. It can be remarked that as the confidence level
increases, V aR and TV aR increase while TV decreases. Hence, it is expected that more capital should
be set aside to be able to offset losses with a higher level of confidence. Also, the risk associated with the
losses, measured by TV , is expected to decrease with a higher level of confidence.
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Figure 4. Plots of the risk measures

Figure 5 shows plots of the premium principles. It can be noticed that they are all increasing with an
increase in the risk associated with the loss. This is also a desirable characteristic of loss distributions.
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Figure 5. Plots of the premium principles
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5. Parameter estimation methods

This section presents seven methods for estimating the parameters of the UWL distribution, denoted
Θ = (α, β, λ)′. These methods are the ML, maximum product spacing (MPS) [9, 35], ordinary least
squares (OLS) and weighted least squares (WLS) [36], Anderson–Darling (AD) [6], Cramér–von Mises
(CVM) [24] and percentile (PC) [16] estimation methods.

5.1. Maximum likelihood method

Suppose y1, y2, . . . , yn are values from a random variable Y that follows the UWL distribution. The set

of parameters that maximize the log-likelihood function defined as ℓ = log

[
n∏

i=1

fY (yi)

]
gives the ML

estimates of the parameters. To this end, we consider the log-likelihood function of the UWL distribution,
which is given as

ℓ(Θ) = n log(αβλ)− β
n∑

i=1

(
yi

1− yi

)λ

+ (λ− 1)
n∑

i=1

log

(
yi

1− yi

)
− 2

n∑
i=1

log (1− yi)

+
n∑

i=1

log

[
α + 1 + β

(
yi

1− yi

)λ
]
− 2

n∑
i=1

log

[
α + β

(
yi

1− yi

)λ
]

(15)

5.2. Maximum product spacing method

Let y(1), y(2), . . . , y(n) be the ordered values y1, y2, . . . , yn in increasing order. For any i = 1, . . . , n+1,
let Di be the uniform spacing defined as

Di = FY (y(i))− FY (y(i−1))

where FY (y(0)) = 0, FY (y(n+1)) = 1 and
n+1∑
i=0

Di = 1. For the UWL distribution, the uniform spacing is

obtained as

Di =
α
(
1− y(i)

)λ
e
−β

(
y(i)

1−y(i)

)λ

α
(
1− y(i)

)λ
+ βyλ(i)

−
α
(
1− y(i−1)

)λ
e
−β

(
y(i−1)

1−y(i−1)

)λ

α
(
1− y(i−1)

)λ
+ βyλ(i−1)

The MPS parameter estimates are obtained by maximizing the function

G(Θ) =
1

n+ 1

n+1∑
i=1

log(Di)

with respect to the parameters.
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5.3. Ordinary and weighted least squares method

The OLS and WLS estimates of the parameters of the UWL distribution are obtained by minimizing the
following functions, respectively:

L(Θ) =
n∑

i=1

1− α
(
1− y(i)

)λ
e
−β

(
y(i)

1−y(i)

)λ

α
(
1− y(i)

)λ
+ βyλ(i)

− i

n+ 1


2

and

W (Θ) =
n∑

i=1

(n+ 1)2 (n+ 2)

i (n+ 1− i)

1− α
(
1− y(i)

)λ
e
−β

(
y(i)

1−y(i)

)λ

α
(
1− y(i)

)λ
+ βyλ(i)

− i

n+ 1


2

5.4. Anderson–Darling method

The AD estimates of the parameters of the UWL distribution are obtained by minimizing, with respect to
the parameters, the following function:

A(Θ) = −n− 1

n

n∑
i=1

(2i− 1)

log(α) + log

1−
α
(
1− y(i)

)λ
e
−β

(
y(i)

1−y(i)

)λ

α
(
1− y(i)

)λ
+ βyλ(i)



−β

(
y(n+1−i)

1− y(n+1−i)

)λ

− log

(
α + β

(
y(n+1−i)

1− y(n+1−i)

)λ
)]

5.5. Cramér–von Mises method

The parameter estimates of the UWL distribution, via the CVM method, are obtained by minimizing
the difference between the empirical and estimated CDFs. Thus, minimizing the following function, the
estimates of the UWL distribution are determined:

C(Θ) =
1

12n
+

n∑
i=1

1− α
(
1− y(i)

)λ
e
−β

(
y(i)

1−y(i)

)λ

α
(
1− y(i)

)λ
+ βyλ(i)

− 2i− 1

2n


2

5.6. Percentile method

The PC estimates of the parameters of the UWL distribution are obtained by minimizing the function

P (Θ) =
n∑

i=1

[
y(i) −

{
1 +

[
− 1

β
log

{(
1− qi
α

)
W

[(
α

1− qi

)
eα
]}] 1

λ

}
e−1

]2
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with respect to the parameters, where qi = i/(n+ 1) is an unbiased estimator of FY (y(i)).

5.7. Monte Carlo simulations

The estimates established for the parameters of the UWL distribution are assessed using a Monte Carlo
simulation study. The process used for this study is given as follows:

1. Using the quantile function of the UWL distribution given in Equation (6), a sample of size n is
generated.

2. The estimates of the parameters Θ̂ = (α̂, β̂, λ̂) are obtained using the ML, MPS, OLS, WLS, CVM,
AD, and PC estimation methods.

3. Steps 1 to 2 are repeated N = 3000 times.
4. The average estimate (AE), absolute bias (AB) and the root mean square error (RMSE) of the

estimates are computed.
5. Steps 1 to 4 are repeated for the sample sizes n = 25, 75, 150, 300, 700, 1000 and the parameter sets

(α, β, λ) = (1.2, 0.2, 0.3) and (α, β, λ) = (1.8, 0.8, 1.1).
Tables 2 and 3 present the results of the Monte Carlo simulation. All the estimates from the methods

can be observed to be consistent, as AE tends to approach the true values, while AB and RMSE tend
to decrease with increasing sample sizes. It can further be noticed that ML method performed better
than the other estimation methods. Hence, this method is therefore considered for the estimation of the
parameters of the distribution.

The performance of the methods is ranked to determine the best of them. Only the AB and RMSE
are used for the ranking. Tables 4 and 5 present the results. It can be observed that the ML method has
the lowest sum of ranks and has the first position for both simulation results. Therefore, it is the best
estimation method for estimating the parameters of the UWL distribution. Suppose y1, y2, . . . , yn are
values from a random variable Y that follows the UWL distribution. Then, the regression structure is
defined as

h(ηi) = x′
iδ, i = 1, 2, . . . ,

where xi = (1, xi1, . . . , xin)
′ is the vector of independent variables and δ = (δ0, δ1, . . . , δp)

′ is a vector
of the parameters of the model. In this notation, h(ηi) is used to connect the independent variables to the
response variable, and it is known as the link function.

6. Unit Weibull loss quantile regression model

A quantile regression model with a random response variable following the UWL distribution is introduced
in this section. Firstly, we make α the subject in the quantile function of the UWL distribution and substitute
it into its PDF in equation (3) to obtain a re-parameterized PDF of the distribution. It is determined as

fY (y) =

λ(1− u)
(

η
1−η

)λ{
(1− u)

[
β
(

η
1−η

)λ
− β

(
y

1−y

)λ
− 1

]
+

[
β
(

y
1−y

)λ
+ 1

]
e−β( η

1−η )
λ
}

(1− y)2
(

y
1−y

)1−λ

eβ(
y

1−y )
λ
{
(1− u)

[(
η

1−η

)λ
−
(

y
1−y

)λ]
+
(

y
1−y

)λ
e−β( η

1−η )
λ
}
e2

(16)

where y ∈ (0, 1), η ∈ (0, 1), u ∈ (0, 1), β > 0 and λ > 0.
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Table 2. Parameter estimates of the UWL distribution for (α, β, λ) = (1.2, 0.2, 0.3)

Measure Parameter n ML MPS OLS WLS AD CVM PC

AE

α

25 2.0282 3.1338 3.1508 3.2541 3.0869 3.0767 4.2952
75 1.7899 2.7245 2.7004 2.6675 2.6025 2.6600 3.7489

150 1.6495 2.4173 2.3983 2.3954 2.3196 2.3596 3.4291
300 1.6500 2.3339 2.5460 2.4257 2.3844 2.5275 3.1663
700 1.5556 1.9553 2.0905 1.9562 1.9483 2.0791 2.8048

1000 1.5744 1.9521 2.0536 1.9801 1.9616 2.0445 2.7724

β

25 0.2064 0.2016 0.2242 0.2317 0.2233 0.2108 0.2684
75 0.1954 0.1993 0.2020 0.2078 0.2062 0.1968 0.2355

150 0.1914 0.1969 0.1949 0.2006 0.1993 0.1917 0.2205
300 0.1978 0.2045 0.2063 0.2094 0.2082 0.2046 0.2137
700 0.2010 0.2052 0.2046 0.2066 0.2064 0.2037 0.2005

1000 0.2042 0.2086 0.2084 0.2101 0.2094 0.2077 0.2019

λ

25 0.3265 0.3586 0.3072 0.3040 0.3131 0.3286 0.2663
75 0.3166 0.3288 0.3161 0.3111 0.3127 0.3233 0.2896

150 0.3137 0.3206 0.3155 0.3117 0.3122 0.3192 0.3036
300 0.3070 0.3105 0.3077 0.3052 0.3057 0.3095 0.3023
700 0.3032 0.3048 0.3041 0.3025 0.3026 0.3049 0.3059

1000 0.3020 0.3030 0.3022 0.3011 0.3014 0.3027 0.3051

AB

α

25 1.4192 2.5703 2.5948 2.6321 2.5069 2.5613 3.3422
75 1.2476 2.2094 2.2290 2.1401 2.0784 2.2091 2.9958

150 1.0940 1.8829 1.9147 1.8610 1.7855 1.8902 2.7795
300 0.9971 1.6897 1.9574 1.7712 1.7323 1.9457 2.5784
700 0.7838 1.1905 1.4020 1.2020 1.1933 1.3959 2.3290

1000 0.7574 1.1406 1.2871 1.1641 1.1527 1.2816 2.2703

β

25 0.0923 0.1018 0.1175 0.1143 0.1122 0.1147 0.1080
75 0.0800 0.0889 0.1013 0.0947 0.0920 0.1001 0.0961

150 0.0705 0.0811 0.0884 0.0845 0.0830 0.0876 0.0950
300 0.0579 0.0678 0.0792 0.0717 0.0710 0.0788 0.0931
700 0.0446 0.0502 0.0599 0.0521 0.0518 0.0598 0.0946

1000 0.0413 0.0472 0.0525 0.0474 0.0474 0.0523 0.0922

λ

25 0.0545 0.0722 0.0570 0.0524 0.0542 0.0633 0.0747
75 0.0346 0.0397 0.0420 0.0364 0.0363 0.0442 0.0469

150 0.0282 0.0319 0.0355 0.0314 0.0312 0.0366 0.0388
300 0.0192 0.0210 0.0243 0.0215 0.0214 0.0245 0.0287
700 0.0130 0.0140 0.0159 0.0138 0.0138 0.0160 0.0215

1000 0.0114 0.0123 0.0131 0.0120 0.0121 0.0131 0.0193

RMSE

α

25 1.5094 2.9626 2.9640 3.0025 2.9093 2.9385 3.5088
75 1.3772 2.6972 2.6871 2.6161 2.5648 2.6715 3.2700

150 1.2632 2.4324 2.4255 2.4015 2.3181 2.4020 3.1101
300 1.1867 2.2712 2.4776 2.3330 2.2990 2.4679 2.9665
700 1.0070 1.7815 1.9866 1.7617 1.7520 1.9805 2.7721

1000 0.9820 1.7279 1.8901 1.7623 1.7428 1.8843 2.7236

β

25 0.1122 0.1223 0.1402 0.1371 0.1337 0.1368 0.1330
75 0.0947 0.1024 0.1159 0.1092 0.1068 0.1147 0.1104

150 0.0828 0.0925 0.1020 0.0962 0.0948 0.1014 0.1061
300 0.0673 0.0772 0.0899 0.0820 0.0813 0.0896 0.1026
700 0.0524 0.0600 0.0701 0.0622 0.0619 0.0700 0.1030

1000 0.0483 0.0563 0.0620 0.0570 0.0569 0.0619 0.1014

λ

25 0.0729 0.0950 0.0740 0.0668 0.0701 0.0845 0.0931
75 0.0484 0.0555 0.0574 0.0494 0.0495 0.0610 0.0596

150 0.0382 0.0425 0.0470 0.0404 0.0403 0.0487 0.0485
300 0.0259 0.0284 0.0336 0.0289 0.0286 0.0342 0.0365
700 0.0167 0.0179 0.0211 0.0181 0.0181 0.0213 0.0277

1000 0.0141 0.0151 0.0166 0.0148 0.0149 0.0167 0.0252
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Table 3. Parameter estimates of the UWL distribution for (α, β, λ) = (1.8, 0.8, 1.1)

Measure Parameter n ML MPS OLS WLS AD CVM PC

AE

α

25 2.4736 3.3141 3.4105 3.2787 3.2309 3.3417 3.2841
75 2.1521 2.8359 2.7422 2.7736 2.6895 2.7065 2.5842

150 2.0930 2.8809 2.8811 2.8407 2.7696 2.8552 2.6623
300 2.0086 2.8345 2.8614 2.7592 2.7248 2.8423 2.6717
700 1.9596 2.5454 2.5778 2.5245 2.5056 2.5659 2.4375

1000 1.9841 2.5596 2.6100 2.5427 2.5428 2.5999 2.4514

β

25 0.8579 0.8463 0.7476 0.7614 0.7692 0.7587 0.7609
75 0.7933 0.7525 0.6928 0.7192 0.7180 0.6933 0.6841

150 0.7823 0.7728 0.7345 0.7537 0.7512 0.7342 0.7317
300 0.7739 0.7920 0.7627 0.7764 0.7747 0.7620 0.7600
700 0.7829 0.8048 0.7772 0.7915 0.7918 0.7765 0.7772

1000 0.7887 0.8115 0.7945 0.8032 0.8033 0.7939 0.7920

λ

25 1.1248 1.3594 1.1508 1.1517 1.1817 1.2289 1.1327
75 1.1301 1.2474 1.1907 1.1811 1.1844 1.2174 1.1825

150 1.1346 1.1950 1.1632 1.1569 1.1601 1.1762 1.1582
300 1.1220 1.1465 1.1346 1.1287 1.1298 1.1411 1.1306
700 1.1080 1.1148 1.1167 1.1101 1.1101 1.1195 1.1132

1000 1.1054 1.1090 1.1084 1.1042 1.1046 1.1104 1.1066

AB

α

25 1.1617 2.5090 2.5442 2.4212 2.4048 2.5252 2.4047
75 1.0370 2.2059 2.2126 2.1613 2.0874 2.2107 2.0828

150 0.9980 2.0961 2.1650 2.0504 1.9818 2.1570 1.9440
300 0.9402 1.8854 2.0088 1.8366 1.8036 2.0023 1.8422
700 0.7899 1.4056 1.6597 1.4808 1.4563 1.6566 1.4917

1000 0.7559 1.3491 1.5569 1.3882 1.3879 1.5533 1.3659

β

25 0.2105 0.3235 0.2932 0.2828 0.2820 0.3100 0.2736
75 0.1522 0.2515 0.2815 0.2543 0.2463 0.2867 0.2595

150 0.1316 0.2175 0.2378 0.2154 0.2114 0.2410 0.2164
300 0.1208 0.1788 0.2029 0.1788 0.1771 0.2044 0.1850
700 0.0990 0.1283 0.1657 0.1406 0.1394 0.1664 0.1471

1000 0.0936 0.1213 0.1453 0.1258 0.1257 0.1456 0.1283

λ

25 0.0947 0.2875 0.2036 0.1900 0.1955 0.2322 0.1744
75 0.0801 0.1768 0.1648 0.1521 0.1510 0.1773 0.1564

150 0.0703 0.1211 0.1168 0.1071 0.1076 0.1219 0.1090
300 0.0516 0.0721 0.0800 0.0696 0.0699 0.0818 0.0751
700 0.0380 0.0436 0.0567 0.0472 0.0469 0.0573 0.0524

1000 0.0356 0.0398 0.0470 0.0412 0.0414 0.0471 0.0443

RMSE

α

25 1.1854 2.6724 2.7003 2.6124 2.6008 2.6799 2.6059
75 1.0936 2.4362 2.4288 2.3977 2.3471 2.4257 2.3245

150 1.0614 2.3692 2.4095 2.3380 2.2783 2.4035 2.2387
300 1.0146 2.2331 2.3157 2.1803 2.1584 2.3090 2.1649
700 0.8935 1.8395 2.0187 1.8781 1.8471 2.0152 1.8665

1000 0.8715 1.7989 1.9508 1.8228 1.8229 1.9474 1.7796

β

25 0.2695 0.3958 0.3690 0.3551 0.3517 0.3853 0.3449
75 0.1927 0.3022 0.3501 0.3156 0.3059 0.3536 0.3253

150 0.1655 0.2574 0.2921 0.2631 0.2602 0.2941 0.2679
300 0.1486 0.2085 0.2452 0.2149 0.2137 0.2464 0.2215
700 0.1220 0.1535 0.1931 0.1663 0.1647 0.1937 0.1720

1000 0.1143 0.1439 0.1703 0.1502 0.1501 0.1708 0.1531

λ

25 0.1076 0.3751 0.2608 0.2492 0.2600 0.3047 0.2275
75 0.0880 0.2349 0.2203 0.2017 0.2008 0.2364 0.2068

150 0.0784 0.1588 0.1581 0.1421 0.1424 0.1653 0.1458
300 0.0615 0.0996 0.1100 0.0959 0.0966 0.1129 0.1014
700 0.0473 0.0569 0.0739 0.0618 0.0609 0.0749 0.0680

1000 0.0435 0.0505 0.0604 0.0524 0.0525 0.0609 0.0567
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Table 4. Parameter estimates of the UWL distribution for (α, β, λ) = (1.2, 0.2, 0.3)

Measure Parameter n ML MPS OLS WLS AD CVM PC

AB

α

25 1 4 5 6 2 3 7
75 1 5 6 3 2 4 7

150 1 4 6 3 2 5 7
300 1 2 6 4 3 5 7
700 1 2 6 4 3 5 7
1000 1 2 6 4 3 5 7

Sum of ranks 6 19 35 24 15 27 42
Rank 1 3 6 4 2 5 7

β

25 1 2 7 5 4 6 3
75 1 2 7 4 3 6 5

150 1 2 6 4 3 5 7
300 1 2 6 4 3 5 7
700 1 2 6 4 3 5 7
1000 1 2 6 3 3 5 7

Sum of ranks 6 12 38 24 19 32 36
Rank 1 2 7 4 3 5 6

λ

25 3 6 4 1 2 5 7
75 1 4 5 3 2 6 7

150 1 4 5 3 2 6 7
300 1 2 5 4 3 6 7
700 1 4 5 2 2 6 7
1000 1 4 5 2 3 5 7

Sum of ranks 8 24 29 15 14 34 42
Rank 1 4 5 3 2 6 7

RMSE

α

25 1 4 5 6 2 3 7
75 1 6 5 3 2 4 7

150 1 6 5 3 2 4 7
300 1 2 6 4 3 5 7
700 1 4 6 3 2 5 7
1000 1 2 6 4 3 5 7

Sum of ranks 6 24 33 23 14 26 42
Rank 1 4 6 3 2 5 7

β

25 1 2 7 6 4 5 3
75 1 2 7 4 3 6 5

150 1 2 6 4 3 5 7
300 1 2 6 4 3 5 7
700 1 2 6 4 3 5 7
1000 1 2 6 4 3 5 7

Sum of ranks 6 12 38 26 19 31 36
Rank 1 2 7 4 3 5 6

λ

25 3 7 4 1 2 5 6
75 1 4 5 2 3 7 6

150 1 4 5 3 2 7 6
300 1 2 5 4 3 6 7
700 1 2 5 3 3 6 7
1000 1 4 5 2 3 6 7

Sum of ranks 8 23 29 15 16 37 39
Rank 1 4 5 2 3 6 7

In this study, the logit link is employed. With it, we can write

ηi =
ex

′
iδ

1 + ex
′
iδ
.
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Thus, the final form of the PDF of the regression model for purposes of inference can be obtained by
substituting ηi into Equation (16). The parameters of the regression model can thus be obtained using
the PDF of the regression model.

Table 5. Parameter estimates of the UWL distribution for (α, β, λ) = (1.8, 0.8, 1.1)

Measure Parameter n ML MPS OLS WLS AD CVM PC

AB

α

25 1 5 7 4 3 6 2
75 1 5 7 4 3 6 2

150 1 5 7 4 3 6 2
300 1 5 7 3 2 6 4
700 1 2 7 4 3 6 5
1000 1 2 7 5 4 6 3

Sum of ranks 6 24 42 24 18 36 18
Rank 1 4 7 4 2 6 2

β

25 1 7 5 4 3 6 2
75 1 3 6 4 2 7 5

150 1 5 6 3 2 7 4
300 1 4 6 3 2 7 5
700 1 2 6 4 3 7 5
1000 1 2 6 4 3 7 5

Sum of ranks 6 23 35 22 15 41 26
Rank 1 4 6 3 2 7 5

λ

25 1 7 5 3 4 6 2
75 1 6 5 3 2 7 4

150 1 6 5 2 3 7 4
300 1 4 6 2 3 7 5
700 1 2 6 4 3 7 5
1000 1 2 6 3 4 7 5

Sum of ranks 6 27 33 17 19 41 25
Rank 1 5 6 2 3 7 4

RMSE

α

25 1 5 7 4 2 6 3
75 1 7 6 4 3 5 2

150 1 5 7 4 3 6 2
300 1 5 7 4 2 6 3
700 1 2 7 5 3 6 4
1000 1 3 7 4 5 6 2

Sum of ranks 6 27 41 25 18 35 16
Rank 1 5 7 4 3 6 2

β

25 1 7 5 4 3 6 2
75 1 2 6 4 3 7 5

150 1 2 6 4 3 7 5
300 1 2 6 4 3 7 5
700 1 2 6 4 3 7 5
1000 1 2 6 4 3 7 5

Sum of ranks 6 17 35 24 18 41 27
Rank 1 2 6 4 3 7 5

λ

25 1 7 5 3 4 6 2
75 1 6 5 3 2 7 4

150 1 6 5 2 3 7 4
300 1 4 6 2 3 7 5
700 1 2 6 4 3 7 5
1000 1 2 6 3 4 7 5

Sum of ranks 6 27 33 17 19 41 25
Rank 1 5 6 2 3 7 4
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6.1. Monte Carlo simulation for regression

A simulation study is carried out to demonstrate the behavior of the subjacent estimators of the parameters
in the quantile regression model. Two independent variables are used to perform the simulation with the
following regression structure:

logit

(
ηi

1− ηi

)
= δ0 + δ1xi1 + δ2xi2 (17)

The steps used for the simulation for the parameter values (β, λ, δ0, δ1, δ2) = (0.8, 1.1, 1.2, 0.7, 0.8)

are as follows:
1. Generate samples of sizes n = 50, 100, 350, 500 and 700 based on the UWL distribution.
2. Generate the covariates x1 and x2 from a uniform U(0, 1) distribution.
3. Estimate the parameters of the model (α, β, δ0, δ1, δ2) using the ML estimation method.
4. Repeat steps 1 to 3 N = 3000 times.
5. Compute the AE, AB, and RMSE of the estimated parameters.

The process is repeated for the lower quantile (u = 0.25), the median (u = 0.5) and the upper quantile
(u = 0.75). Table 6 shows the results of the simulation study. The ML estimators are consistent, as
increasing the sample size results in the AE approaching the true parameter values while the AB and
RMSE decrease.

Table 6. Simulation results for the UWL quantile regression model

Parameter n
u = 0.25 u = 0.50 u = 0.75

AV AB RMSE AV AB RMSE AV AB RMSE

50 1.1328 0.3333 0.4039 1.1313 0.3320 0.4028 1.1465 0.3469 0.4143
100 1.0585 0.2585 0.3346 1.0591 0.2592 0.3330 1.0902 0.2902 0.3545

β 350 0.8907 0.0907 0.1888 0.8974 0.0974 0.1955 0.9251 0.1251 0.2201
500 0.8512 0.0512 0.1407 0.8544 0.0544 0.1444 0.8710 0.0710 0.1663
700 0.8223 0.0223 0.0923 0.8251 0.0251 0.0984 0.8383 0.0383 0.1210
50 1.1046 0.0787 0.1113 1.1086 0.0797 0.1112 1.1066 0.0850 0.1175

100 1.0950 0.0449 0.0692 1.0963 0.0459 0.0700 1.0956 0.0510 0.0741
λ 350 1.0955 0.0099 0.0247 1.0954 0.0101 0.0244 1.0930 0.0134 0.0284

500 1.0973 0.0044 0.0148 1.0967 0.0052 0.0166 1.0956 0.0066 0.0186
700 1.0988 0.0018 0.0089 1.0986 0.0023 0.0105 1.0975 0.0034 0.0126
50 2.6085 1.5936 2.1828 2.6100 1.6122 2.2067 2.6710 1.6826 2.2630

100 2.5086 1.3644 2.0337 2.5261 1.3751 2.0355 2.6508 1.5226 2.1520
δ0 350 1.7639 0.5653 1.3047 1.8112 0.6128 1.3756 1.9747 0.7768 1.5378

500 1.5304 0.3305 0.9984 1.5504 0.3512 1.0327 1.6534 0.4554 1.1706
700 1.3429 0.1430 0.6477 1.3672 0.1672 0.7107 1.4479 0.2479 0.8650
50 0.9552 2.3955 3.5493 1.0180 2.4336 3.6293 1.0494 2.5652 3.7143

100 0.6229 1.6459 2.7262 0.6528 1.7414 2.8703 0.7365 2.0121 3.1418
δ1 350 0.5245 0.5255 1.4400 0.5271 0.5705 1.5043 0.5048 0.7519 1.7156

500 0.5975 0.3086 1.1002 0.6011 0.3189 1.1023 0.5139 0.3886 1.1646
700 0.6451 0.1170 0.6315 0.6311 0.1331 0.6724 0.6163 0.2311 0.9534
50 0.9786 2.3751 3.5358 0.9192 2.3745 3.5073 0.9483 2.5081 3.6059

100 0.6333 1.7423 2.8562 0.6327 1.7287 2.8436 0.6589 1.9447 3.0267
δ2 350 0.6258 0.5481 1.4743 0.6058 0.6149 1.5834 0.5754 0.7784 1.7732

500 0.6672 0.2807 0.9946 0.6761 0.3245 1.1011 0.6672 0.4221 1.2853
700 0.7598 0.1397 0.7627 0.7386 0.1439 0.7064 0.7191 0.2097 0.8841



20 A. G. Abubakari et al.

7. Applications

This section demonstrates the usefulness of the UWL distribution and the UWL quantile regression model.
It compares their performance with that of other competing models.

7.1. Univariate applications

The application of the UWL distribution to analyze claims data sets from France and Brazil is demon-
strated in the following subsections. The comparison of the performance of the UWL distribution
with other distributions, with regards to the data, is carried out using the Akaike information criterion
(AIC), Bayesian information criterion (BIC), Cramér von–Mises (CVM), Anderson–Darling (AD), and
Kolmogrov–Smirnov (KS) goodness-of-fit measures. The distribution with the least measure and high-
est corresponding p-value for CVM, AD, and KS is considered to provide a good fit to the data set.
The following distributions are used for the comparison: unit Weibull (UW) distribution, beta distribu-
tion, Kumaraswamy (Kum) distribution, unit gamma/Gompertz (UGG) distribution, Topp–Leone (TL)
distribution, and unit Rayleigh (UR) distribution. Finally, the Weibull–loss (WL) distribution is also
considered for the comparison.

7.1.1. Data set I. Vehicle insurance data from Brazil

The first data set consists of vehicle insurance claim amounts, specifically for collisions, from Brazil in
2011. The data set can be obtained from the CASdatasets package [10] in the R program with the name
brvehins2a. The first 50 observations with claims greater than zero, divided by 1000,000, were used for
this study.

A histogram of the data set with a total test time (TTT) plot is given in Figure 6. It can be remarked
that the data are extremely right skewed. Also, the TTT plot is convex in shape, suggesting that the hazard
rate of the data is decreasing. The plots suggest that the UWL distribution is adapted to the situation.
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Figure 6. Histogram and TTT plot of data set I

The parameter estimates of the fitted distributions are given in Table 7 with their corresponding stan-
dard errors in brackets.
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Table 7. Parameter estimates with standard errors for data set I

Distribution Parameter estimates (standard errors)
α β λ

UWL 0.9429 (0.1563) 0.0062 (0.0358) 1.2650 (6.3483)
UW 0.0032 ( 0.0038) 3.1416 (0.5839)
Beta 0.4803 (0.0790) 38.8041 (10.0788)
Kum 0.5920 ( 0.0684) 16.7297 (5.4496)
UGG 79.1894 (36.6476) 1.0386 (0.5077) 0.7873 (0.1558)
UL 79.1120 (11.0520)
UR 0.0277 (0.0039)
WL 0.8831 (0.1539) 9.4006 (7.2982) 0.0756 (0.1165)

Table 8 displays the goodness-of-fit measures to assess the fit of each distribution to the data. It can be
noticed that the UWL distribution has the least AIC, BIC, CVM, AD, and KS measures with the highest
corresponding p-values of the CVM, AD, and KS measures. This means that the UWL distribution best
describes the data compared to the other distributions. The WL distribution closely follows in terms of
modeling performance.

Table 8. Goodness-of-fit measures for data set I

Distribution AIC BIC CVM (p-value) AD (p-value) KS (p-value)
UWL –365.3575 –362.6214 0.0299 (0.9774) 0.2189 (0.9843) 0.0631 (0.9879)
UW –365.0906 –362.1256 0.0925 (0.6250) 0.5507 (0.6949) 0.1105 (0.5746)
Beta –360.5053 –356.6812 0.2528 (0.1849) 1.2697 (0.2423) 0.1657 (0.1284)
Kum –364.7511 –360.9271 0.1147 (0.5191) 0.6406 (0.6097) 0.1218 (0.4486)
UGG –362.4933 –356.7572 0.1046 (0.5647) 0.6491 (0.6020) 0.1180 (0.4896)
UL –336.3184 –334.4063 1.6597 (0.0001) 9.8311 (0.0000) 0.3068 (0.0002)
UR 222.1444 224.0564 0.7026 (0.0122) 3.7531 (0.0116) 0.2297 (0.0102)
WL –365.3100 –360.5750 0.0337 (0.9640) 0.2297 (0.9801) 0.0688 (0.9721)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

UWL Distribution

Observed probability

E
x
p

e
c
te

d
 p

ro
b

a
b

ili
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

UW Distribution

Observed probability

E
x
p

e
c
te

d
 p

ro
b

a
b

ili
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Beta Distribution

Observed probability

E
x
p

e
c
te

d
 p

ro
b

a
b

ili
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Kum Distribution

Observed probability

E
x
p

e
c
te

d
 p

ro
b

a
b

ili
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

UGG Distribution

Observed probability

E
x
p

e
c
te

d
 p

ro
b

a
b

ili
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

UL Distribution

Observed probability

E
x
p

e
c
te

d
 p

ro
b

a
b

ili
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

UR Distribution

Observed probability

E
x
p

e
c
te

d
 p

ro
b

a
b

ili
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

WL Distribution

Observed probability

E
x
p

e
c
te

d
 p

ro
b

a
b

ili
ty

Figure 7. P–P plots of the fitted distributions for data set I



22 A. G. Abubakari et al.

The probability–probability (P–P ) plots of the fitted models are given in Figure 7 to illustrate the fit
of the distributions to the data. The UWL and WL distributions closely describe the data, as the plots
cluster along the diagonal lines.
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Figure 8. Estimates of risk measures, including V aR, TV aR, and TV associated with the UWL distribution for data set I

Using the estimated parameter values of the UWL distribution, some risk measures and premium
principles are estimated. Figure 8 exposes the plots of the estimated risk measures, including V aR,
TV aR, and TV . V aR and TV aR increase with an increase in significance level, while TV decreases.
This is generally expected in actuarial practice. As the confidence level increases, V aR and TV aR,
which may represent some capital requirement, are expected to increase while the risk associated with
that, represented by TV , decreases.
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Figure 9. Estimates of risk measures, including EV P , TV P , ExP , and Esscher principles,
associated with the UWL distribution for data set I

Figure 9 shows the plots of estimated premiums, including EV P , TV P , ExP , and Esscher principles.
It can be seen that all the premium estimates increase with increasing risk loading. This is consistent
with actuarial practice; as the risk associated with the event increases, the premium is expected to also
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increase. It can be observed that EVP estimates are the highest and ExP estimates are the least, with the
same corresponding risk loading.

7.1.2. Data set II. Motor insurance data from France

The second data set consists of claims for private motor insurance from France for the period 2003
to 2004. The data set can be obtained from the CASdatasets package [10] in R with the name fremo-
tor1sev0304a. The first 50 claim amounts greater than zero, divided by 100,000, were used for the study.
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Figure 10. Histogram and TTT Plot of Motor Insurance data

Figure 10 displays the histogram and TTT plot of the data set. It can be noticed that the data are
extremely right skewed. Also, the TTT plot has a convex shape, suggesting that the data have a decreasing
hazard rate. Thus, the UWL distribution can be used to fit these data.

Table 9 shows the parameter estimates of the fitted distributions with their corresponding standard
errors.

Table 9. Parameter estimates (standard errors) of distributions for data set II

Distribution α β λ
UWL 1.4343 (0.1792) 0.0020 (0.0021) 4.7639 (0.0001)
UW 0.0024 (0.0019) 3.4895 (0.4466)
Beta 0.5819 (0.0974) 42.9454 (10.6451)
Kum 0.6704 (0.0675) 22.5613 (6.9591)
UGG 305.0186 (136.4060) 2.2037 (1.0728) 0.9026 (0.1165)
UL 69.2445 (9.6571)
UR 0.0331 (0.0047)
WL 1.4122 (0.2984) 7.0428 (0.0135) 0.0035 (0.0060)

Table 10 displays the goodness-of-fit measures to assess the fit of each distribution to data set II. It
can be observed that the UWL distribution has the least AIC and BIC. It also has the least CVM, AD, and
KS measures with correspondingly higher p-values. Again, the UWL distribution is closely followed by
the WL distribution.
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The P–P plots of the fitted models are given in Figure 11. It can be noticed that the UWL distribution
best describes the data set.

Table 10. Goodness-of-fit measures for data set I

Distribution AIC BIC CVM (p-value) AD (p-value) KS (p-value)

UWL –372.7223 –366.9863 0.0249 (0.9904) 0.2696 (0.9589) 0.0634 (0.9880)
UW –363.5235 –359.6994 0.5355 (0.0320) 2.7887 (0.0353) 0.2117 (0.0226)
Beta –339.1632 –335.3392 0.7296 (0.0105) 3.9474 (0.0093) 0.2377 (0.0070)
Kum –349.0566 –345.2326 0.4059 (0.0693) 2.5844 (0.0450) 0.1761 (0.0901)
UGG –368.2395 –362.5034 0.2731 (0.1612) 1.5469 (0.1658) 0.1637 (0.1372)
UL –323.0120 –321.1000 2.0265 (<0.0001) 9.9510 (<0.0001) 0.3391 (<0.0001)
UR 208.8915 210.8035 1.6686 (0.0001) 8.2085 (0.0001) 0.3381 (<0.0001)
WL –372.6986 –366.9626 0.0324 (0.9689) 0.2981 (0.9393) 0.0744 (0.9448)
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Figure 11. P–P plots of the fitted distributions for data set II

Furthermore, risk measures and premiums are estimated for the data set. Figure 12 exposes the esti-
mates of V aR, TV aR, and TV . It can be remarked that V aR and TV aR decrease as the significance
level increases, while TV decreases.

Premium estimates using the EV P , TV P , ExP , and Esscher principles are shown in Figure 13.
It can be observed that all the estimates increase with increasing risk loading. Again, with the same
corresponding risk loading, EVP premiums are the highest while ExP premiums are the lowest.



A unit Weibull loss distribution. . . 25

0.5 0.6 0.7 0.8 0.9 1.0

0
.7

6
0
.7

8
0
.8

0
0
.8

2
0
.8

4

Confidence Level

E
s
ti
m

a
te

s
VaR

TVaR

0.5 0.6 0.8 0.9 1.00.7

0
.0

0
0
0
0

0
.0

0
0
1
0

0
.0

0
0
3
0

0
.0

0
0
2
0

Confidence Level

T
V

Figure 12. Estimates of risk measures, including V aR, TV aR, and TV associated with the UWL distribution for data set II
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Figure 13. Estimates of risk measures, including EV P , TV P , ExP , and Esscher principles,
associated with the UWL distribution for data set II

7.2. Regression application

The application of the UWL quantile regression model is demonstrated in this section. The data set used
is from the Swedish insurance company Wasa and can be obtained from the insuranceData package [38]
in the R program with the name dataOhlsson. Aggregated data on all insurance policies and claims from
1994 to 1998 are used. Also, the dependent variable is the claim cost in 10 billion Swedish krona. For
this study, the claims were divided by 1 million. The independent variables used are the vehicle age and
MC class, a classification by the so-called EV ratio, defined as (engine power in kW 100)/(vehicle weight
in kg+75), rounded to the nearest lower integer, where 75kg represents the average driver weight. The
EV ratios are divided into seven classes.

The independent variable, MC class, is a categorical variable with seven (7) levels. For the regression
model application, it is coded using an indicator variable into k − 1 indicator variables, where k is the
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number of levels and one of the variables is used as a reference level. In this study, level 6 is chosen as
a reference level because it has the highest number of occurrences. With this, the following regression
structure is used:

log ηi = δ0 + δ1Vehicle agei + δ2Level 1i + δ3Level 2i

+ δ4Level 3i + δ5Level 4i + δ6Level 5i + δ7Level 7i, i = 1, . . . , n

The performance of the UWL regression model is compared with that of the UW regression model [28],
Kumaraswamy (Kum) regression model [30], UL regression model [28], beta regression model [11], and
unit improved second-degree Lindley (UISDL) regression model [5].

Table 11. Regression parameter estimates

Model Parameter β λ δ0 δ1 δ2 δ3 δ4 δ5 δ6 δ7

UWL
Estimate 7.3347 0.9544 –3.6925 –0.0737 –0.4548 –0.4615 –0.4566 –0.3968 –0.2494 0.2908
SE 1.4567 0.0502 0.1558 0.0109 0.2762 0.2433 0.1903 0.2179 0.1877 0.6648
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0997 0.0578 0.0164 0.0687 0.1840 0.6618

UW
Estimate 3.2528 –4.0195 –0.0552 –0.3046 –0.0480 –0.4032 –0.3652 –0.2726 0.6205
SE 0.0959 0.1334 0.0100 0.2473 0.2177 0.1594 0.1868 0.1632 0.5316
p-value < 0.0001 < 0.0001 < 0.0001 0.2181 0.8257 0.0115 0.0506 0.0949 0.2431

Kum
Estimate 0.7146 –3.9241 –0.0547 –0.0347 –0.3864 0.1046 –0.1442 –0.1521 0.2090
SE 0.0232 0.1205 0.0063 0.2375 0.2137 0.1547 0.1793 0.1575 0.6283
p-value < 0.0001 < 0.0001 < 0.0001 0.8838 0.0705 0.4990 0.4213 0.3340 0.7394

UL
Estimate –3.3249 –0.0503 0.1303 –0.3342 0.2733 –0.0782 –0.1141 0.1578
SE 0.0820 0.0042 0.1703 0.1516 0.1082 0.1264 0.1112 0.4408
p-value < 0.0001 < 0.0001 0.4443 0.0275 0.0116 0.5360 0.3045 0.7204

Beta
Estimate 24.1531 –3.2928 –0.0333 –0.1555 –0.1314 –0.1489 –0.1631 –0.1027 0.2164
SE 1.5927 0.0858 0.0059 0.1498 0.1371 0.0978 0.1146 0.1001 0.3766
p-value < 0.0001 < 0.0001 < 0.0001 0.2994 0.3377 0.1281 0.1546 0.3052 0.5656

UISDL
Estimate –3.3246 –0.0503 0.1303 –0.3342 0.2735 –0.0783 –0.1141 0.1575
SE 0.0819 0.0042 0.1702 0.1515 0.1082 0.1263 0.1111 0.4404
p-value < 0.0001 < 0.0001 0.4438 0.0274 0.0115 0.5354 0.3046 0.7206

Table 11 displays the parameter estimates of the regression models with the corresponding standard
errors and p-values. It can be noticed that all the true parameters (β, λ) of the models are significant at
5% significance level. Also, vehicle age is significant for all the models. Furthermore, the MC levels
1, 4, 5, and 7 are insignificant for all the models, while level 3 is only insignificant for Kum and beta
regression models. Finally, level 2 is significant for the UL and UISDL regression models.

As age is a significant contributor to claims, the interpretation of its estimated coefficient in the regres-
sion model is given as follows: For an estimated coefficient of the UWL quantile regression model, δ̂i,
associated with a continuous independent variable, then a unit increase in the independent variable will
result in a 100%(eδ̂i−1) change in the conditional quantile of the dependent variable whiles holding other
independent variables constant. Thus, holding all other independent variables constant, a unit increase in
vehicle age would result in a statistically significant decrease of 7.10% in the median claims.

Table 12 shows the information criteria of the fitted models. It can be observed that the UWL regression
model has the least of the measures. This indicates that it fits the data better than the other models.

To evaluate the performance of the fitted models, a Cox–Snell residuals analysis is conducted. In this
analysis, the residuals should follow a standard exponential distribution if the model fits well.
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Table 12. Information criteria of fitted regression models

Regression model −ℓ AIC BIC
UWL –1921.4457 –3822.8915 –3777.8187
UW –1911.4811 –3804.9622 –3764.3967
Kum –1912.0681 –3806.1362 –3765.5707
UL –1838.3727 –3660.7455 –3624.6873
Beta –1879.7858 –3741.5717 –3701.0062
UISDL –1838.0897 –3660.1795 –3624.1212
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Figure 14. Cox–Snell residuals P–P plots

This is graphically represented by Figure 14, with the plots of the empirical probabilities of the residu-
als against the theoretical probabilities from the standard exponential distribution. From this figure, it can
be noticed that the UWL regression model performs better in describing the data than the other models.

8. Conclusion

This article presented a new distribution defined on the bounded interval, known as the unit Weibull
loss distribution. Several statistical and actuarial properties were developed. Various plots, including
PDF, hazard, skewness, and kurtosis, indicate that it exhibits desirable properties. Several parameter
estimation methods were used to obtain accurate estimates. The subjacent estimators were all shown
to be consistent using Monte Carlo simulations. However, the ML estimation method performed better
in estimating the involved parameters. Also, a quantile regression model based on responses following
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the UWL distribution was developed. Fitting applications and the corresponding regression model were
performed to demonstrate the usefulness of the distribution. The results reveal that the UWL distribution
and its regression model can be used as alternatives to other models in describing insurance data.
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