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Abstract

The paper focuses on the problems of linear programming (LP) with generalized fuzzy numbers (GFNs) as coefficients of
the objective function. It is necessary to characterize consistent arithmetic operations to lower the error and information
loss compared to the minimum operator usage and normalization in cases where experts are not completely certain of their
subjective opinions. The uncertainty is eliminated using the total cost as a loss function and credibilistic conditional value
at risk (CVaR) minimization. To crispify and generate a GFN, we utilize a ranking function that allows us to consider risky
realizations. By solving many deterministic problems with LP solvers, projections of the error in the objective function can
be presented. To describe and implement our methodology, we mainly focus on network optimization problems, especially
generalized fuzzy transportation, assignment, and shortest path problems.

Keywords: conditional value at risk, credibility distribution function, generalized fuzzy numbers, minimum cost flow problems,

ranking functions

1. Introduction

Optimization is the process of mathematical modeling and finding the optimum solution under certain
conditions. Therefore, it is the most important part of the decision-making process. But in most cases,
some uncertain situations may arise in the decision variables as well as the parameters of the objectives
and/or constraints. A technique employed in such circumstances is fuzzy optimization. Uncertainty is a
common feature of real-world situations; hence, fuzzy optimization is important in this context.

LP is an optimization model with a single linear objective function, continuous variables, and linear
equations or inequalities as constraints. Fuzzy LP (FLP), however, deals with problems where some or
all of the objective function constants, right-hand side, or constraint coefficients are fuzzy. Therefore,
FLP offers a more flexible and effective approach.
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Normal fuzzy numbers (FNs) are used to represent the parameters in the majority of methods that
have been proposed in the literature to solve LP problems in a fuzzy environment. However, in many
cases, it is not possible to limit the membership function to the normal form. Experts who only partially
rely on their judgments often need to provide data for real-world decision-making problems. For this
reason, the necessity of the concept of GFN has emerged. While there are few studies using GFNs, most
of these articles use GFNs by transforming them into normal FNs through normalization. Although this
procedure is mathematically correct, it reduces the amount of information contained in the original data.

In this context, FLP is used in many fields, such as transportation, assignment, shortest path problems,
etc. The studies carried out in these application areas can be summarized as follows: For the fuzzy
transportation problem (FTP) utilizing generalized trapezoidal fuzzy numbers (GTFNs), Maheswari et
al. [17] suggested a modified approach for determining an initial basic feasible solution. By assuming that
the decision-maker was only uncertain about the precise values of transportation costs and there was no
uncertainty regarding the supply and demand of the product, Kaur and Kumar [13] proposed an algorithm
as a direct extension of the conventional approach for solving a specific type of FTP. Islam and Roy [11]
tackled the multi-objective FTP, aiming for minimum transportation costs and a maximum amount of
entropy, and solved it with primal geometric programming. Kumar et al. [14] presented a technique
using the harmonic mean method to solve FTPs. Samuel and Raja [25] used the zero division method for
solving a special type of FTP, see also [29].

Based on a ranking method, Thorani and Shankar [28] introduced a methods for finding the optimal
solutions to assignment problems with fuzzy costs. See also [7]. Rostam and Haydar [24] aimed to de-
termine an FLP method to reach a production decision that contributed to maximizing profits. Vincent et
al. [31] proposed a robust method for ranking GFNs and a fuzzy multi-criteria decision-making approach
that did not require the normalization process, i.e., avoided information loss. Ebrahimnejad [9] suggested
a simpler and computationally more efficient approach based on the ranking function for solving FTP by
assuming that the values of transportation costs were represented by GTFNs. Mathur and Srivastava [19]
developed an innovative process for optimizing the generalized fuzzy trapezoidal transport problem using
classical ranking techniques and reducing the computational complexity of existing methods.

Mahmoodirad and Sanei [18] developed the best approximation method with a representation of both
the transportation cost and the fixed cost of the GTFNs. This method obtained lower and upper bounds
on the fuzzy optimal value of the fixed-charge FTP, which can be easily obtained by using the approx-
imate solution. Singh and Singh [26] solved the FTP by applying a particle swarm optimization (PSO)
algorithm that has been modified to incorporate additional modules as well as the transportation costs
represented by GTFNs, whereas the supply and demand levels were crisp numbers. Moreover, the pro-
posed algorithm worked efficiently to obtain optimal solutions and removed the barricades of traditional
solution techniques.

In the generalized sense, Anusuya and Kavitha [3] proposed the roulette ant wheel selection, which
combined the traits of ants and the roulette wheel selection algorithm, and solved the fuzzy shortest
path problem, which has numerous applications in robotics, communication, transportation, scheduling,
routing, and mapping. Valdes et al. [30] dealt with the problem of searching for the shortest path (or
more efficient path, in a more general sense) between two nodes in a communication network, but the
cost of each link was modeled as a triangular GFN. Moreover, they defined different fuzzy cost allocation
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functions and fuzzy optimization strategies and applied them to the search for the shortest path between
two nodes. Gupta et al. [10] addressed the limitations of existing methods and presented a way of solving
generalized fuzzy assignment and traveling salesman problems.

In intuitionistic or picture fuzzy environments, credibilistic value-at-risk (VaR) and CVaR minimiza-
tion in assignment and transportation models were considered in [2], assuming the normality condition
holds. In addition, simulation and standardization of non-standard fuzzy variables and simultaneous
modeling of risk-averse behaviors have been taken into consideration.

For other related works addressing modeling, robust optimization, uncertainty handling, and risk man-
agement, the reader can refer to [4, 12, 20, 27].

In this paper, we mention the extensions of the definitions of the credibility distribution function
(CDF), VaR, and CVaR for FNs to the generalized setting. By making use of the existing fuzzy credibil-
ity theory, these VaR measures can also help in the management of generalized fuzzy risk. In this way,
we can treat optimization problems involving both normalized and non-normalized cost coefficients. We
prevent information loss by not requiring the normalization procedure, which converts GFNs into normal
form. We introduce not only shape-preserving, error-reducing arithmetic operations but also redesign a
way to defuzzify GFNs that assess risk aversion by considering whether the fuzzy variable is a cost or
benefit type. Additionally, generalized fuzzy sample generation is also carried out from a pessimistic
perspective. We particularly consider minimum-cost flow types of problems with trapezoidal objective
coefficients when applying our methodology. The sole source of the uncertainty is assumed to be gener-
alized fuzzy costs. Assuming the total cost serves as the loss function, CVaR minimization models are
used to identify the optimal values of the decision variables that result in lower risk, and error analyses
are further performed using sample generation.

This study attempts to fill several research gaps, which can be summed up as follows:

• Adaptation of arithmetic operations to reduce the effects of downsides such as error increases or
inconsistencies resulting from the employment of the minimum operator in arithmetic operations or
from the direct normalization of generalized fuzzy parameters in uncertain optimization problems.

• To examine risk-averse solutions to several LP problems with generalized fuzzy parameters in ob-
jective function coefficients in cases where the experts are not completely sure of their opinions.

• To construct the concepts of VaR and CVaR for generalized fuzzy losses,
• To propose a pessimistic generalized fuzzy sample generation technique for use in error analysis in

uncertain environments where the normality requirement is not fulfilled.
• To obtain a framework strategy for dealing with similar problems whose parameters satisfy the

normality condition.

The paper is organized as follows: The following section presents some introductory information on
GFNs. Section 3 contains not only the descriptions of the related VaR and CVaR measures but also the
simulation technique to generate trapezoidal-type generalized fuzzy samples considering risk attitudes.
Numerical examples are given to support the proposed approach in Section 4. The paper concludes with
some remarks in Section 5.
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2. Preliminaries

In this section, we provide some important concepts in a generalized context that will be used in our
discussion.

Definition 1 ([5]). Let X be an arbitrary non-empty set of the universe or domain . A fuzzy set Ã in
X is characterized by a membership function µÃ(x) : X → [0, 1], which assigns to each object x ∈ X

a real number in the interval [0, 1], so as µÃ(x) represents the grade of belonging of the element x to the
fuzzy set Ã. Then the fuzzy set takes the following form:

Ã =
{〈

x, µÃ (x)
〉∣∣x ∈ X

}
Definition 2 (GFN [6]). Let a, b, c, d ∈ R, a ≤ b ≤ c ≤ d, h ∈ (0, 1] . A GFN Ã is a fuzzy subset of
the real line R, whose membership function µÃ satisfies the following conditions:

(i) µÃ : R → [0, h] is continuous,
(ii) µÃ (x) = 0 for x < a or x > d,

(iii) µÃ (x) is strictly increasing on [a, b] and strictly decreasing on [c, d],
(iv) µÃ (x) = h, for x ∈ [b, c] .

If normality holds, i.e., if h = 1, then the GFN Ã is referred to as an FN. The adoption of a more
generic framework is made possible by the use of the parameter h, which establishes the height of the
GFN and stands for the degree of confidence in expert judgments. Ã is subnormal, with the greatest value
h ∈ (0, 1).

Definition 3 (GTFN). A GTFN Ã on real line R is characterized by its linear membership function:

µÃ (x) = max

{
min

{
h (x− a)

b− a
, h,

h (d− x)

d− c

}
, 0

}
(1)

where a < b ≤ c < d and 0 < h ≤ 1. We denote Ã = ⟨(a, b, c, d) ;h⟩. Here, h is called the maximal
degree of membership.

Definition 4 (the expected value). Without loss of generality, let us consider a GTFN:

Ã = ⟨(a, b, c, d) ;h⟩

Then, the inverse left-hand side and right-hand side membership functions are respectively given as:

ÃL (α) = a+
α

h
(b− a) , ÃR (α) = d− α

h
(d− c) , α ∈ [0, h] (2)

The expected value of Ã is defined as follows:

EV (Ã) =
1

2

h∫
0

(
ÃL (α) + ÃR (α)

)
dα = h

(
a+ b+ c+ d

4

)
(3)
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2.1. Arithmetic operations

The following arithmetic operations were proposed for intuitionistic FNs in [32]. We adapt them to
GTFNs to reduce error and information loss in comparison to the use of the minimum operator and
normalization. Thus, an outcome with average reliability is produced when a highly reliable non-negative
value is added to a somewhat less reliable non-negative value.

Definition 5. Let Ã = ⟨(a1, b1, c1, d1) ;h1⟩, B̃ = ⟨(a2, b2, c2, d2) ;h2⟩ be two non-negative GTFNs,
that is, a1, a2 ≥ 0, and λ ∈ R, then we have the following shape-preserving operations:

• Addition of two GTFNs

Ã+ B̃ = ⟨(a1 + a2, b1 + b2, c1 + c2, d1 + d2) ;h⟩ (4)

where

h =
EV (ÃN)h1 + EV (B̃N)h2

EV (ÃN) + EV (B̃N)
, ÃN = ⟨(a1, b1, c1, d1) ; 1⟩ , B̃N = ⟨(a2, b2, c2, d2) ; 1⟩

• Scalar multiplication

λÃ =

⟨(λa1, λb1, λc1, λd1);h1⟩ , if λ ≥ 0

⟨(λd1, λc1, λb1, λa1);h1⟩ , if λ < 0

• Multiplication of two GTFNs
Ã× B̃ = ⟨(a, b, c, d) ;h1h2⟩

where

a = min {a1a2, a1d2, d1a2, d1d2} , b = min {b1b2, b1c2, c1b2, c1c2}

c = max {b1b2, b1c2, c1b2, c1c2} , d = max {a1a2, a1d2, d1a2, d1d2}

Theorem 1. Let λk ∈ R+ and Ãk be independent GTFNs with finite expected values for k ∈ {1, 2, . . . , K} .
The expected value operator is linear, i.e.,

EV

(
K∑
k=1

λkÃk

)
=

K∑
k=1

λkEV (Ãk)

See [32] for proof.

2.2. Ranking functions

Since GFNs are represented by membership functions that may overlap, it is challenging to determine
which GFN is greater than the other. One way to order GFNs is through the use of ranking func-
tions, which pair each GFN with a number from the real line, where a natural order exists. To sup-
port our findings and order GTFNs, we selected a few well-known ranking functions from the litera-
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ture, which we give below. For the centroid-based formulations, we occasionally have to assume that
Ã = ⟨(a, b, c, d) ;h⟩ is a standardized GTFN where a ≥ 0 and d ≤ 1.

Definition 6 (defuzzification of a GTFN). [16] Let Ã = ⟨(a, b, c, d) ;h⟩ be a GTFN. The rank-
ing function can be given as follows:

R(Ã) = (1− ω)h(
a+ b

2
) + ωh(

c+ d

2
) (5)

where ω ∈ [0, 1]. A higher value of an ω indicates a higher degree of optimism. The total integral value
R(Ã) is a convex combination of the left and right integral values through an optimism index ω.

Definition 7 (centroid-based distance method [33]). Centroid points and distance index are
respectively given as:

x0 =
1

3

(
a+ b+ c+ d− dc− ab

d+ c− a− b

)

y0 =
h

3

(
1 +

c− b

d+ c− a− b

)
, R(Ã) =

√
x2
0 + y20

(6)

for a standardized GTFN Ã = ⟨(a, b, c, d) ;h⟩.

Definition 8 (incentre of centroids [23]). For a standardized GTFN Ã = ⟨(a, b, c, d) ;h⟩, incen-
tre of centroid points and distance index are respectively given as:

x0 =

α

(
a+ 2b

3

)
+ β

(
b+ c

2

)
+ γ

(
2c+ d

3

)
α + β + γ

y0 =

α
(
h
3

)
+ β

(
h

2

)
+ γ

(
h

3

)
α + β + γ

, R(Ã) =
√

x2
0 + y20

(7)

where

α =

√
(c− 3b+ 2d)2 + h2

6
, β =

2c− a− 2b+ d

3
, γ =

√
(3c− 2a− b)2 + h2

6

Definition 9 (area between the centroid of the centroids [22]). Centroid of the centroid
points and area index are respectively given as:

x0 =
2a+ 7b+ 7c+ 2d

18
, y0 =

7h

18
, R(Ã) = x0y0. (8)

for an arbitrary GTFN Ã = ⟨(a, b, c, d) ;h⟩
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3. Simulation, credibilistic VaR, and CVaR measures
for GTFNs

In sample generation, we alter the ranking function of (5) to represent the GTFN with a crisp number. In
order to defuzzify a generalized fuzzy parameter, we make the assumption that ω ∈ [0, 0.5) or ω ∈ (0.5, 1]

depending on whether Ã = ⟨(a, b, c, d) ;h⟩ is respectively a benefit or cost type GTFN with a ≥ 0.
If the variable is of the cost (benefit) type, it will be overestimated (underestimated) compared to the
expected value. This assumption means that a pessimistic point of view is always adopted. An optimistic
perspective is obtained when this scale is considered in reverse for ω. However, only risk-averse decision-
making behavior is considered in this study. Notice that it corresponds to risk-neutral behavior when
ω = 0.5 and thereby R(Ã) = EV (Ã) in (5). For example, the expected value of the generated cost type
values will be h(a + b + 3c + 3d)/8, since ω ∼ U (0.5, 1) and the expected value of ω is 0.75. We also
assume that the GTFNs are mutually independent. See also [1] for an effort to simulate non-standard
fuzzy numbers while considering risk.

Now, we extend the existing definitions of the CDF, VaR, and CVaR for FNs to the generalized setting.
The following definitions are reduced to classical forms for h = 1. Since we focus on trapezoidal-shaped
costs, linearity holds true.

Definition 10 (credibility distribution function [8, 15]). Let r be a real number, Ã be a GFN
with the membership µÃ and maximal membership h. The CDF is defined as follows:

FÃ (r) = Cr{Ã ≤ r} =
1

2

(
sup
x≤r

µÃ(x) + h− sup
x>r

µÃ(x)

)
(9)

Remark 1. From Identity (9), it can easily be obtained that

Cr{Ã ≤ r} =



0, if r < a
h

2

(
r − a

b− a

)
, if a ≤ r < b

h

2
if b ≤ r < c

h

2

(
r + d− 2c

d− c

)
, if c ≤ r < d

h, if d ≤ r

(10)

where Ã = ⟨(a, b, c, d) ;h⟩ is a GTFN.

VaR was initially defined as a statistical risk measure that estimates the maximum loss that may be
experienced on an investment with a certain level of confidence but does not predict how much an investor
will lose in the most unlikely situations. To tackle risky scenarios associated with fuzzy market conditions
due to volatilities, fuzzy VaR has been interpreted just as in a stochastic context. A monetary value Ã is
defined by a generalized fuzzy variable representing possible losses. In this paper, a positive value of Ã
denotes a loss. The following two definitions are constructed using Definition 10. Peng [21] introduced
VaR and CVaR measures for normal fuzzy variables; on the other hand, we adapt these definitions for
generalized fuzzy losses as follows:
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Definition 11 (generalized fuzzy VaR (GFVaR)). GFVaR is the greatest loss which is not
exceeded with a given high confidence level ρ ∈ (h/2, h), so:

GFV aRρ(Ã) = inf{r ∈ R
∣∣∣Cr{Ã ≤ r} ≥ ρ} = F−1

Ã
(ρ). (11)

Remark 2. Let GTFN Ã = ⟨(a, b, c, d) ;h⟩ be a loss, then GFV aRρ(Ã) = c+
2ρ− h

h
(d− c)

Definition 12 (generalized fuzzy CVaR (GFCVaR)). GFCVaR is a risk measure that addres-
ses the question what is the expected loss incurred in the worst (h− ρ) losses.

If FÃ is continuous, GFCVaR equal the conditional expectation of loss when the GFVaR is exceeded,
that is:

GFCV aRρ(Ã) =
1

h− ρ

∫ h

ρ

F−1

Ã
(y)dy (12)

Remark 3. For a generalized trapezoidal fuzzy loss Ã = ⟨(a, b, c, d) ;h⟩, GFCV aRρ(Ã) = c

+
ρ

h
(d− c). For GFCVaR minimization formulations, higher values of ρ close to h lead to more pes-

simistic solutions, which have lower variability for the total costs.

4. Computational tests

This section presents and solves numerical instances involving generalized fuzzy environments to demon-
strate our approach. However, we only examine the impact of uncertain costs for the sake of simplicity.

In the first stage, we solve GFCVaR minimization models. To analyze errors, in the second stage,
generalized fuzzy costs are generated pessimistically via the defuzzification function (5), in which ω ∼
U (0.5, 1), and the resulting crisp problems are solved to compare optimal values of objective functions.
This process is repeated too many times to yield meaningful results. Furthermore, the variabilities of
total costs are measured in order to elaborate from a risk-averse point of view. On a computer running
MS Windows 10 Pro and equipped with an Intel Core i5-7400 CPU (3.00 GHz) and 4 GB of RAM, all
computational tests were carried out using MATLAB R2018a. We particularly use the following built-in
functions: “rand”, “linprog”, “intlinprog”, and “shortestpath”.

When we substitute the optimal values of the decision variables obtained from the experimental mod-
els into the model, it is assumed that we obtain the real value of the objective. If different optimal
decision variable values are obtained from the GFCVaR minimization model, we then face an error in the
objective. The error is assumed to be the percentage error, which is the absolute error divided by the best
objective value and multiplied by 100%. The error is calculated as follows:

Error =
Objective value − The best objective value

The best objective value
× 100%, (13)

where objective value refers to the value of the objective function determined by the sum of multipli-
cations of the generated objective coefficients with the optimal solutions of the GFCVaR minimization
model. Similarly, the best objective value is the minimum objective value for the original problem’s
objective function when the parameters are simulated.
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4.1. Generalized fuzzy transportation problem

For the following illustrative example, which we call test problem 1, the transportation costs are consid-
ered GTFNs, representing the uncertainty therein, whereas the supplies and demands are precise numbers.
Refer to [9, 13, 26].

Consider a transportation problem with four sources and six destinations in which each unit cost of
transporting the product from ith source to jth destination c̃ij, i ∈ {1, 2, 3, 4} , j ∈ {1, 2, 3, 4, 5, 6} is
a GTFN with a known CDF. Refer to Table 1 for the cost parameters of the problem. Let the total
availabilities at the sources be crisp values equal to 124, 120, 150, and 170, respectively. Similarly, let
the demands at the destinations have crisp values equal to 112, 90, 84, 92, 106, and 80, respectively. The
transportation problem is said to be balanced since the total supply is equal to the total demand. It
is required to deliver the product from these sources to destinations by satisfying the demand without
exceeding the capacity with the minimum total transportation cost.

Table 1. Generalized transportation costs of test problem 1

Source Destination
D1 D2 D3

S1 ⟨(20, 27, 35, 41) ; 0.7⟩ ⟨(9, 11, 12, 14) ; 0.6⟩ ⟨(10, 15, 18, 20) ; 0.7⟩
S2 ⟨(20, 25, 35, 41) ; 0.7⟩ ⟨(9, 11, 12, 16) ; 0.8⟩ ⟨(9, 11, 12, 14) ; 0.6⟩
S3 ⟨(9, 10, 12, 16) ; 0.7⟩ ⟨(65, 70, 74, 76) ; 0.8⟩ ⟨(20, 25, 35, 41) ; 0.8⟩
S4 ⟨(9, 11, 12, 14) ; 0.6⟩ ⟨(10, 15, 21, 24) ; 0.7⟩ ⟨(20, 25, 35, 41) ; 0.6⟩

D4 D5 D6
S1 ⟨(15, 20, 22, 24) ; 0.7⟩ ⟨(10, 15, 18, 20) ; 0.8⟩ ⟨(9, 12, 15, 18) ; 0.7⟩
S2 ⟨(10, 15, 21, 23) ; 0.8⟩ ⟨(10, 15, 18, 23) ; 0.6⟩ ⟨(9, 12, 15, 18) ; 0.8⟩
S3 ⟨(12, 15, 22, 24) ; 0.7⟩ ⟨(10, 12, 14, 18) ; 0.6⟩ ⟨(15, 20, 26, 28) ; 0.8⟩
S4 ⟨(10, 15, 18, 20) ; 0.6⟩ ⟨(8, 10, 12, 14) ; 0.8⟩ ⟨(15, 20, 25, 28) ; 0.7⟩

Kaur and Kumar [13] provided the following optimal solution:

X1 =
(
x∗
ij

)
=


0 90 0 0 0 34

0 0 84 36 0 0

112 0 0 38 0 0

0 0 0 18 106 46

 .

In [9], the optimal solution was presented as follows:

X2 =


0 80 0 0 0 44

0 0 84 0 0 36

112 0 0 38 0 0

0 10 0 54 106 0

 .

Also using different PSO parameters, three following alternative solutions were provided in [26]:

X3 =


0 81 0 0 0 43

0 0 84 0 0 36

99 0 0 50 0 1

13 9 0 42 106 0
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X4 =


0 80 0 0 0 44

0 0 84 0 0 36

112 0 0 33 5 0

0 10 0 59 101 0



X5 =


0 80 0 0 0 44

0 0 84 0 0 36

112 0 0 29 9 0

0 10 0 63 97 0


Our objective function is as follows:

GFCV aRρ(T̃C) = c+
ρ

h
(d− c) (14)

where T̃C =
4∑

i=1

6∑
j=1

c̃ijxij = ⟨(a, b, c, d) ;h⟩ is the generalized total cost function, which is computed

using the shape-preserving arithmetic operations of addition and scalar multiplication given in Defini-
tion 5.

We ask the decision-maker to specify a constant degree of
ρ

h
∈ (0.5, 1) and, if he wishes, a lower

and/or upper bound for the overall maximal membership degree of h. Fixing
ρ

h
allows us to derive a

linear objective function, which further simplifies the model and reduces it to the traditional fuzzy CVaR
minimization formulation. However, we should consider a nonlinear constraint regarding h in addition
to linear supply and demand constraints. For test problem 1, we suppose that

ρ

h
= 0.8 and h ≥ 0.65.

Notice that
min
i,j

hij = 0.6 < 0.65 < 0.8 = max
i,j

hij

Here, if we assume that h = 0.6 using the minimum operator, we do not consider the fact that
trapezoidal costs not having the maximal membership of 0.6 can be represented by narrower intervals
compared to 0.6−cuts.

We reach the following optimal solution:

X6 =


0 90 0 0 0 34

0 0 84 0 0 36

112 0 0 0 28 10

0 0 0 92 78 0


where

h∗ =

4∑
i=1

6∑
j=1

EV ((c̃ij)N)x
∗
ijhij

4∑
i=1

6∑
j=1

EV ((c̃ij)N)x
∗
ij

= 0.6685
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Thus, ρ = 0.5348 is chosen. Using the same formula for calculating maximal memberships, the
optimal generalized fuzzy total transportation costs are obtained as follows:

T̃C1 = ⟨(5414, 6802, 8280, 9712) ; 0.6934⟩

T̃C2 = ⟨(5148, 6474, 7802, 9244) ; 0.6849⟩

T̃C3 = ⟨(5177, 6491, 7852, 9266) ; 0.6856⟩

T̃C4 = ⟨(5148, 6484, 7792, 9244) ; 0.6821⟩

T̃C5 = ⟨(5148, 6492, 7784, 9244) ; 0.6798⟩

T̃C6 = ⟨(5178, 6570, 7726, 9204) ; 0.6685⟩

corresponding to the optimal solutions of X1, X2, X3, X4, X5, and X6, respectively. To compare the dif-
ferent optimal total costs obtained with the aforementioned techniques, we first standardize the minimum
total costs in the following way: For any value, subtract 5148, the minimum value of the existing values,
and then divide the result by the length of the range, that is, maximum minus minimum, or (9712−5148).
Thus, all available values and ranking indices will be within the range of [0, 1]. According to Table 2,
T̃C1 ≻ T̃C3 ≻ T̃C2 ≻ T̃C4 ≻ T̃C5 ≻ T̃C6 for any ranking function of (5), (6), (7), and (8). In
generalized fuzzy total costs, the crispified value of the total cost rises as the height, or overall maximum
confidence level, increases. It can be interpreted that the decision-maker incurs an additional cost to
ensure greater certainty of the information.

Table 2. Ranking indices for standardized total transportation costs of test problem 1

Method R(T̃C1) R(T̃C2) R(T̃C3) R(T̃C4) R(T̃C5) R(T̃C6)
(5) with ω = 0.75 0.3091 0.2488 0.2537 0.2480 0.2473 0.2463

(6) 0.6018 0.5267 0.5328 0.5257 0.5250 0.5208
(7) 0.5976 0.5199 0.5262 0.5193 0.5188 0.5180
(8) 0.1417 0.1169 0.1189 0.1164 0.1160 0.1145

Now let us try to calculate the error and variability that will occur in the objective function for these
solutions in the presence of pessimistic states of nature. 2000 problems with simulated parameters are
solved, and optimal values of the decision variables and objective functions are obtained. Simultaneously,
in the case of the realization of optimal values for decision variables, the errors in the objective functions
are stored. Standard deviations are also calculated to measure the variability in the total costs. The whole
above process is repeated ten times; the standard deviations and the averages of the percentage errors are
presented in Tables 3, 4, and 5. Let us state that in order to compare the errors in the objective function
for different solutions, the error values realized in each iteration are calculated using the same generated
objective coefficients, that is, within the same loop and using the same state of nature or scenario. For
each repetition, our solution X6 results in the lowest average percentage error. Considering risk aversion,
the solution X1 is the least preferable to other solutions due to its highest variability and error.
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Table 3. Errors and standard deviations of test problem 1

Repetition# Solution X1 Solution X2

Average % error Standard deviation Average % error Standard deviation
1 14.4810 106.2823 7.1614 97.9132
2 14.3828 104.5653 7.0820 96.9940
3 14.3379 108.5029 7.0170 99.8848
4 14.4361 103.7110 7.1538 95.8319
5 14.3467 105.7828 7.0256 99.0896
6 14.2814 103.9160 7.0317 97.5708
7 14.2878 101.5947 7.0252 95.2042
8 14.3794 106.8572 7.0622 95.6856
9 14.3585 107.7984 7.0963 99.0678
10 14.5470 106.1179 7.1886 97.7343

Table 4. Errors and standard deviations of test problem 1, continued

Repetition# Solution X3 Solution X4

Average % error Standard deviation Average % error Standard deviation
1 7.7475 98.0851 6.6804 96.0206
2 7.6591 96.7766 6.6071 95.3290
3 7.5961 99.8322 6.5451 97.8508
4 7.7373 95.9921 6.6741 93.9507
5 7.6104 99.0251 6.5513 97.1861
6 7.6000 97.8741 6.5622 95.5880
7 7.6021 95.7649 6.5534 93.1794
8 7.6411 95.9011 6.5879 93.7554
9 7.6726 98.8525 6.6211 97.2127
10 7.7684 98.0127 6.7082 95.8154

Table 5. Errors and standard deviations of test problem 1, continued

Repetition# Solution X5 Solution X6

Average % error Standard deviation Average % error Standard deviation
1 6.2955 94.7937 4.1708 94.2166
2 6.2272 94.2845 4.1301 95.4248
3 6.1676 96.4931 4.0839 94.8240
4 6.2903 92.7423 4.1631 93.2070
5 6.1718 95.9623 4.0775 96.3862
6 6.1865 94.2789 4.1303 92.8062
7 6.1759 91.8571 4.1045 91.2020
8 6.2085 92.5115 4.1003 91.8331
9 6.2410 96.0034 4.1359 95.9166
10 6.3238 94.5789 4.1990 94.2763

4.2. Assignment problem with generalized fuzzy costs

For the following illustrative example [7], which we refer to as test problem 2, the assignment costs are
considered as GTFNs (Table 6). Suppose the aim is to allocate four different jobs to four people with a
minimum total assignment cost. Each individual can only work on one task at a time, and each job can
only be given to one person.

Dinagar and Kamalanathan [7] provided the following two optimal solutions corresponding to two
different criteria:
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X1 =
(
x∗
ij

)
=


0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

 and X2 =


0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0



Table 6. Generalized assignment costs of test problem 2

Job/Person P1 P2 P3 P4

J1 ⟨(15, 35, 70, 80) ; 0.1⟩ ⟨(60, 75, 90, 115) ; 0.2⟩ ⟨(25, 35, 40, 75) ; 0.4⟩ ⟨(15, 30, 45, 60) ; 0.2⟩
J2 ⟨(6, 21, 45, 62) ; 0.2⟩ ⟨(15, 35, 60, 90) ; 0.1⟩ ⟨(50, 60, 75, 95) ; 0.3⟩ ⟨(11, 18, 38, 51) ; 0.2⟩
J3 ⟨(20, 30, 40, 50) ; 0.2⟩ ⟨(10, 25, 45, 60) ; 0.2⟩ ⟨(20, 30, 40, 50) ; 0.5⟩ ⟨(2, 6, 12, 31) ; 0.4⟩
J4 ⟨(10, 40, 65, 85) ; 0.2⟩ ⟨(20, 40, 60, 80) ; 0.1⟩ ⟨(40, 60, 80, 100) ; 0.2⟩ ⟨(25, 30, 40, 45) ; 0.2⟩

For test problem 2, we suppose that
ρ

h
= 0.75 and 0.10 ≤ h ≤ 0.17. Using the GFCVaR value as the

objective function, we reach the following optimal solution:

X3 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


The respective optimal generalized fuzzy total assignment costs are given as follows:

T̃C1 = ⟨(90, 155, 225, 300) ; 0.1740⟩

T̃C2 = ⟨(53, 102, 157, 248) ; 0.2450⟩

T̃C3 = ⟨(72, 136, 222, 301) ; 0.1592⟩

Accordingly, using the expected value (3), T̃C2 ≻ T̃C1 ≻ T̃C3 where EV (T̃C1) = 33.4950,
EV (T̃C2) = 34.3000, and EV (T̃C3) = 29.0938. The same ordering is yielded with pessimistic rank-
ings via the ranking function (5). The orderings are T̃C1 ≻ T̃C3 ≻ T̃C2, with the ranking functions (6),
(7), and (8) when not considering risk aversion. In this manner, ranking functions fail to help us decide
since they produce inconsistent outcomes.

Now let us try to calculate the error and variability that will occur in the objective function for these
solutions in the presence of pessimistic realizations. 1000 problems with simulated costs are solved, and
optimal values of the decision variables and objective functions are obtained. Simultaneously, in the case
of the realization of optimal values for decision variables, the errors in the objective functions are stored.
Standard deviations, interquartile ranges, and ranges are calculated to measure the variability in the total
costs. The whole above process is repeated ten times; the results are presented in Tables 7, 8, and 9. For
each repetition, our solution X3 results in the lowest mean percentage error. Considering risk aversion,
the solution X2 is the least preferable to other solutions due to its highest variability and error.



138 H. Günay Akdemir et al.

Table 7. Errors and variabilities of the solution X1 for test problem 2

Repetition# Average % error Standard deviation Interquartile ranges Ranges
1 11.1343 1.7122 2.2957 9.6384
2 11.4603 1.6970 2.4345 9.4236
3 11.1476 1.7101 2.4775 9.2778
4 11.1040 1.7636 2.6578 9.8888
5 11.2699 1.7371 2.2961 9.9469
6 11.2029 1.6804 2.3950 9.1484
7 11.2294 1.7237 2.4991 9.6128
8 11.2058 1.7188 2.3930 9.9775
9 11.4552 1.7031 2.4106 9.2408
10 11.3425 1.6642 2.3543 9.5577

Table 8. Errors and variabilities of the solution X2 for test problem 2

Repetition# Average % error Standard deviation Interquartile ranges Ranges
1 18.4228 2.2968 3.3183 12.6328
2 18.9900 2.2730 3.2081 11.7943
3 18.5076 2.3038 3.3348 12.5835
4 18.7952 2.2990 3.2061 12.4334
5 18.4804 2.2524 3.2464 11.8095
6 18.4821 2.4112 3.4195 12.2005
7 18.6004 2.2802 3.1475 12.4616
8 18.7676 2.2717 3.1319 13.0434
9 19.0101 2.3130 3.3344 12.6766
10 18.6124 2.3309 3.3373 13.2245

Table 9. Errors and variabilities of the solution X3 for test problem 2

Repetition# Average % error Standard deviation Interquartile ranges Ranges
1 0.1754 1.8460 2.5476 10.9049
2 0.2003 1.7983 2.5505 9.8307
3 0.2031 1.8210 2.7274 10.2015
4 0.1843 1.8497 2.6963 9.9355
5 0.1560 1.7943 2.5767 10.3279
6 0.1852 1.7992 2.5120 9.6249
7 0.1803 1.8517 2.5634 10.0397
8 0.1587 1.8336 2.5770 9.6499
9 0.1915 1.8449 2.5141 9.8850
10 0.1529 1.8441 2.6588 9.7857

4.3. Shortest path problem with generalized fuzzy weights

The distances between the nodes or the lengths of the arcs are considered GTFNs for the following
illustrative example [3], which we refer to as test problem 3. For the acyclic directed graph of test
problem 3, see Figure 1. The shortest path, 1−3−6−10, is selected as the best solution via their genetic
algorithm-based method in [3].

We suppose that
ρ

h
= 0.9 and the decision-maker does not deliver an opinion regarding the aggregated

maximal degree of membership h. Using the GFCVaR value as the objective function and integer LP
formulation of the shortest path problem, we reach the same optimal solution with a total cost of T̃C =

⟨(10, 12, 15, 20) ; 0.2789⟩.
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⟨(6, 8, 10, 10); 0.82⟩

⟨(3, 3, 3, 5); 0.25⟩

⟨(6, 9, 12, 13); 0.45⟩

⟨(7, 7, 9, 14); 0.79⟩

⟨(7, 10, 10, 12); 0.64⟩

⟨(5, 6, 7, 8); 0.32⟩

⟨(12, 13, 17, 18); 0.74⟩

⟨(5, 12, 14, 14); 0.18⟩ ⟨(4, 5, 9, 13); 0.57⟩

⟨(2, 3, 5, 7); 0.24⟩

⟨(2, 7, 9, 14); 0.52⟩

⟨(2, 6, 9, 12); 0.56⟩

⟨(7, 8, 11, 15); 0.75⟩

Figure 1. The acyclic directed graph of test problem 3

Now let us try to calculate the error and variability that will occur in the objective function for these
solutions in the presence of pessimistic realizations. 1000 problems with simulated distances are solved,
and optimal values of the decision variables and objective function are obtained. Simultaneously, in the
case of the realization of an optimal path, the error in the objective function is stored. Standard deviations,
interquartile ranges, and ranges are calculated to measure the variability in the total distance. The whole
above process is repeated ten times; the results are presented in Table 10.

Table 10. Errors and variabilities for test problem 3

Repetition# Average % error Standard deviation Interquartile ranges Ranges
1 5.4265e− 15 0.1572 0.2337 0.7910
2 5.6707e− 15 0.1570 0.2256 0.7822
3 5.5867e− 15 0.1564 0.2054 0.7787
4 5.7360e− 15 0.1580 0.2336 0.7560
5 5.6578e− 15 0.1591 0.2387 0.7809
6 5.5753e− 15 0.1626 0.2394 0.8114
7 5.7787e− 15 0.1594 0.2365 0.7947
8 5.5887e− 15 0.1561 0.2267 0.7954
9 5.3810e− 15 0.1617 0.2335 0.7772
10 5.5850e− 15 0.1517 0.2150 0.8214

5. Conclusions

We can use a GFN, which has a height between 0 and 1, instead of the usual FN, whose height is 1, in
cases where experts are not completely certain of their subjective opinions. Using the existing definition
of the credibility function, the VaR and CVaR measures are constructed for generalized environments.
In the proposed models, GFCVaR values are assumed to be objective functions subjected to the original
constraints of the problems. They are concerned with determining the optimal values of the decision
variables for achieving the optimal objective value at the minimal generalized fuzzy risk. Assuming that
the decision-maker wants to minimize both the overall cost and risk, generalized fuzzy VaR and CVaR
measures can also be employed for loss minimization problems under risk-leading generalized fuzzy
uncertainty. Instead of using the minimum operator in addition operations, we calculate in a way that pro-
vides us with a compensatory value for the overall height value. We ask the decision-maker to provide
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limits on the overall height and a confidence level-to-height ratio. This method allows the decision-maker
to conduct an interactive process by making a trade-off between providing greater certainty of informa-
tion and cost minimization. The higher the reliability of the information, the higher the cost.

First, from a risk aversion perspective, solutions acquired via various methods, and hence related opti-
mal objective function values, are compared using ranking functions that are well-known in the literature
and have proven to be efficient. Furthermore, generalized fuzzy sample generation is performed from
a pessimistic point of view. In this way, it is possible to have an idea about the size of the error that
will arise in the objective function as well as the variability of the objective function under unfavorable
market conditions in optimization problems with uncertain coefficients. In our analysis, we observe that
the GFCVaR objective models offer the solutions with the lowest error and/or variability, employing pes-
simistic sample generation. We conducted our study on trapezoidal GFNs; however, extensions can be
made using cut sets and/or trapezoidal approximations.

The future outlook involves the development of robust versions for the trade-off between maximizing
the expected return and minimizing the risk under generalized uncertainty, inspired by robust counterparts
of CVaR under random uncertainty.
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