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Abstract

Healthcare facilities consist of multiple large buildings with complex energy systems and high energy consumption, result-
ing in high carbon emissions. The increasing trend in energy consumption of these facilities and the process of selecting
an energy supplier from the open market requires reliable and robust energy forecasting studies. This situation calls for the
use of reliable and accurate energy consumption prediction models for the energy needs of healthcare buildings. The aim
of this study is to present a prediction framework based on historical energy consumption at different time intervals using
six supervised regression algorithms, three linear single, one non-linear single and two non-linear ensembles. The approach
adopted for predicting hospital energy consumption involves five steps: data acquisition, data pre-processing, data prediction,
hyper-parameter optimisation and feature analysis. Furthermore, all regression algorithms have undergone hyper-parameter
optimisation using random search, grid search and Bayesian optimisation to achieve the minimum prediction errors repre-
sented by different metrics. The results displayed that the two ensemble models, Extreme Gradient Boosting and Random
Forest, outperformed single models in hourly, daily, and monthly energy load prediction. Nevertheless, when considering the
computational time for all regression models, the single models have better computational times, although the error metrics
are not as good as for the ensemble models. In addition, grid search and Bayesian optimisation performed better than random
search in finding optimal hyperparameter values for all datasets. Finally, thanks to feature importance analysis, the most
influential features under the hourly, daily, and monthly electrical and monthly natural gas prediction were identified.
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1. Introduction

Factors such as limited resources, excessive and growing consumption, and high costs make it imperative
to adopt an energy management perspective and use energy efficiently. In this context, large buildings
represent some of the great consumers of energy. Hospitals, hotels, large sports centres and other build-
ings in particular are major energy consumers, responsible for 40% of energy consumption and 36% of
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CO2 emissions in the EU [16]. The increasing trend in the energy demand of such buildings requires ac-
curate and robust energy consumption forecasts, which should contribute to effective planning, long-term
strategies and control of energy consumption in the building sector. According to Eckelman and Sher-
man [15], healthcare facilities are the second largest energy-consuming commercial buildings in the US,
after food service. In such energy-intensive buildings like healthcare facilities, the benefits of accurate
energy demand forecasting are that it helps healthcare facility managers to make reliable energy budget
projections and to select appropriate suppliers from the open market.

This study aims to analyse the dynamics and predictability of electricity and natural gas consumption
in healthcare buildings, where energy costs and demand are mostly subject to uncertainty. In addition
to uncertainty, the drawbacks associated with the lack of data make it difficult to implement forecasting
techniques for predicting energy loads in healthcare facilities. As machine learning regression algorithms
are trained on accurate data from past periods and future predictions are made by finding appropriate pa-
rameters, data accuracy is a very important factor in the application of these algorithms. Furthermore,
when electricity or natural gas is supplied from the open market based on forecasts for a hospital facility,
where continuous energy and electricity consumption is required due to the continuous use of technolog-
ical equipment, the accuracy of the ML algorithm forecasts becomes more and more important.

In the context of the difficulties mentioned above, in this study, electricity and natural gas demand fore-
casting procedures have been presented based on different datasets, namely hourly, daily, and monthly
time intervals, since it is desired to observe the impact of time granularity on the forecasting performance.
For each time granularity, different inputs were considered based on their impact on energy consumption.
For short-term time granularities, we have mainly considered weather-related inputs and variables such as
intraday period and day type, while for medium-term time granularities, input variables such as number
of patients, bed occupancy rate and unit price have been considered with a broader perspective.

In our study, forecasting models for electricity and natural gas consumption in healthcare buildings
have been developed based on linear single, non-linear single, and non-linear ensemble supervised ma-
chine learning algorithms by simultaneous considering multi-factors as mentioned above. The perfor-
mance of the prediction algorithms was evaluated using statistical metrics such as root mean square
error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and R2. In addi-
tion, hyper-parameter optimization was carried out using grid search and genetic algorithms to achieve a
minimum performance error value with the regression algorithms.

The rest of the paper is organized as follows. Section 2 is about a comprehensive literature and its
review. Section 3 presents the data and methodology. Section 4 presents the results and discussion of
a case study application based on hospital data. The final section 5 presents the conclusion and future
work.

2. Literature review

In the context of the increasing trend of energy demand in buildings, many studies have been carried
out in terms of prediction of building energy consumptions such as electricity natural gas, heating, and
cooling by using different forecasting methods. There are many studies in the literature on energy demand
forecasting for different building types, such as residential [5, 41], university academic buildings [36, 45],
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office buildings [1, 29, 46], commercial buildings [26, 37, 44], and healthcare buildings [3, 8, 20, 31, 40].
These studies considered different time horizons for forecasting, which can be represented as very short-
term, short-term, and medium-term. The very short term can be categorized as a time granularity of
less than 1 hour [3, 20, 29, 37]. The short term can be considered as hourly, daily, and weekly time
granularities [2, 11, 31, 33], while the middle term can be considered as a time horizon between one
month and one year [4, 40, 41].

Table 1. Related studies

Reference Technique
Ref.

data set
Energy

type
Sampling
interval

[33] ANN and EenrgyPlus university building electricity–heating daily
[31] ANN healthcare facility electricity hourly
[27] SVR and modified firefly aAlgorithm cities electricity load daily
[3] ANN healthcare facility electricity minute–hourly–daily
[5] ANN houses electricity daily

[46]
wavelet transform, SVR,
PLS regression office heating–cooling hourly–daily

[20] PCA analysis, autoregressive, OPLS healthcare facility electricity minute
[2] MR, GP, ANN, DNN and SVR university building electricity daily

[44]
ANN, Fourier’s law
based analysis, TRNSYS

commercial
Ckyscraper cooling hourly

[45] ANN university building electricity hourly
[1] tree bagger, GPR, MLR, ANN office buildings heating–cooling hourly–daily–monthly

[26] ANN comnercial building
electricity–natural
gas–cooling hourly

[11] MLR and TRNSYS commercial building heating–cooling hourly
[4] MLR, ANN and SVR City Natural Gas monthly
[13] ANN, SVR, gradient boosting healthcare facility cooling hourly
[21] ANN country electricity minute
[36] LSTM, sinecosine algorithm university building electricity hourly–monthly–yearly
[40] MLR, ANN, SVR healthcare facility electricity monthly
[12] least squares, Cobb–Douglas country natural gas yearly

[39] multi-task learning, LSSVR industrial building
electricity, heating,
cooling and natural gas hourly

[8]
MLR, ridge, lasso, ElasticNet
SVR, Gaussian,
Random Forest, XGBoost

healthcare facility electricity daily–weekly

[25] ARIMA, ANN, ELM, TBATS cities natural gas daily–weekly
[22] ANN, SVR, SARIMAX, DNN, LSTM commercial building electricity daily–monthly
[14] MLR, Buckingham theorem, ANN commercial building heating hourly

[41]
LSSVR, RBFNN,
symbiotic organism search residential building

electricity, heating,
cooling daily–monthly

[29] A3C, DDPG, RDPG office buildings electricity load minute
[37] k-mean clustering, LSTM commercial building electricity minute
[28] grey theory, GM(1, 1), TBGM(1, 1) city electricity yearly
[30] adaptive LSTM, genetic algorithm university building electricity hourly
[19] Cox proportional hazards model healthcare facility electricity–heating monthly

[32]
Hybrid simulation approach
(EnergyPlus + ANN + GM) healthcare facility cooling daily

[38] WOA-BiLSTM model healthcare facility electricity hourly

In addition to studies on building energy prediction, many studies have been conducted for electricity
demand forecasting [21, 27, 28] and natural gas demand forecasting [4, 12, 25] of countries or cities
with datasets based on different time granularities. For example, Tatoglu et al. attempted to predict
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the monthly natural gas consumption of Istanbul city using machine-learning methods such as multiple
linear regression, artificial neural networks, and Support Vector Regression [4]. They find that the best
forecasting method for natural gas consumption is Support Vector Regression with a MAPE value of
5.53%. As shown in Table 1, there is a wide range of forecasting approaches used for energy in the
literature, including engineering, statistical,and machine learning methods.

Of the machine learning methods used, as shown in Table 1, ANN [13, 21, 31, 33, 34] and its vari-
ants [30, 37] are the most widely used machine learning algorithm for energy forecasting because they
are flexible, non-linear, and applicable with different activation functions under different hidden layers.
In recent years, many studies have tried to find the algorithm with the lowest prediction error by trying
more than one algorithm, rather than using only one algorithm [8, 22, 29, 40].

Healthcare facilities have quite complex buildings with huge electricity, heating, and cooling con-
sumption like an industrial factory. Although energy forecasting studies for such buildings are scarce
in the literature, a number of them display an increasing trend. Zorita-Lamadrid et al. [31] tried to pre-
dict hourly electricity load using an ANN-Multilayer Perceptron (MLP) approach, similarly Silvestro et
al. [3] also developed an ANN-MLP model based on a backpropagation algorithm to predict the very
short term (minute) electricity load of a large hospital facility. Gordillo-Orquera et al. [20] used different
statistical models such as Principal Component Analysis (PCA) and Autoregressive (AR), Orthonormal
Partial Least Squares (OPLS) for short-term electricity load forecasting of a hospital and a primary care
center, respectively. Dulce et al. [13] focused on predicting of the thermal cooling demand of a hospital
adopting a genetic methodology that searches for low complexity models through feature selection, pa-
rameter tuning, and parsimonious model selection. They tested their methodology using artificial neural
networks, Support Vector Regression, and gradient boosting techniques. Zor et al. [40] used multiple
linear regression (MLR), Artificial Neural Network (ANN), and Support Vector Regression (SVR) tech-
niques to predict the long-term electricity consumption of a hospital, while Zhang et al. [8] took into
consideration eight different regression algorithms including MLR, Random Forest to project daily and
weekly electricity load consumption of a hospital.

As for summation of the literature, it has generally been observed that while the advanced deep learn-
ing and machine learning techniques have been preferred for forecasting problems, the large number of
parameters for these techniques give rise to complexity in application. On the other hand, time series and
regression models, which are easier to apply in practice, have been found to be highly preferred for fore-
casting problems. In terms of temporal granularity, studies dealing with short-term forecasting problems
have generally used deep learning or machine learning techniques, while long-term studies have come
forward regression models or time series models (especially those related to ARIMA).

3. Materials and methods

The research methodology involves the execution of different machine learning algorithms, which have
been applied to stand-alone datasets with different temporal granularity, hourly, daily and monthly for
electricity and monthly for natural gas, respectively, as shown in Figure 1. The methodology consists of
five main steps: (1) data collection, data preparation, splitting the data into training and test sets, (2) train-
ing ML regression algorithms with the prepared data, (3) optimization of hyperparameters for all models,
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(4) analysis of prediction and computation time performance, and (5) discussion of the importance of
each feature.

Figure 1. Flowchart of energy consumption forecasting of the hospital

In this study, two main types of energy, electricity and natural gas, have been treated separately as they
are the source of different loads such as electricity, heating and cooling. Three temporal granularities
were used for electricity: hourly, daily and monthly, while for natural gas only monthly data were used
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due to a lack of detailed data. The input variables used for each dataset are shown in Table 2. The dataset
of each module was divided into training and test sets as shown in Table 3. For all datasets, the training
and testing datasets have been generated in a time-series manner to correctly reflect the seasonal effect,
as 70% for training and 30% for testing. The generated training dataset is then used to train the machine
learning regression models for each module, and the testing dataset is used to evaluate the performance
of the trained models.

Table 2. The inputs and output for forecasting models

Input variable
Hourly-E
(output)

Daily-E
(output)

Monthly-E
(output)

Monthly-NG
(output)

Day time period (day, night, peak) ×
Outdoor air dry-bulb temperature, °C × ×
Outdoor air feel-like temperature, °C × ×
Relative humidity, % ×
Wind speed, km/h ×
Day type (working, holiday) × ×
Heating degree days (HDD), (severity of the cold) × ×
Cooling degree days (CDD), (need for cooling) × ×
Unit price, $/kWh) × ×
Number of inpatients × ×
Number of outpatients × ×
Bed occupancy rate × ×
Number of employees × ×
Floor area, m2 × ×
Season type × ×

Table 3. Training and testing samples

Dataset Training period Testing dataset
Monthly natural gas January 2012–December 2016 January 2017–December 2018
Monthly electricity January 2012–December 2016 January 2017–December 2018
Daily electricity 1st January 2018–4th September 2018 5th September 2016–31st December 2018
Hourly electricity first 6132 data point last 2628 data point

Healthcare facilities have buildings that use all four forms of energy, electricity, heating, hot water
and cooling, together and intensively. In hospitals, the increasing energy consumption as a function of
the density of use and the size of the structure is very important in terms of both cost and efficient use
of resources. Furthermore, accurate estimation of energy loads or consumption has a serious impact on
the efficient use of energy. In this context, the forecasting methods were applied to predict the energy
consumption of our reference hospital, which is a general hospital located in the Eastern Anatolia region
of Turkey.

3.1. Data collection and input variables

This study focused mainly on three time periods in terms of forecasting horizon, based on hourly, daily
and monthly periods. In order to analyze energy consumption from a compact perspective, we have
treated both electricity and natural gas individually. Each temporal granularity is influenced by different
variables that have an impact on the target output variable. In this context, we have considered three
different time periods for electricity forecasting models: hourly, daily and monthly. The hourly electricity
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module has been considered with the aim of observing the effect of time-of-use (TOU) on electricity
consumption, which consists of three different time periods day, night and peak. Based on the Turkish
electricity market and its regulations, (1) the night period includes the hours 22:00–06:00, (2) the day
period includes the hours 06:00–17:00, while (3) the peak period includes the hours 17:00–22:00. In
addition, the process of selecting a supplier of electricity from the open market requires time-of-use
based consumption in order to consider a choice of single or multiple time tariff options. We have also
considered daily and monthly electricity consumption. For natural gas, on the other hand, we have only
used monthly time periods due to a lack of detailed data based on other time granularities.

The monthly data used in this study for both electricity and natural gas were collected from the hos-
pital’s electricity and natural gas bills, which cover the period 2012-2018. On the other hand, the hourly
and daily electricity data were collected based on a combination of information from different sources.
In fact, hourly and daily energy consumption wasn’t recorded in our reference hospital due to the lack
of intelligent building energy systems. To overcome this obstacle, especially for electricity, we used
hourly electricity data from previous years obtained from an electricity company as part of a feasibility
study carried out in the reference hospital. These data were adapted to the year 2018, with hourly and
daily coefficients that take into account whether the day is a working day or a holiday. In this context,
this study used 2018 annual data for electricity in terms of hourly and daily forecasts. As shown in Ta-
ble 3, the different input variables are used for each time horizon. In general, energy consumption in
buildings is influenced by four main combinations of inputs: weather-related inputs, occupant-related in-
puts, building-related inputs and time-related inputs. For hourly electricity consumption, we focused on
weather-related inputs and time-related inputs. Weather-related explanatory variables include outdoor dry
bulb temperature, outdoor feel-good temperature, relative humidity and wind speed, while time-related
input variables are categorical variables such as time of day and type of day. As mentioned above, time-
of-use has a major impact on electricity consumption. We have also taken into account working days and
holidays, which have a significant impact on energy consumption. On the other hand, daily electricity
consumption is influenced by weather variables such as average daily outdoor temperatures and cooling
degree days. In addition, the type of day was treated as a time-related input for the daily forecast.

Monthly datasets have been produced for both electricity and natural gas. For the monthly consump-
tion models, we prioritized occupancy-related inputs such as inpatients, outpatients, bed occupancy and
number of employees. In addition, floor area, degree days and monthly unit energy prices were also
considered as inputs for the monthly models.

Due to the complexity of hospital energy infrastructure, the choice of explanatory variables is a very
important step in modelling forecasting methods. In regression models, some variables are considered
as explanatory variables and the target variable is considered as the dependent variable. An explanatory
variable must have an impact on the target value at a meaningful statistical level. To explore this effect,
we used Pearson correlation analysis, which ensures that it is possible to decide whether input extraction
from the model is necessary. The effect of the input variables shown in Table 3 and mentioned above will
be analyzed in the next section.
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3.2. Data preparation

The data preparation section mainly includes various pre-processes such as outlier detection, missing
value extraction, correlation/feature extraction and data normalisation. Data pre-processing was per-
formed to prepare the input and output datasets for more accurate prediction models.

3.2.1. Outlier detection

An outlier is an observation that appears distant and deviates from the overall pattern in a sample. The
outlier detection method is considered to eliminate the potential outliers in the raw data to obtain qualified
data. There are various approaches to outlier detection and in this context we have adopted the modified
Z-score method [23] to eliminate outlier values from datasets. In this method, the median and the median
of the absolute deviation of the median (MAD) are used instead of the mean and the standard deviation
of the sample. For the dataset of the size m

|xt − x̃| ∀t = 1, 2ani m (1)

MAD = median {|xt − x̃|} (2)

modified Z − score = Mi =
0.6745 (xt − x̃)

MAD
(3)

xt =

{
mean(X) + 2 std(X) if Mi > 3.5 (an outlier )
xt otherwise

(4)

where x̃ is the median of sample dataset, X is the random variable of all xt values, mean(X) is the
average value of X , whereas std(X) is the standard deviation of X . Equation (1) is a new data set
obtained from an absolute difference between each value and the median. Equation (2) is the new median
of the new data set. The modified Z-score is acquired by equation (3). After outliers are determined, there
are a few options related to evaluating the outliers, where one of them is an assignment of a new value
to the outlier. In this context, we have adopted equation (4). Outlier analysis has been conducted for
historical meteorological data in particular.

3.2.2. Missing values

The missing values in our datasets are added to dataset using a data interpolation method as shown below.
Equation (5) ensures to find missing values with arithmetic mean of two consecutive available values.

xt =


xt−1 + xt+1

2
xt is missing value, xt−1 and xt+1 are available values

xt−1 + xt−2

2
xt and xt+1 are missing values

(5)

3.2.3. Correlation analysis and feature extraction

Correlation analysis is an approach to confirming the degree of relationship between two or more vari-
ables. In forecasting models, the degree of relationship between explanatory variables and target variables
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is significant from the point of view of model accuracy. If there is no relationship between two variables,
it means that this explanatory variable does not affect the target variables. Consequently, the related
input variables or characteristics must be removed from the data set. In this study, we used Pearson’s
correlation, which is commonly used in data analysis. Correlation values vary between -1 and +1, indi-
cating strong negative and positive correlations, while 0 indicates no linear correlation. The correlations
obtained using Pearson’s analysis between the explanatory variables and the target values are shown in
Table 4.

Table 4. Correlation values between energy consumption data and related inputs

Hourly electricity (2018) Dry-bulb temp. Feel-like temp. Relative humidity WindSpeed
0.616 0.585 –0.537 0.165

Daily electricity (2018) Dry-bulb temp. Feel-like temp. CDD
0.626 0.601 0.753

Monthly electricity (2012–2018)

Outpatients Inpatients Employee Bed occupancy
0.162 0.121 0.05 –0.331

Elec. unit price CDD Floor area
–0.223 0.82 0.226

Monthly electricity (2012–2018)

Outpatients Inpatients Employee Bed occupancy
0.039 0.112 0.147 0.693

Nat. gas unit price HDD Floor area
0.028 0.979 –.0118

Different criteria can be applied to select input variables based on the correlation results shown in
Table 4. In this study, the frontier correlation value for the selection has been accepted as 0.1. In this
manner, inputs with correlation values less than 0.1 were excluded from the model. In hourly and daily
datasets, the correlations between explanatory variables and target values are higher than 0.1. On the
other hand, in monthly electricity data, the employee variable has been excluded from the model with
its 0.050 correlation coefficient. Also in monthly natural gas data, the outpatients variable, natural gas
unit price variable, and floor area variable have been excluded from the model with their low correlation
coefficients.

3.2.4. Data normalization

Before the application of machine learning algorithms, data have been normalized with the min-max
normalization method. Normalization is a process of making model data in a standard format so that the
training is improved, accurate, and faster.

yi =
xi −min(x)

max(x)−min(x)
(6)

where yi is the normalized value, xi is the sample value, max(x) is the maximum value, and min(x) is
the minimum value in equation (6).

3.2.5. Seasonality adjustment for monthly datasets

A dummy variable is a numerical variable that represents categorical data in regression models. Once
a categorical variable has been recoded as a dummy variable, the dummy variable can be used in regres-
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sion analysis just like any other quantitative variable. This method transforms the categorical variable
into a set of binary variables (also known as dummy variables). Dummy encoding uses N − 1 features
to represent N labels/categories. It is used to transform categorical variables such as type of day, time of
day and type of season.

3.2.6. Dummy variables for categorical features

Seasonality is the presence of variations that occur at specific regular intervals of less than one year, such
as weekly, monthly or quarterly. In this study, instead of using seasonal indices to eliminate seasonality,
we have preferred to group months with similar consumption behaviour to create seasons and use them
as categorical variables in the model. As shown in Figure 2 and Table 5, we have grouped the months as
a season, which includes consecutive months with similar consumption that provide both electricity and
natural gas consumption curves.

Figure 2. Monthly average energy fluctuations in consumption per one year for the hospital

Table 5. Season groups and included months

Season group Month
Winter January, February
Spring March, April
May May
Summer June, July, August, September
October October
Autumun November, December

3.3. Regression algorithms in machine learning

In machine learning approaches, it is used various kinds of algorithms allow machines to learn the re-
lationships within the data handled and make predictions based on patterns or rules identified from the
dataset. Three main types of machine learning are supervised learning (predictive), unsupervised learning
(descriptive), and reinforcement learning respectively [17]. Supervised learning algorithms are trained
on well-labelled data and they predict the outputs based on this data. This training dataset consists of
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inputs and correct outputs that allow the model to learn over time. Supervised learning can be used for
two types of problems which are regression and classification. In this study, we have used regression
algorithms, which are used to understand the relationship between dependent and independent variables
in order to make forward projections. In the other words, the future values are predicted with the help of
regression algorithms in Machine Learning.

Regression algorithms can be divided into three main categories that are linear single, non-linear
single, and non-linear ensemble algorithms. The ML regression algorithms used are the following.

3.3.1. Multiple linear regression

Multiple linear regression is an extension of simple linear regression because more than one explanatory
variable is needed to predict the target variable. Multiple linear regression is a machine learning algorithm
that allows us to examine how multiple independent (predicted) variables relate to a dependent variable.
A dependent variable is modelled as a function of several independent variables with corresponding
coefficients, with the constant term. The multiple regression equation can be written as follows;

Y = b0 + b1X1 + · · ·+ bkxk + ε (7)

where b0–bk are the regression coefficients to be estimated according to observations in equation (7). The
last term in the formulation,ε, shows the random error and is referred as the residual for checking the
overall significance of the model and each regression coefficient [6]. In the multiple regression analysis,
we have to avoid multicollinearity between the independent variables. On the other hand, it is available
some other assumptions such as normality, linearity.

3.3.2. Ridge regression

Ridge regression, a variant of linea one, is a shrinkage method commonly used in machine learning [24]
to deal with the estimation of models with multicollinearity between explanatory variables. Conven-
tional ordinary least squares (OLS) predictor aims to minimize the residual sum of squares, whereas
ridge regression aims to minimize the residual sum of squares (RSS) by imposing a penalty on the OLS
parameters. Mathematical representation of the ridge regression as follows [37];

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

β2
j (8)

where λ

p∑
j=1

β2
j is a shrinkage penalty function and λ is a tuning parameter that shrinks parameter esti-

mates towards zero.

3.3.3. Lasso regression

Least absolute shrinkage and selection operator (LASSO) is another linear shrinkage estimator like ridge
regression. It also adds a penalty for non-zero coefficients, but unlike ridge regression, which penalizes
sum of squared coefficients, lasso penalizes the sum of their absolute values. equation (9) shows a general
formula for lasso regression [24]
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n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj| = RSS + λ

p∑
j=1

|βj| (9)

3.3.4. Support Vector Regression

Another machine learning method support vector machine (SVM) is a data mining method put forward by
Vapnik [42, 43], which is used for classification, regression, estimation, pattern recognition etc. making
with linear or non-linear (with kernel functions) algorithms. In this study, we have an interest in the non-
linear SVR algorithm, where the kernel functions transform the data into a higher dimensional feature
space to make it possible to perform the linear separation. The main ideas behind the SVR are minimizing
error are individualizing the hyperplane which maximizes the margin [35].

For example, we have a training data {(x1, x1) , . . . , (xn, xn)} where all x values belong to X which
is the space of input patterns. In SVR, the main goal is to find a function f(x) which has that has at most
ε deviation from the obtained outputs yi for all the training data, and thus, is as flat as possible. If our
errors are less than ε, this situation is can be tolerated, but otherwise not. The f(x) linear function is

f(x) = w(x+ b) (10)

where b is the deviation vector, w is weight and x is a linear input value. Here, we can add slack variables
ξ and ξ∗ and we can write this problem as a convex optimization problem

min =
1

2

∥∥w2
∥∥+ C

n∑
i=1

(ξi + ξ∗i ) (11)

subject to
yi − wxi − b ≤ ε+ ξi

wxi + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, 2, . . . , n

(12)

In equation (11), C is a constant that indicates the penalty coefficient for the purpose of set up an
control mechanism on the slack variables. Furthermore, the constant C > 0 determines the trade-off
between the flatness of f and the amount up which deviations larger than ε are tolerated. ε indicates
insensitive loss function.

To solve this problem, a standard dualization using Lagrangian multipliers will be into consideration;

L :=
1

2

∥∥w2
∥∥+ C

n∑
i=1

(ξi + ξ∗i )−
n∑

i=1

(ηiξi + η∗i ξ
∗
i )−

n∑
i=1

αi (ε+ ξi − yi + wxi + b)

−
n∑

i=1

α∗
i (ε+ ξ∗i + yi − wxi − b)

(13)
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in equation (13), L is a Lagrangian and ηi, η
∗
i , αi, α

∗
i are Lagrangian multipliers. Dual variable in equation

(13) have to satisfy positivity constraint as follow;

η∗i , α
∗
i , ηi, αi ≥ 0 (14)

The dual Lagrangian form is

max−1

2

n∑
i,j=1

(αi − α∗
i )
(
αj − α∗

j

)
(xi, xj)− ε

n∑
i=1

(αi + α∗
i ) + yi

n∑
i=1

(αi − α∗
i ) (15)

subject to
n∑

i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C] (16)

Based on the Karush–Kuhn–Tucker theorem, regression model, and w value are expressed by:

w =
n∑

i=1

(αi − α∗
i )xi (17)

f(x) =
n∑

i=1

(αi − α∗
i ) (xi, x) + b (18)

When data is not linear, a transformation function will be applied from one dimension to another one,
so that now data is easily separable using a hyperplane. For the non-linear problem, we use the same
equations (11)–(18) with some differences such as using Kernel functions. This, for example, could
be achieved by simply pre-processing the training patterns by xi mapφ. For example, in equation (11),
instead of x input value, we use φ (xi) kernel transfer function for the inputs. Similarly, in equation (18),
instead of (xi, x) statement, we use K (xi, xj) kernel function whose value equals the inner product of
two vectors, xi and xj , in the feature space φ (xi) and φ (xj). There are different kernel functions such
as radial basis kernel, polynomial kernel, etc. In this study, the commonly used kernel functions in SVR
include linear, radial basis function (RBF), polynomial, and sigmoid will be used:

• linear kernel
K (xi, xj) = xixj (19)

• radial basis kernel
K (xi, xj) = exp (−a1 |xi − xj|)2 (20)

• polynomial kernel
K (xi, xj) = (a1xixj + a2)

d (21)

• sigmoid kernel
K (xi, xj) = tanh (a1 (xixj) + a2) (22)

3.3.5. Random Forest Regression

Random Forest is an ensemble machine learning technique introduced by Breiman [7], which is based on
decision trees. It is based on building decision trees on a training dataset to obtain its prediction results,
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and mean prediction of individual trees. In other words, it is an extension of the decision tree algorithm,
in which each decision tree is trained and all of these trees are combined. Random Forest algorithm
application steps can be defined as follows [7];

• Choose at random k data points from the training set.
• Build the decision trees associated with the selected data points as subsets.
• Choose the number N of trees you want to build.
• Repeat steps 1 and 2
• For a new data point, make each one of your N -tree trees predict the value of y for the data point in

question and assign the new data point to the average across all of the predicted y values.

3.3.6. Extreme Gradient Boosting (XGBoost) algorithm for regression

XGBoost is an acronym for the eXtreme Gradient Boosting algorithm. The XGBoost is a scalable end-
to-end tree boosting system approach that uses a gradient boosting framework and is also a decision
tree-based ensemble method [9, 10]. XGBoost is a powerful approach for building supervised regression
models. When the XGBoost algorithm is applied to regression problems, new regression trees are con-
tinuously added and then the residuals of the previous model are fitted by the newly generated decision
tree. Each decision tree calculates the feature and threshold with the best branching effect and completes
the split construction.

3.4. Hyperparameters optimization

Hyperparameters are any parameters that can be set arbitrarily by the user before training begins. Ma-
chine learning models include hyperparameters that we need to set to fit the model to our data set.
A model parameter is internal and cannot be interfered with, whereas hyperparameters are external and
can be optimised using different approaches. Optimisation of hyperparameters plays an important role in
increasing the prediction accuracy of the proposed model.

In this study, we have used random search, grid search and Bayesian optimisation algorithms for
hyperparameter optimisation. Grid search is an exhaustive search through a set of manually specified
hyperparameter values. Random search, on the other hand, randomly searches the grid space instead of
performing an exhaustive search, i.e., it tries randomly selected combinations of parameters.

Bayesian optimization provides a technique, based on the Bayes theorem, for constructing a posterior
distribution of functions that best describes the function to be optimised. Bayesian optimisation has two
main features, which are (1) a Bayesian statistical model for modelling the objective function and (2)
an acquisition function for deciding where to sample next. Once the objective model is determined with
respect to an initial space-filling experimental design, often consisting of points chosen uniformly at
random, they are used iteratively to allocate the remainder of the budget of N function evaluations, as
shown in the Algorithm 1 [18].

Three optimization algorithms optimize the model parameters that are shown in Table 6 using a re-
peated cross-validation (rcv) technique as a performance metric. As the resampling method for the train
set in this study, we have adopted cross-validation with 10-fold samples to prevent overfitting and im-
prove the robustness of the results. Multiple linear regression does not have any hyperparameters, so we
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have just applied the cross-validation method. On the other hand, ridge and lasso regression methods
include lambda (λ) value that is a penalty parameter as called L2-norm and L1-norm respectively. To
improve the Support Vector Regression (SVR) model’s accuracy, three major parameters have been taken
into consideration including regularization constant (C), kernel function (radial, polynomial and linear),
and gamma. C is the penalty parameter and gamma defines how far influences the calculation of a plausi-
ble line of separation. Furthermore, for SVR models based on polynomial kernel function, we have also
taken into consideration scale and degree hyperparameters.

Algorithm 1 Bayesian optimization algorithm
1: Input: Initial points n0, total number of iterations N
2: Place a Gaussian process prior on f
3: Observe f at n0 points according to an initial space-filling experimental design. Set n← n0

4: while n ≤ N do
5: Update the posterior probability distribution on f using all available data
6: Let xn be a maximizer of the acquisition function over x, where the acquisition function is computed using

the current posterior distribution
7: Observe yn ← f(xn)
8: Increment n← n+ 1
9: end while

10: Return a solution: either the point evaluated with the largest f(x), or the point with the largest posterior

Table 6. Hyperparameters optimization components for the regression algorithms

Algorithm Validation Hyperparameters Optimum algorithm
Multiple linear regression RCV manual
Ridge regression RCV lambda grid, random
Lasso regression RCV lambda grid, random

Support Vector Regression RCV
regularization constant (c),
gamma, degree, scale and kernel function grid, random,BO

Random Forest RCV mtry, ntree grid, random, BO

XGBoost RCV
nrounds/max-depth/gamma/colsample-bytree
/min-child-weight/sub-sample/lamda/alpha grid, random, BO

The optimization for the Random Forest is about deciding mtyr and ntree hyperparameters. The
mtyr is number of variables randomly sampled as candidates at each split, while the ntree is number of
trees to grow. There are nine hyperparameters in the XGBoost algorithm: max depth, min child weight,
nrounds, η, γ, subsample, colsample bytree, α and λ.

3.5. Performance indicators

In this study, as a usual way of measuring the accuracy of the forecasts, mean absolute error (MAE),
root mean squared error (RMSE), coefficient of determination (R2), and mean absolute percentage error
(MAPE) have been used. While it is desired that the values belonging to MAE, RMSE, and MAPE are
close to zero in terms of accuracy of the models, R2 values close to one indicate that the predicted values
perfectly match actual values.

A mathematically forecasting error can be defined as follows

ek = yk − yk (23)
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where in equation (23), ek is the error at the element k, yk is the actual value and yk is the predicted value.
The four indicators are defined as follows

MAE =
1

n

n∑
k=1

|ek| (24)

RMSE =

√√√√ 1

n

n∑
k=1

e2k (25)

R2 = 1−
∑N

i=1 e
2
k

yk − y′k
(26)

MAPE =
100

n

n∑
k=1

|ek|
|yk|

(27)

The MAE, RMSE, R2, and MAPE indicators are defined with equations (24)–(27) can enable a com-
parison of the regression algorithms for all datasets in terms of difference between the predicted and
expected values of the hospital electricity and natural gas demands.

4. Results and discussions

In this part, six different machine learning regression algorithms have been performed on each dataset for
electricity and natural gas forecasting, including four single learning models and two ensemble learning
models. This section aims to present the efficiency of different supervised machine learning regression al-
gorithms with hyperparameter optimisation over the considered contrast data-driven models for accurate
hospital energy consumption forecasting. The results of each dataset will be handled separately, which
were obtained using R programming software. The average value of RMSE, MAPE, R2, and MAE ac-
curacy metrics has been acquired after 10 experiments were considered for the performance evaluation
of optimized six different regression algorithms. All the models and hyperparameters optimization were
performed in a computer with AMD Ryzen 5 3500U CPU @2.10 GHz, 8 GB of RAM memory.

Although monthly electricity and natural gas consumption in healthcare facilities is considered and
analyzed in general, it is clear that short-term consumption, such as daily and hourly, is very important
for the predictions to be made in the context of energy management. In this context, monthly, daily and
hourly electricity and natural gas consumption datasets were used to investigate the prediction perfor-
mance of the proposed regression algorithms at different time periods. Input variables of each dataset
are determined based on time granularity. For example, monthly consumptions are influenced by more
aggregate characteristics such as number of patients, floor area, etc., whereas hourly consumption are
influenced by more specific characteristics such as weather conditions, type of day or type of day period.

4.1. Results of default models

As a first step, the related analyses were carried out to find the results of non-optimized models that have
default values. For example, Table 7 shows the results of the regression default models for the daily
electricity dataset.
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Table 7. Daily electricity dataset prediction accuracy on the training and testing datasets

Regression algorithm RMSE [kwh] R2 MAE [kwh] MAPE [%]
Training

MLR 2,366.07 0.69 2,036.22 16.22
Ridge 2,475.65 0.67 2,113.59 17.05
Lasso 2,446.51 0.68 2,100.34 16.89
SVR-radial 2,220.74 0.73 1,804.79 14.97
SVR-poly 2,596.79 0.62 2,135.61 17.29
SVR-linear 2,393.45 0.68 2,024.45 16.42
Random Forest 1, 990.56 0.79 1, 731.06 14.08
XGBoost-linear 2,390.93 0.68 2,053.53 16.33

Testing
MLR 1,749.28 0.35 1,455.63 12.47
Ridge 1,842.11 0.32 1,548.32 13.63
Lasso 1,842.67 0.31 1,535.26 13.5
SVR-radial 1,930.58 0.33 1,634.32 14.24
SVR-poly 2,352.56 0.15 1,967.22 17.1
SVR-linear 1,885.58 0.3 1,531.97 13.31
Random Forest 1, 602.99 0.48 1, 333.71 11.72
XGBoost-linear 1,833.35 0.29 1,499.53 12.82
XGBoost-tree 1,833.35 0.29 1,499.53 12.82

As shown in Table 7, the Random Forest model outperforms the other eight models with an RMSE of
1602.99 kWh, MAPE of 11.72% and MAE of 1331.71 kWh for the testing set. It also outperforms by a
significant margin with an RMSE of 1990.56 kWh, MAE of 1731.06 kW and MAPE of 14.08% for the
training set. For both training and testing data sets, Random Forest gives the highest results in terms of R2

with 0.79 and 0.48, respectively, where R2 indicates that the level of predicted values matches the actual
values. On the other hand, the SVR-radial method is the second most suitable method for both the testing and
training sets, while SVR-poly has the worst results among all the models for both the training and test sets.

Table 8. Monthly datasets prediction accuracy on testing data

Regression algorithm RMSE [kwh] R2 MAE [kwh] MAPE [%]
Training

MLR 61927.80 0.98 45435.17 19.34
Ridge 71285.64 0.97 59170.10 27.14
Lasso 45239.07 0.99 34956.08 17.42
SVR-radial 128118.80 0.89 92987.06 40.00
SVR-poly 140521.60 0.80 97713.40 36.16
SVR-linear 47867.68 0.98 37978.87 17.33
Random Forest 70475.84 0.96 55958.61 23.01
XGBoost-linear 90057.57 0.92 59414.30 19.42
XGBoost-tree 90057.57 0.92 59414.30 19.42

Training
MLR 76233.29 0.66 57580.65 13.63
Ridge 85768.55 0.61 65421.82 15.45
Lasso 94154.62 0.65 67770.23 14.26
SVR-radial 85913.99 0.67 70904.15 17.38
SVR-poly 70569.21 0.68 57180.74 13.85
SV R− linear 75420.23 0.68 56714.94 13.40
Random Forest 79873.45 0.73 63940.37 15.79
XGBoost-linear 84629.65 0.62 69929.11 17.91
XGBoost-tree 84629.65 0.62 69929.11 17.91
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For monthly datasets, the results of the testing set have been evaluated as displayed in Table 8. Con-
sidering the two datasets depending on the performance indicators, the prediction results show that the
prediction performance of SVR-linear on the monthly electricity dataset has the best performance values
including RMSE value of 75420.23 kWh, MAE value of 56714.94 kWh, R2 value of 0.68 and MAPE
value of 13.40%.

Similarly, for the monthly natural gas testing data set, the Lasso regression has the best values with
an RMSE value of 45239.07 kWh, MAE value of 34956.08 kWh, R2 value of 0.99 and MAPE value of
17.42%. As can be seen from the results, the RMSE and MAE values are not compatible with the MAPE
values, so this incompatibility is due to the size of the datasets, also the RMSE value is affected by the
size of the sample and is more sensitive to outliers than the MAPE.

Finally, considering the hourly data set, the results show that XGBoost-tree is the most effective model
for predicting energy consumption for the training set, giving the best values of RMSE (118.62 kWh),
MAE (90.43 kWh), R2 (0.71) and MAPE (16.91%). On the other hand, the SVR-radial model has the
best results with an RMSE of 100.34 kWh, MAE of 78.69 kWh, R2 of 0.49 and MAPE of 16.80% for
the test set.

Furthermore, the computation time of the regression algorithms in the non-optimized situation was
also examined. The computation times spent for model training and testing in an aggregate manner are
listed in Table 9.

Table 9. Computation time of regression algorithms in default situation [s]

Regression algorithm Monthly natural gas Monthly electricity Daily electricity HourlyElectricity
MLR-default 0.083 0.051 0.152 0.099
Ridge-default 0.679 0.637 1.340 0.819
Lasso-default 0.498 0.509 1.045 0.715
SVR-radial-default 0.032 0.042 0.078 6.911
SVR-poly-default 0.021 0.017 0.050 3.419
SVR-linear-default 0.023 0.020 0.052 3.372
RF-default 0.182 0.200 0.207 9.586
XGBoost-linear-default 0.729 0.848 0.916 1.787
XGBoost-tree-default 0.729 0.797 0.987 2.300

Although computation time is a more meaningful performance indicator in hyperparameter optimisa-
tion, it is also important to state how much time is required for each model in the default situation. The
computation time depends on many factors such as the size of the data, the type of model and the techni-
cal specifications of the computer. As can be seen from Table 9, the XGBoost models have much longer
running times than the other supervised regression models for three datasets, while the Random Forest
model has the longest running time at 9.586 seconds for the hourly dataset. The MLR model requires less
computation time than other linear and non-linear techniques in the hourly dataset, while SVR-related
models have minimum computation time in the remaining datasets.

4.2. Results of optimized models

Regardless of the results obtained for non-optimised hyperparameter values, the best model order may
change as a result of hyperparameter optimisation. For hyper-parameter optimisation, grid search and
random search were applied to Ridge and Lasso regression, while Bayesian optimisation was applied to
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SVR, Random Forest and XGBoost models in addition to grid and random search. Once the hyperpa-
rameters have been optimised for the daily electricity dataset, the results obtained are shown in Table 10.
Considering the tuned prediction results for the test dataset, the Ridge regression model optimised with
grid search has the best values with its RMSE of 1749.28, MAE of 1455.63 kWh, R2 of 0.346 and MAPE
of 12.47% values between the individual learning algorithms. The ridge regression model optimised with
grid search has reached its minimum RMSE metric at lambda value 0 as shown in Figure 3.

Figure 3. The RMSE and Lambda values for the optimized ridge regression

Figure 4. RMSE values and iterations for the optimized XGBoost-tree model

Among the ensemble regression algorithms, the XGBoost-tree model optimised with Bayesian opti-
misation has the best performance metric values with its RMSE of 1646.87 kWh, MAE of 1250.94 kWh,
R2 of 0.5 and MAPE of 10.06%. It can be concluded from the results that the XGBoost-tree model
optimised with Bayesian optimisation has the best performance values among all optimised regression
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algorithms. In this direction, it is generally expected that ensemble learning algorithms have better perfor-
mance values than single learning algorithms. As shown in Figure 4, the XGBoost-tree algorithm for the
daily data set reaches its minimum RMSE value at the 800th iteration when hyperparameter optimisation
is performed using Bayesian optimisation for the training set.

Figure 5. The least suitable two models among all optimized for testing set

Figure 6. The best fitted two models among all optimized for testing set

Figure 5 displays two regression models SVR-poly and XGBoost-linear models optimized with Baye-
sian optimization and grid search, which have the worst accuracy results among all optimized models, in
particular, SVR-poly model has large deviations. Figure 6 shows a comparison of the observed testing
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set values with the XGBoost-tree and Random Forest models, which are the best models from the point
of minimum RMSE, MAE, MAPE, and maximum R2 values. MAE indicator of XGBoost-tree model is
lower compared to the MAE of Random Forest, while its RMSE is higher. In this case, the MAPE and R2

values have been taken into consideration and these two performance indicators have better values in the
XGBoost-tree model, so XGBoost-tree model optimized with Bayesian optimization has been evaluated
as the best fitted model for daily electricity consumption.

Looking at the XGBoost-tree performance metrics in terms of non-optimised and optimised models,
shown in Tables 7 and 10, the approximate improvements achieved were RMSE of 10.2%, MAE of
16.6%, R2 of 72% and MAPE of 21.5%. These results show that hyperparameter optimisation is very
significant in increasing model accuracy in terms of prediction. Using the same computer specifications,
different regression models were compared in terms of the CPU time required to obtain the optimised
model results, as shown in Figure 7 and Table 10. Among the hyperparameter optimisation methods,
grid search and Bayesian optimisation require more time than random search. In particular, when grid
search is applied to ensemble algorithms, quite a lot of time is spent. Looking at the computation time
from the point of view of the regression models, the XGBoost-tree model optimised with grid search
has a maximum computation time of 4106.97 seconds. On the other hand, the Lasso regression model
optimised with random search has a minimum running time of 2.84 seconds among all optimised models.
Moreover, the trade-off between computation time and accuracy can be considered as a decision point
for the right model selection.

Figure 7. Computing times of the optimized algorithms for daily electricity

For example, the Random Forest model optimized by random search, which has values close to the
XGBoost-tree model in terms of performance indicators, and which has a very short computation time of
45.99 seconds, can be considered as a preferable option.

All the hyperparameter optimisation steps performed for the daily electricity dataset were also applied
to three other datasets, namely monthly electricity, monthly natural gas and hourly electricity. Table 11
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Table 10. The results of the optimized models for daily electricity prediction

Model Method RMSE [kwh] R2 MAE [kwh] MAPE [%] Computation
Training time [s]

Ridge random search 2368.94 0.68 2038.92 16.23
Lasso 2366.40 0.69 2036.83 16.22
SVR-radial 2139.42 0.75 1680.46 13.7
SVR-poly 2161.04 0.74 1717.51 13.87
SVR-linear 2399.43 0.68 2050.35 16.59
Random Forest 1995.00 0.79 1733.89 14.07
XGBoost-linear 1317.67 0.9 987.11 7.48
XGBoost-tree 1967.67 0.78 1691.49 13.39

Ridge grid search 2366.07 0.69 2036.22 16.22
Lasso 2366.41 0.69 2036.84 16.22
SVR-radial 2048.40 0.76 1625.66 12.96
SVR-poly 2405.90 0.68 2014.32 16.49
SVR-linear 2392.55 0.68 2045.44 16.55
Random Forest 1994.13 0.79 1728.68 14.06
XGBoost-linear 1204.28 0.90 676.71 4.94
XGBoost-tree 1986.89 0.78 1697.25 13.49

SVR-radial Bayesian optimization 2080.47 0.76 1678.20 13.48
SVR-poly 2132.76 0.75 1681.22 13.65
SVR-linear 2391.99 0.68 2043.89 16.55
Random Forest 1982.90 0.79 1720.66 13.98
XGBoost-linear 1717.16 0.86 1400.56 10.18
XGBoost-tree 2594.94 0.73 2189.97 15.66

Testing
Ridge random search 1766.82 0.33 1458.63 12.49 7.22
Lasso 1754.08 0.34 1456.19 12.47 2.84
SVR-radial 2177.99 0.3 1780.34 15.7 27.76
SVR-poly 2296.26 0.27 1774.18 15.61 21.41
SVR-linear 1842.21 0.32 1517.49 13.23 125.85
Random Forest 1596.08 0.48 1330.45 11.66 45.99
XGBoost-linear 2006.43 0.35 1633.48 14.25 63.45
XGBoost-tree 1658.15 0.45 1307.01 11.47 480.74

Ridge grid search 1749.28 0.35 1455.63 12.47 11.74
Lasso 1754.14 0.34 1456.20 12.47 4.83
SVR-radial 2066.19 0.35 1674.20 14.73 554.52
SVR-poly 1883.16 0.32 1553.98 13.57 30.91
SVR-linear 1841.97 0.32 1505.41 13.11 68.39
Random Forest 1598.44 0.48 1337.22 11.73 1856.92
XGBoost-linear 2360.65 0.26 1943.72 16.87 3081.93
XGBoost-tree 1650.39 0.46 1312.21 11.43 4106.97

SVR-radial Bayesian optimization 1972.27 0.38 1604.81 14.09 1450.27
SVR-poly 2360.26 0.26 1814.17 16.02 507.42
SVR-linear 1850.44 0.31 1506.54 13.13 2048.09
Random Forest 1595.53 0.48 1332.24 11.65 218.08
XGBoost-linear 1688.45 0.44 1367.70 11.72 2256.88
XGBoost-tree 1646.87 0.50 1250.94 10.06 1624.22

shows the best-fitting models ranked in the first two positions for three datasets. On the other hand,
Figure 8 shows the observed and predicted values in terms of hourly and monthly data sets for the



Analysing and forecasting the energy consumption. . . 187

reference hospital based on the results listed in Table 11. The results show that when ensemble learning
algorithms are considered, two of the most popular models, XGBoost and Random Forest, give the best
results for constructing the energy consumption prediction model of the reference hospital.

Table 11. The results of the optimized models for the other three datasets

Energy
type Rank Model Method Data

RMSE
[kWh] R2

MAE
[kWh] MAPE

Computation
Time [s]

Monthly NG 1 XGBoost-tree grid search training 44588.05 0.99 29708.33 11.08 4185.83
testing 44432.21 0.986 34041.24 14.88 4185.83

2 Lasso grid search training 63385.4 0.97 37907.41 10.54 4.38
testing 45081.1 0.984 31921.63 11.64 4.38

Monthly E 1 XGBoost-tree grid search training 34533.17 0.91 27055.88 7.4 4170.28
testing 69528.39 0.72 55579.62 14.3 4170.28

2 XGBoost-linear random search training 40.72 1 28.38 0.008 83.41
testing 68184.01 0.75 58050.64 14.67 83.41

Hourly E 1 Random Forest grid search training 118.27 0.72 91.26 17.16 15212.99
testing 101.13 0.51 79.89 17.57 15212.99

2 XGBoost-tree random search training 124.74 1 0.68 96.12 985.66
testing 68184.01 0.51 80.04 17.39 985.66

Figure 8. The best fitted models for monthly naturalgas dataset

Considering monthly natural gas consumption, the testing dataset belonging to monthly natural gas
consumption reached its best accuracy metrics thanks to XGBoost-tree model optimized with grid search,
where the performance indicators of this model are RMSE value of 44432.21 kWh, MAE value of
34041.24 kWh, R2 value of 0.986, and MAPE value of 14.8%.

It reached this optimal situation with a computation time of 4185.83 seconds. On the other hand, the
second best model, the lasso regression, is almost identical to the XGBoost model in terms of the test
set. Considering the computation time, the lasso regression seems to be a reasonable option to predict
the monthly natural gas consumption for the reference hospital.
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For monthly electricity consumption data, empirical results indicate that the most accurate models are
the XGBoost-tree and XGBoost-linear models, optimised with grid search and random search, respec-
tively. Compared to the results for monthly natural gas data, the prediction models have a lower fit here,
as shown in Table 11 and Figure 8. As the results of the two models are close to each other, the compu-
tation time can be evaluated as a distinguishing indicator that makes a trade-off with the accuracy for the
two models mentioned. This means that the random search optimised XGBoost-linear model could be
used instead of the XGBoost-tree model to predict monthly electricity.

The hourly data set with the Random Forest optimised with grid search model achieved the best
accuracy indicators among all optimised models (Table 11). As mentioned earlier, the SVR-radial model
outperformed all other methods in terms of all performance indicators for this dataset in the default
state. Although the Random Forest model has a very good performance compared to the SVR-radial
model on the training set, the performance values are quite close, especially on the test set, and even the
SVR-radial model has better results on some performance metrics. Considering the running times of the
Random Forest and SVR-radial models as 7606.49 and 3.84 seconds, respectively, the SVR-radial model
is obviously a pretty good option for the hourly data set.

4.3. Results of the feature importance analysis

The energy consumption behaviour of healthcare buildings can be described as continuous operation and
high energy use intensity, so the explanatory variables for energy consumption data sets need to be defined
comprehensively. The electricity and natural gas consumption of healthcare facilities is influenced by
several factors such as building structure, staff and patient intensity, weather conditions, energy systems,
etc.

Figure 9. Feature importance analysis in XGBoost model for daily electricity prediction

However, the impact and number of these characteristics changes depending on the temporal granular-
ity of the consumption data. Furthermore, it is obvious that these characteristics have different weights
on the energy consumption. In the data preparation section, the feature selection process has been carried
out and some features have been excluded from the inputs depending on the correlation analysis. This
section describes the importance of the features on the target values in each dataset when used in the
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best-fit regression model. For example, looking at the daily data set, the daily dry bulb temperature value
appears to be the most important feature, as shown in Figure 9. Healthcare facilities have HVAC systems
and large chillers for cooling on hot days. As the temperature reading increases during hot months, elec-
tricity consumption increases due to the need for cooling. Therefore, dry bulb temperature has a large
impact on electricity consumption, especially on hot days. Similarly, for the hourly dataset, the outdoor
dry bulb temperature is the largest contributor to electricity consumption for our reference hospital, as
shown in Figure 10.

Figure 10. Feature importance analysis in Random Forest model for hourly electricity prediction

Figure 11. Feature importance analysis in XGBoost model for monthly natural gas prediction

Finally, for the monthly datasets of both natural gas and electricity, as shown in Figures 11 and 12,
the most important input characteristics that have an impact on natural gas and electricity consumption
are heating degree days and cooling degree days. From the importance analysis it can be concluded that
weather-related input factors have a large impact on the energy consumption of healthcare facilities.
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Figure 12. Feature importance analysis in XGBoost model for monthly electricity prediction

The second most important features after temperature-related features for four datasets are day type for
daily electricity, relative humidity for hourly electricity, bed occupancy rate for natural gas and summer
season which is a categorical variable for monthly electricity. Also, in the four datasets, some features
have no effect when using the regression models specified on the target value.

5. Conclusion

In recent years, as the scope of services has expanded, the energy requirements of healthcare facilities
have become one of the most important factors in terms of cost and supply methods. Energy planning in
such energy-dependent buildings cannot be achieved without an understanding of past, present and future
energy consumption. Therefore, accurate estimation methods of the energy load demand become crucial
to determine the energy supplier selection process for the healthcare facility. By analysing the complex
energy system of the healthcare facility, this study constructed various predictive models for electricity
and natural gas consumption using machine learning regression algorithms (MLR, SVR, XGBoost, etc.).

This study compared six different machine learning regression models for predicting energy consump-
tion at three different time granularities, including four single learning models and two ensemble learning
models. In addition, the SVR algorithm was evaluated as three different models depending on the kernel
function used, while the XGBoost algorithm was evaluated as two different models, tree and linear. In
the default situation, i.e., with non-optimised hyperparameters, the empirical results indicated that the
most accurate models in the single and ensemble learning categories were SVR and RF, respectively,
especially for test sets. On the other hand, once the hyperparameters are optimised based on grid search,
random search and Bayesian optimisation, the ensemble learning algorithms, in particular the XGBoost
related models, come out on top. In addition, SVR-related models and lasso regression are notable al-
ternative single machine learning algorithms. It was also found that the effectiveness of MLR, lasso and
ridge regression decreased as the data size increased and that SVR, RF and XGBoost methods performed
much better for daily and hourly data sets.
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Many meteorological, calendar and occupancy variables are included to improve the quality of the
predictions, and all variables are distributed across the datasets based on their time periods. Feature
importance analysis was used to obtain a hierarchical ordering of the input features based on their impor-
tance to the target output.

Although the regression algorithms used perform well in forecasting electricity and natural gas de-
mand, different approaches such as Long Short Term Memory (LSTM), reinforcement learning methods
can also be used to observe the effects in a wide range. Furthermore, future research can focus on differ-
ent hyper-parameter optimisation algorithms such as Genetic Algorithms, Particle Swarm Optimisation,
etc. to achieve better model accuracy.
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