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Abstract

To improve forecasting accuracy, researchers employed various combination techniques for a long time. When researchers
deal with time series data by using dissimilar models, the combined forecasts of these models are expected to be superior. De-
riving a weighting scheme performing better than simple but hard−to−beat combining methods has always been challenging.
In this study, a new weighting method based on the hybridisation of combining algorithms is proposed. Five popular datasets
were utilised to demonstrate the effectiveness of the proposed method in an out-of-sample context. The results indicate that
the proposed method leads to more accurate forecasts than other combining techniques used in the study.
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1. Introduction

In contrast to developments in individual forecasting algorithms in the field of predictive analytics, a
combining algorithm is still the leading area of focus as well as a fundamental approach for improved
accuracy. Predictive analytics of time series data in forecasting plays an important role in the process
of extracting meaningful information from historical data. Similar to many other predictive problems,
forecasting a time series requires a series of expert interventions starting with diagnostic tests and ending
with the production of hold-out forecasts. Therefore, traditional forecasting techniques need some im-
plicit assumptions including advanced knowledge of methodology and terminology. In this context, the
effectiveness of predictive analysis is ultimately influenced by the level of expertise in the conventional
forecasting process. On the other hand, the need for expert intervention is a drawback arising from the
bias produced in forecasting due to inappropriate implementation and intentional manipulations through
the improper use of predictions. It is critical to develop a weighting scheme that combines individual
models and eliminates the user’s need for expert guidance on which model to choose.
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It is generally acknowledged that combining several different predictive models has a predictive advan-
tage in time series forecasting. In the field of forecasting time series data, hybrid models have attracted
much attention for a long time [8, 23]. In recent years, meta-combining methods such as a combina-
tion of combining algorithms have become more efficient and have exhibited superior performance in
terms of forecast accuracy [12, 19, 34]. The rationale behind a meta-combining approach is to cope
with controversy when the results of single forecasting models differ and combining algorithms make the
decision-making process more challenging in terms of forming different weighting schemes.

In this paper, a novel combining algorithm known as meta-combining is proposed to neutralise the
subjectivity in deciding the weight of any single model by hybridising weighting algorithms and adjusting
the rank on the two popular combining methods. To guarantee the principal properties of the proposed
weighting algorithm, the provision of highly unbiased accuracy forecasts and better forecast direction
accuracy has been considered in light of the controvertible facts in the forecasting rule.

The novel combining approach for the time series forecasting task that is presented in the study is
based on the compression of two important forecasting rules into a single decision procedure. To the
best of our knowledge, this is the first study to combine methods in one equation by considering two
substantial forecasting procedures in the time series forecasting application. An extensive set of datasets
and benchmark models confirm that the proposed algorithm leads to better performances. We believe
that this study can have a considerable impact on the field of forecasting time series data.

The motivation of this study is twofold: on the one hand, according to the study in [34], complex
models tend to provide better fits to in-sample data, but simple models are often assumed to be more
accurate when predicting the future. This dilemma presents a significant challenge for decision-makers
who seek reliable and accurate forecasts for future outcomes. Complex models, with their ability to cap-
ture intricate relationships within the data, might lead to overfitting and poor generalization beyond the
observed data, resulting in less accurate predictions. On the other hand, simple models, while less prone
to overfitting, might overlook important patterns and lead to less precise forecasts. Striking a balance
between these two contrasting aspects is crucial to achieving accurate and robust predictions.

To address this challenge, researchers have turned their attention to hybrid algorithms for combining
forecasting methods. These hybrid approaches leverage the strengths of both simple and complex models,
aiming to create a more robust and accurate forecasting framework. By effectively combining multiple
decision rules into a single rule, these hybrid algorithms have shown promising results in various domains.
Furthermore, the success of hybrid algorithms hinges on the use of an appropriate and robust weighting
scheme. Two such weighting schemes that have gained popularity are the forecast direction scheme and
the inverse rank weighting scheme.

The forecast direction weighting scheme evaluates the past performance of each individual forecasting
method and grants greater importance to those that consistently make correct directional predictions. In
other words, it assigns higher weights to methods that accurately anticipate whether the future value will
be higher or lower than the current one. This strategy is based on the notion that forecasting methods
with a history of reliable directional predictions are more likely to provide valuable insights to the hybrid
model, thereby bolstering its overall predictive accuracy. By emphasizing the contributions of such well-
performing methods, the forecast direction weighting scheme aims to enhance the hybrid model’s ability
to make accurate predictions.
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On the contrary, the inverse rank weighting scheme centers on the comparative performance of each
forecasting method in relation to others. It allocates greater weights to methods that have demonstrated
superior historical performance when ranked against alternative methods. This approach ensures that
the most successful and competitive methods exert a stronger influence in the hybrid model, while de-
emphasizing methods that have exhibited lower consistency or accuracy over time. By leveraging the
rankings of forecasting methods, the inverse rank weighting scheme seeks to bolster the hybrid model by
giving prominence to the most effective and reliable approaches in the ensemble.

By integrating both the forecast direction and inverse rank weighting schemes, a comprehensive as-
sessment of each forecasting method’s performance is achieved, both on an individual basis and in com-
parison, to others. This inclusive approach facilitates the development of a robust hybrid forecasting
model that can adeptly adapt to the intrinsic complexities present in the data. The hybrid model gener-
ated through this methodology is capable of delivering accurate predictions while effectively mitigating
the risks associated with overfitting or underperformance. In essence, the combination of these weight-
ing schemes enhances the model’s overall predictive capability, making it a valuable tool for reliable and
informed decision-making.

In conclusion, the primary aim of this study is to address the trade-off between the strengths of com-
plex and simple forecasting models by harnessing the potential of hybrid algorithms. By fusing the best
aspects of both approaches, the hybrid model aims to achieve a balance that yields accurate predictions
while avoiding the pitfalls of overfitting and limited generalization.

Furthermore, the incorporation of robust weighting schemes, such as the forecast direction and inverse
rank weighting schemes, plays a pivotal role in enhancing the hybrid model’s accuracy and reliability.
The forecast direction scheme leverages historical performance to prioritize methods with consistent and
accurate directional predictions, while the inverse rank weighting scheme considers relative performance
to elevate the most successful methods and diminish less reliable ones. This comprehensive approach
ensures that the hybrid model can adeptly adapt to different forecasting scenarios, making it a valuable
tool for decision-makers across a diverse range of applications.

The paper is organised as follows. Section 1 provides an introduction. Section 2 reviews the litera-
ture, followed by Section 3, which presents the datasets and methodology. The forecasting results and
discussion are provided in Section 4. Section 5 provides the conclusion and future directions.

2. Literature

The literature review highlighted the importance of combining methods to obtain better forecasts than in-
dividual models. While the literature provided useful guidance overall on the shortcomings of the widely
used combining methods, it also served to highlight the selection of the combining methods in terms
of the problem at hand. Combining forecasts of various competing models to increase accuracy dates
back to the 1960s. Papers [42] and [7] shed light on improving forecast performance using multiple
methods effectively as an alternative to trusting only a single method. Besides these seminal studies,
the literature comprises many papers that present the idea of combined forecasts in quite different appli-
cation areas. Some excellent papers [14, 16, 52] provide a snapshot review of the literature up to the
time they were published. Table 1 presents a systematic overview of the studies in the field of combin-
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ing methods. More recent papers have put the idea of combined forecasts into practice in diverse fields
such as solar power forecasting [18], coronavirus disease forecasting [17], electricity price forecast-
ing [37], air pollutant concentration [55], volatility forecasting in portfolio selection [11], wind speed
forecasting citejiang2021combined, and forecasting seasonal influenza outbreaks [54].

Table 1. The systematic overview of the related literature

Ref. Single models Combining method(s) Key findings

[41]

15 individual
regression models
deriving from
15 variables

mean, median, trimmed
mean, and combined method
based on the combining weights

compared to individual regression models,
the forecast combination method reduced
the volatility in the forecast significantly
by including information
from various economic variables

[45]

autoregressive model,
73 recursively
produced regression models
based on individual
predictors for forecasting
the output growth
of seven countries

time-varying-parameter
combination,
factor models, shrinkage models,
weighted combination based on
historical individual performance,
and simple combination

the simple mean and the trimmed mean
produced the lowest squared error loss;
the sophisticated combination methods
performed worse than the simple ones

[57]

autoregressive integrated
moving average model
(ARIMA), artificial neural
networks (ANN)

the equal weights method

the obtained results indicated that the neural
network model outperformed ARIMA
in all error measurements but performed
worse than the Mean combining method

[13]
restricted model,
unrestricted model,
ridge regression

Bayesian model averaging,
the weighted combination
based on individual models,
equal weights, the proposed
approach of combining
forecasts from nested models

the proposed method gained an advantage
over ridge regression and Bayesian model
averaging but performed equally well
with equal weights

[24]
14 forecasting methods
from the M3-competition [36]

The simple Mean combination
of the proposed simple model-
-selection criterion

even the worst-performing combining method
yields significantly better results
than the worst-performing single method;
therefore, opting for a combining method carries
a lower risk than selecting a single model

[31]
22 forecasting methods
from the M3-competition [36]

winsorised and trimmed
means were used as more robust
combining methods

the results indicated that trimmed
and Winsorised means generate more accurate
forecasts especially in the case of high variance
in the forecasts of the single models

[21]
the expert forecasts
of the ECB survey
of professional forecasters

the combining methods relying
on principal components,
trimmed means, simple mean,
optimal weights obtained by
least square estimates,
and Bayesian shrinkage

it is very hard to beat the simple mean
and it is not possible to determine
the best combining method
for all variables and horizons considered
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Table 1. The systematic overview of the related literature

[3]

ARIMA, self-exciting
threshold autoregressive
model (SETAR),
logistic smooth
transition
autoregressive model
(LSTAR), ANN, least support
vector machines (LS-SVM)

mean, median, trimmed
means, and the proposed
combination method
based on the mean
and median combination

the proposed method outperformed
the combining and single techniques
on the six real-world time series

[33]

four groups of different
forecasting methods:
simple forecasting
models, automatic
Box—Jenkins models,
structural time series
models, and computational
intelligence models

simple average, simple
average with trimming,
the variance-based model,
the outperformance method,
the variance-based
pooling

setting the weights of a combination
depending on its ranking results
in a superior performance over
single model selection techniques

[22]

poll projections,
expert judgment,
quantitative models,
the forecasts
of the Iowa
Electronic Markets

the equal weights method

the performance increased
when a simple combining method
was used, especially
when the number of single forecasts
became larger and the single models
conveyed as much varied information
as possible

[27]
regression models
relying on
different variables

the simple mean,
the optimal weighted combination
based on the past performance,
the combination method based on
principal components

they found that, among other
weighting schemes, combined forecasts
with a simple average exhibit
better out-of-sample performance
than combining methods based on
principal components

[9]

ARMAX,
linear regression,
Markov regime
switching model,
and time-varying regression

different versions of the equal
weighted combination method

employing simple averages
among more sophisticated methods
leads to significantly better
performances than single models
in 33% of all cases examined

3. Data and methods

3.1. Datasets

In this section, the datasets utilised for the analysis are introduced. To highlight the superiority of the
proposed method, five datasets are used to compare the method’s performance with five single models
and six combining methods in the scope of the study.

Many researchers use lynx data to make performance comparisons between linear and nonlinear meth-
ods. Before modeling, the series’ logarithm to the base 10 was computed, as noted by [40, 46]. The last
14 observations of the series were used to form a test set. The second series is the annual Real GNP of
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the USA, which exhibits a trend over time and has a strong cyclical pattern, as can be observed in the
earlier period of the series [25]. The GNP series lacks a seasonal component and is non-stationary due to
cyclic oscillations. The series has a total of 85 observations; we used 70 of them to model the series, and
the remaining observations were used to form a test set. The third series consists of the annual number
of births per 10,000 23-year-old women in the USA from 1917 to 1975.

Figure 1. The plot of lynx Figure 2. The plot of real gross national product

Figure 3. The plot of birth rate Figure 4. The plot of airline passengers

Figure 5. The plot of new plant or equipment Expend.s in USA

Figures 3–5 show the time plots of the series that are useful for choosing the most appropriate tech-
niques in the field of forecasting. Table 2 gives the descriptive statistics of the time series.

The series’ time plot vividly demonstrates the wide-ranging changes in the birthrate, which include
a decline during the Great Depression, an increase following World War II, and a subsequent decline



Does a meta-combining method. . . 107

after 1960 [51]. The time plot reveals that this series is neither stationary nor seasonal. There are 59
observations in total. The test set includes the last ten observations of the series. The monthly passenger
numbers in international air travel from 1949 to 1960 is another series that we have collected from the
book by Box and Jenkins [10]. We took the number of passengers’ logarithms in base 10 following the
study by [10].

Table 2. Descriptive statistics

Metrics Lynx RGNP Birth rate Passenger Expend.s
Mean 2.904 278.091 181.485 280.299 18.983
Median 2.887 189.800 174.700 265.500 18.515
Standard deviation 0.558 215.606 44.243 119.966 5.024
Variance 0.312 46486.002 1957.431 14391.917 25.243
Kurtosis –0.712 0.116 –0.750 –0.365 –0.033
Skewness –0.367 1.079 0.553 0.583 0.503
Range 2.253 786.500 150.300 518.000 21.920
Maximum 1.591 52.700 118.500 104.000 10.000
Minimum 3.845 839.200 268.800 622.000 31.920
Observation number 114.000 85.000 59.000 144.000 44.000

The data is an example of a seasonal time series. Due to the seasonal nature of air travel, we expect
more travel during the summer months, which is seen in the time plot of the series that shows a 12-month
pattern and an upward trend [53]. The data consists of 144 observations representing the total number of
international passengers per month. The most recent 12 observations are taken as the test set. The data
on quarterly Expend.s in the USA for new plants and equipment from 1964 to 1976 is the final series
examined in this study. The time plot of the series shows that the new plant or equipment expenses have a
seasonal pattern. The original series is divided into two datasets: one with eight observations to make an
out−of−sample comparison between forecasting models and the other with 44 observations to train the
models. All datasets mentioned here can easily be found on the website of the Time Series Data Library1.

3.2. Methods

In this section, we briefly describe the forecasting methods. In the subsequent section, the proposed
algorithm is discussed in detail.

3.2.1. Forecasting models

We use five different single forecasting models for comparison purposes. These models include both
linear and nonlinear models. The description of each model is presented below.

Autoregressive integrated moving average (ARIMA) model. As one of the most widely employed
models, ARIMA was proposed by [10] and has found many application areas in forecasting time series by
relying on the linear function of the lagged values and past errors. It is composed of three components: the
autoregressive component, which takes into account the past observations of the variable to be forecasted,
the integrated part to make the series stationary, and the moving average component to model lagged

1https://robjhyndman.com/tsdl/
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forecast errors. The general form of the ARIMA model for non-seasonal time series can be defined as
follows:

y
′

t = c+ θ1y
′

t−1 + · · ·+ θpy
′

t−p − ϕ1εt−1 − · · · − ϕqεt−q + εt (1)

where y
′

t is the differenced variable, εt represents the random error at time t, c is the constant term, the
coefficients θi (i = 1, ..., p) and ϕj (j = 1, ..., q) denotes autoregression coefficients and moving average
coefficients, respectively.

The notation of ARIMA p, d, q is frequently used to show the order of the autoregressive part, the
required number of non-seasonal differencing operations, and the order of past errors. The ARIMA
model depends on three stages of model building after checking the stationary assumption and making
it stationary if it is not. The first one is the identification of the form of equation (1) by benefiting from
autocorrelation and partial autocorrelation functions to determine the orders ofp and q. The second one
is the estimation which includes parameter estimation of the selected models. The last one is diagnostic
checking, which examines the residuals to ensure that they display white noise characteristics.

Exponential smoothing (ETS) model. Based on the fact that the impact of recent observations on
the variable to be forecasted is higher than those of past observations, it is plausible to utilise exponential
smoothing methods, which will assign exponentially more weight to the latest observations. Because it
is simple to understand and easy to use, this family of methods has been used and has produced reliable
forecasts in industry and economics for a long time [20]. Besides, these methods enable us to directly
model the components of the level, trend, and seasonality. Depending on the way the components are
dealt with, it is possible to classify exponential smoothing methods as in Table 2. Each combination
corresponds to a specific exponential smoothing method. For example, (A,N) stands for Holt’s linear
method, and (A,M) represents the multiplicative Holt-Winters method.

Table 3. The ways of defining trend and seasonality

Trend component Seasonal component
N (none) A (additive) M (multiplicative)

N (none) N, N N, A N, M
A (additive) A, N A, A A, M
Ad (additive damped) Ad, N Ad, A Ad, M
M (multiplicative) M, N M, A M, M
Md (multiplicative damped) Md, N Md, A Md, M

After the study by [38], which connects the formulations of state space to the methods of exponential
smoothing, [29] presented likelihood calculations and model selection criteria for exponential smoothing
methods. The acronym ETS was introduced to distinguish between different models. In this acronym, E
corresponds to additive or multiplicative errors, T and S are, in turn, the trend and seasonal components.
To select among 30 state space models, well-known information criteria like AIC, AICc, and BIC can be
used. For more information about the ETS model, interested readers may refer to a book written by [28]

Self-exciting threshold autoregressive (SETAR) model. Time series can be composed of multiple
regimes which describe different relationships, such as explosive or contractionary regimes, between
independent and dependent variables. The first attempt to model multiple regimes goes back to a study
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by [6]. Later, [50] developed this idea by using the threshold autoregressive (TAR) model, which
determines a regime by comparing an observable variable with a threshold value, and applying the linear
autoregressive model to each regime. The self-exciting threshold autoregressive (SETAR) model is a
particular case for the TAR model where regime switching depends on the self-dynamics of the dependent
variable, for example, yt−d in which d is the length of the lag. A two−regime SETAR model can be
represented as SETAR(2; p, r) and written algebraically as follows:

yt =


ϕ
(1)
0 +

p∑
i=1

ϕ
(1)
i yt−i + ε

(1)
t if yt−d ≤ τ

ϕ
(2)
0 +

r∑
i=1

ϕ
(2)
i yt−i + ε

(2)
t if yt−d < τ

(2)

where d≥0 denotes the delay parameter, yt−d represents the threshold variable, τ is the threshold value
which divides the series into two parts, ϕ(1)

i and ϕ
(2)
i are the coefficients of lower and upper regimes, and

p and r show the order of the autoregressive model, εt is assumed to follow IID(0, σ2).
A SETAR model with more regimes can be defined similarly. The parameters of autoregressive mod-

els can be estimated easily by the ordinary least square method. In addition, the value of the threshold
and the parameters of the SETAR model must be identified, and a procedure consisting of three stages
by [49] can be followed for this purpose.

Logistic smooth transition autoregressive (LSTAR) model. One way of handling regime-switching
is the smooth transition autoregressive (STAR) model developed by [35, 47]. The key variation between
SETAR and STAR models is in the process of controlling the transition between regimes. Instead of
a discrete or discontinuous transition between regimes, as in the case of the TAR or SETAR models, the
STAR model performs a smooth transition by using a transition function to reduce the speed of transition.

yt = a0

p∑
i=1

aiyt−i +

(
p∑

i=1

βiyt−i

)
F (zt−d) + εt (3)

where zt−d denotes the transition variable which can be determined endogenously or exogenously, p is
the order of the STAR model, and F (zt−d) corresponds to the transition function, which is smooth and
continuous.

Two alternative transition functions are popular among researchers. One exploits equation (4) and is
known as the logistic smooth transition autoregressive (LSTAR) model. The other one employs the expo-
nential function given in equation (5) and is known as the exponential smooth transition autoregressive
(ESTAR) model:

F (zt−d) =
[
1 + e−γ(zt−d−c)

]−1
(4)

where γ is the smoothing parameter governing the rate of transition between regimes, c represents the
threshold parameter, and d is the delay parameter.

F (zt−d) =
[
1− e−γ(zt−d−c)2

]
, γ > 0 (5)
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The LSTAR model allows asymmetric realisations to characterise different dynamic behaviours in the
regimes, while ESTAR only supports symmetric behaviour. Following the decision rule suggested by
[48] to select between two models, we chose the LSTAR model in this study.

Artificial neural networks (ANN) model. Even though the first ANN model dates back to the 1940s,
there has been a renewed surge of interest through the invention of the backpropagation algorithm by
[43] since 1986. Thanks to this breakthrough algorithm, ANN gained the property of approximating any
nonlinear functions at the desired level provided a sufficient number of neurons is added to the hidden
layer [15]. ANN does not require any assumption about data characteristics. Among a wide variety of
ANN types, multi-layer perceptron (MLP) has stood out from the others and has successfully modelled
time series in numerous papers [56]. The general functional form of the ANN model is defined in Eq. 6,
as follows:

yt = w0 +

q∑
j=1

wjf

(
w0j +

p∑
i=1

wijyt−i

)
+ εt (6)

where w0 and w0j(j = 1, . . . , q) denote the biases, wj and wij(i = 1, . . . , p; j = 1, . . . , q) represent
the connection weights of input and hidden layers, f is the transfer function, p and q are the numbers of
neurons in the input and hidden layers, respectively.

The major drawback of ANN is the problem of overfitting to peculiar properties of data or memorising
the noise that existed in the training set. In the autoregressive ANN model, the effect of the numbers of
input and hidden neurons on the out−of−sample performance is crucial [4].

3.2.2. Combining algorithms

First, we briefly introduce the most common and simple combining algorithms, and then we discuss some
issues that are widely encountered in practice.

Mean combining. The most sensible approach to combine forecasts is to take the average of all those
forecasts. This approach is a superior benchmark because of its simplicity and utility [21]. It should
be noted that the Mean combining algorithm shows higher forecasting accuracy when the forecasting
performances of the models are slightly different:

f c =
1

n

n∑
i=1

fi (7)

where f c denotes the forecast of the combining method, fi represents the forecast of the ith forecasting
model, and n is the number of single models.

Median combining. Another simple and intriguing combining algorithm is to use the median of all
forecasts. However, Median combining is insensitive to the variation in model performances. Therefore,
if one of the models has a superior forecasting performance compared to the others, this algorithm may
not be a suitable combining method [39]. The forecast equation for Median combining is as follows:
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f c =

f(n
2
+0.5) if n is odd

1

2

(
f(n

2
) + f(n

2
+1)

)
if n is even

(8)

Trimmed mean combining. The trimmed mean combining approach is a robust method for the
outliers as it excludes the smallest and the largest forecasts before computing the arithmetic average of
all individual forecasts. The final combined forecast is calculated by using a trim factor λ as follows:

f c =
1

n(1− 2λ)

(1−λ)n∑
i=λn+1

fi (9)

1: procedure INVERSE RANK WEIGHTING SCHEME
2: yi ← Input
3: i← the number of datasets
4: f̂ :
5: for every search i
6: calculate forecasts f̂j in Ωj

7: j ← the number of forecasting models
8: Ωj ← the set of forecasting models
9: MSE:

10: for every search j
11: obtain ε̂nj based on the difference between yni and f̂nj
12: calculate MSEj using ε̂nj
13: n← the number of observations in test set
14: R:
15: if MSEj has the smallest value then return Rj gets rank 1, and the following smallest Rj gets rank 2, etc.
16:
17: end if
18: Save Rj

19: ω:
20: calculate weights ωj using Rj

21: ωj =
R

−1
j∑j

i=1 R
−1
j

22: end procedure
Algorithm 1. Inverse rank weighting scheme

Equally weighted algorithm betwee n mean and median combining. Another robust weighting
scheme is to use the advantages of mean and median combining methods by utilising the equal weights
rule that offers reasonably improved forecast accuracy

f c = αifc,mean + (1− αi) fc,median (10)

In this algorithm, when α = 0.5, it provides equal weights for the combination between the mean and
median combining [1]. From this viewpoint, it performs a balancing task between the two methods.

Inverse rank. The combining algorithm by using the inverse ranks was proposed by [2]. A robust
weighting scheme, which is expected to rank mean square errors (MSE) in the reverse order, is determined
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as the proportion of each reversed rank order by the sum of reversed orders. The pseudo−code for this
method is presented in Algorithm 1.

A weighting scheme based on direct forecast. The weighting scheme in this algorithm is based
on the accuracy of the sign of the forecast direction [5]. As is known, the best forecasts do not only
mean attaining the minimum forecast error measured by MSE but also producing movements that are in
harmony with the real values of a time series. Here, we modified the algorithm proposed by [5] regarding
the calculation of the binary matrix. The second binary matrix denoted by S

(2)
tj is added to the analysis to

see that the movements calculated by the difference between two consecutive forecasts may be a better
measure of forecast accuracy. The details of this method for obtaining the weights of each forecasting
model are provided in Algorithm ??.

The proposed algorithm. The proposed algorithm is composed of two procedures, namely, inverse
ranks and forecast direction. In the first procedure, we calculated the MSE metric for each forecasting
model ranked the models according to their performance, and used inverse ranks to obtain the weights
of the models in the combining method. In the second procedure, if the sign function of the difference
between Yt−1 and Yt−2 is equal to the sign function of the difference between the estimated Ŷt−1 and Yt−2,
then it takes the value zero; otherwise, it takes the value one.

1: procedure A ROBUST WEIGHTING SCHEME BY FORECAST DIRECTION
2: yi ← Input
3: i← the number of datasets
4: ŷ:
5: for every search i
6: calculate predictions ŷn in Ωj

7: j ← jth forecasting model
8: n← the number of observations in training set
9: Ωj ← the set of forecasting models

10: S:
11: for two binary matricies

S
(1)
tj =

{
if sign

(
y(t−1),j − y(t−2),j

)
= sign

(
ŷ(t−1),j − y(t−2),j

)
, 0

if sign
(
y(t−1),j − y(t−2),j

)
̸= sign

(
ŷ(t−1),j − y(t−2),j

)
, 1

S
(2)
tj =

{
if sign

(
y(t−1),j − y(t−2),j

)
= sign

(
ŷ(t−1),j − ŷ(t−2),j

)
, 0

if sign
(
y(t−1),j − y(t−2),j

)
̸= sign

(
ŷ(t−1),j − ŷ(t−2),j

)
, 1

12: t← 1, . . . , n
13: FP ← the forecasting performance in training set
14: while FP(S(1)

tj ) is better than FP(S(2)
tj ) do select S(1)

tj

15: end while1
16: while FP(S(2)

tj ) is better than FP(S(1)
tj ) do select S(2)

tj

17: end while1
18: ω:

calculate weights ωtj using Stj

ωtj =
exp

(
−sumt−1

i=1Sij

)∑Ωj

j=1 exp
(
−sumt−1

i=1Sij

)
19: end procedure

Algorithm 2. A robust weighting scheme by forecast direction
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Moreover, for the second binary matrix in the study, if the sign function of the difference between
Yt−1 and Yt−2 is equal to the sign function of the difference between the estimated Ŷt−1 and the estimated
Ŷt−2, then it takes the value zero; otherwise, it takes the value one. We created a dummy variable that
included zeros and ones, and if the number of ones was less than the number of zeros in the model, we
gave a rank of one. As a final step, we combined these two ranks to obtain the weights that take into
account the benefits of two combining methods as a meta−combiner. The proposed algorithm is defined
in Algorithm 2.

3.2.3. Loss functions

A loss function in forecasting studies measures how well a given forecasting model fits the real data. In
the literature, it can be seen that the effects of using various accuracy metrics may vary in terms of selected
error metrics [44]. Accordingly, the selection of appropriate error metrics is one of the performance
evaluation parameters. To show the ability of the proposed algorithm in the five given different datasets,
the most widely used metrics are calculated and their definitions are given below.

Mean square error (MSE). The simplest and most frequently used loss function in the literature is
the MSE. The MSE is defined by the following equation:

MSE =
1

n

n∑
t=1

(
ft − f̂t

)
(11)

Mean absolute error (MAE). Another one of the existing error measures in the literature is MAE, which
is also used as another loss function to compare the out-of-sample forecasting performances of the models. A
large body of literature uses the popular MAE loss function to avoid the effects of outliers in forecasts.

MAE =
1

n

n∑
t=1

∣∣∣ft − f̂t

∣∣∣ (12)

Geometric mean square error (gMSE). Another robust loss function to avoid outliers is the gMSE.
The main advantage of using the gMSE loss function is that the mean absolute errors of different models
can be compared by computing their geometric means.

gMSE = n

√√√√ n∏
t=1

(
ft − f̂t

)
(13)

Mean absolute percentage error (MAPE). It is a good option for studying data that contains extreme
values since it is less sensitive to outliers than other error measures like the MAE or square root of the MSE.

MAPE =
1

n

n∑
t=1

∣∣∣∣∣ft − f̂t
ft

∣∣∣∣∣ (14)
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1: procedure A NEW WEIGHTING SCHEME BY A META-COMBINING METHOD
2: s← the number of binary matrices
3: t← 1, . . . , n
4: j ← jth forecasting model
5: ν ← the number of forecasting models
6: Input← Rk1 and Rk2

7: Rk1 ← the ranks from Algorithm I
Rk2 ← the ranks from Algorithm II

8: Aj ← the total number of the wrong direction
9: while Ss

tj do
calculate Aj = sumt−1

i=1Sij for each j
if Aj < Aw, j, w ∈ Ω ; where j ̸= w
Rj,k2 ← gets rank 1, if the number of 1's is less than

the number of 0's in Ω
10: repeat

assign ranks to Rj,k2

11: until j = 1, . . . , ν
12: end while
13: ωtj :

calculate weights ωtj using Rj,k1 and Rj,k2

ωtj =
(Rj,k1 +Rj,k2)

−1∑ν
j=1 (Rj,k1 +Rj,k2)

−1

14: Save ωtj

15: end procedure
Algorithm 3. The proposed algorithm

4. Results and discussions

The methodology consists of guidance on modelling the data sets using univariate time series models,
the ANN model and the proposed algorithm. The aim of the study is to identify the most accurate time
series forecasting model among several forecasting models and to increase the forecasting accuracy by
using the proposed the proposed hybrid algorithm. For this purpose, the forecasting results of the study
are provided in Tables 4–7. The rows contain the individual models and the combining procedures, while
the columns display the error measures obtained for each data set and their ranks among all forecasting
methods. The last column represents the average rank computed by ranks for all data sets. Bold numbers
in these tables indicate the best-performing model.

Three different error measures were employed to evaluate model performances. Each model was
assessed within each error measure, and rank ordering was established accordingly. However, a direct
comparison of the error measures or their superiority was not conducted. As seen in various literature
studies [26, 32], different error measures can highlight the performance of different models. Similar
findings emerged in this study as well.

Nevertheless, when the models’ performances were ranked within their respective error measures, it became
easier to discern which models stood out under different error measures. By taking the average of these
ranks, comparing model performances becomes more informative, indicating which model presents less risk
in terms of forecasting performance compared to others. In essence, the averaging of ranks provides readers
with insights into the relative performance of models when assessed under different error measures on datasets
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Table 4. Out-of-sample forecasting performances in terms of MSE

Models and algorithms Lynx R1 RGNP R2 Birth rate R3 Passenger R4 Expend. R5 R̄
ARIMA 0.0300 11 526.4260 12 136.5890 12 0.00175 5 0.6174 10 10
SETAR 0.0276 10 516.0593 11 96.1400 8 0.00210 11 0.5740 8 9.6
LSTAR 0.0268 9 426.1781 9 99.6308 10 0.00150 1 2.0475 12 8.2
ANN 0.0118 5 422.1891 8 115.6045 11 0.00177 6 0.5936 9 7.8
ETS 0.0477 12 376.0186 1 96.9108 9 0.00569 12 1.0485 11 9
Mean combining 0.0116 4 402.0424 5 83.4850 4 0.00199 10 0.4655 6 5.8
Median combining 0.0100 1 441.6993 10 82.4695 2 0.00195 8 0.4342 2 4.6
Trimmed combining 0.0119 6 417.0290 6 82.1847 1 0.00188 7 0.4345 3 4.6
Equal weighted
between
mean and median

0.0104 2 420.2410 7 82.4798 3 0.00196 9 0.4105 1 4.4

Weighting algorithm [2] 0.0147 7 397.3390 4 89.6471 6 0.00172 2 0.4513 5 4.8
Weighting algorithm [5] 0.0243 8 385.6306 2 94.8965 7 0.00174 4 0.5569 7 5.6
Proposed algorithm 0.0108 3 385.7200 3 86.6891 5 0.00173 3 0.4353 4 3.6

Table 5. Out-of-sample forecasting performances in terms of MAE

Models and algorithms Lynx R1 RGNP R2 Birth rate R3 Passenger R4 Expend. R5 R̄
ARIMA 0.133 10 17.287 10 10.150 12 0.03113 4.5 0.670 10 9.3
SETAR 0.137 11 18.402 12 7.511 10 0.03430 10 0.564 7 10
LSTAR 0.115 8 17.063 9 8.103 11 0.02780 1 1.247 12 8.2
ANN 0.093 6 17.317 11 6.941 7 0.03240 7 0.604 8 7.8
ETS 0.168 12 15.212 1 7.364 9 0.05670 12 0.852 11 9
Mean combining 0.090 5 16.217 5 6.093 3 0.03450 11 0.539 6 6
Median combining 0.083 1 17.041 8 6.393 6 0.03320 6 0.472 1 4.4
Trimmed combining 0.087 4 16.594 6 6.319 5 0.03250 8 0.496 3 5.2
Equal weighted
between
mean and median

0.085 3 16.629 7 6.159 4 0.03350 9 0.475 2 5

Weighting algorithm [2] 0.097 7 16.203 4 5.870 1 0.03111 2 0.511 5 3.8
Weighting algorithm [5] 0.119 9 15.895 2 7.310 8 0.03113 4.5 0.641 9 6.5
The proposed algorithm 0.084 2 15.900 3 5.910 2 0.03112 3 0.501 4 2.8

Table 6. Out-of-sample forecasting performances in terms of gMSE

Models and algorithms Lynx R1 RGNP R2 Birth rate R3 Passenger R4 Expend. R5 R̄
ARIMA 0.00620 10 119.563 10 63.391 12 0.00054 10 0.301 10 10.4
SETAR 0.00780 12 124.001 11 24.780 9 0.00034 2 0.063 2 7.2
LSTAR 0.00510 8 83.925 2 35.961 11 0.00025 1 0.988 12 6.8
ANN 0.00580 9 131.377 12 6.374 4 0.00052 7 0.150 8 8
ETS 0.00630 11 82.782 1 16.249 8 0.00134 12 0.370 11 8.6
Mean combining 0.00430 7 106.336 8 6.216 3 0.00067 11 0.131 7 7.2
Median combining 0.00363 2 104.329 7 11.652 6 0.00050 6 0.044 1 4.4
Trimmed combining 0.00304 1 96.156 6 12.250 7 0.00044 5 0.098 6 5
Equal weighted
between
mean and median

0.00377 6 115.146 9 8.868 5 0.00053 8.5 0.078 3 6.3

Weighting algorithm [2] 0.00372 5 95.226 5 2.510 1 0.00037 3 0.095 5 3.8
Weighting algorithm [5] 0.00370 4 84.703 3 25.140 10 0.00053 8.5 0.293 9 6.9
The proposed algorithm 0.00364 3 93.307 4 4.425 2 0.00039 4 0.082 4 3.4

exhibiting distinct characteristics. Consequently, it offers valuable information for model selection and decision-
making by providing an understanding of how models perform in terms of forecasting under different scenarios.
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Table 7. Out-of-sample forecasting performances in terms of MAPE

Models and algorithms Lynx R1 RGNP R2 Birth rate R3 Passenger R4 Expend. R5 R̄
ARIMA 0.0440 10 1.2184 12 2.5179 12 0.0050 2.5 0.0236 10 9.3
SETAR 0.0443 11 1.1371 11 0.8904 1 0.0056 10.5 0.0197 7 8.1
LSTAR 0.0381 8 0.8498 1 1.7989 10 0.0046 1 0.0426 12 6.4
ANN 0.0322 6 0.8773 2 1.2889 5 0.0053 6.5 0.0214 8 5.5
ETS 0.0577 12 0.9813 8 2.2048 11 0.0092 12 0.0305 11 10.8
Mean combining 0.0304 5 0.9630 6 1.4329 6 0.0056 10.5 0.0194 6 6.7
Median combining 0.0283 2 1.0296 10 1.4927 8 0.0054 8 0.0169 1 5.8
Trimmed combining 0.0296 4 0.9727 7 1.5693 9 0.0053 6.5 0.0181 3.5 6
Equal weighted
between
mean and median

0.0289 3 0.9963 9 1.4494 7 0.0055 9 0.0172 2 6

Weighting algorithm [2] 0.0326 7 0.9108 4 1.1734 3 0.0051 4.5 0.0185 5 4.7
Weighting algorithm [5] 0.0394 9 0.9095 3 0.9258 2 0.0051 4.5 0.0226 9 5.5
The proposed algorithm 0.0275 1 0.9426 5 1.1773 4 0.0050 2.5 0.0181 3.5 3.2

As can be seen in Tables 4–7, the proposed algorithm has the minimum average rank value for the
three different loss functions that have been considered. Therefore, choosing the proposed algorithm
instead of the individual models and other combining algorithms provides more accurate forecasts in
terms of ranks compared with these methods. Even if the proposed combining method does not lead to
the best forecasting performance for all data sets and error measures, the overall performance, denoted
by R, is the best one as it demonstrates reliability and generality. To ensure a fair comparison of the
model performances obtained in the study, the median value of ranks instead of the rank averages for the
models has also been calculated and provided in Tables 8–11. Based on the MSE error metric that we
proposed in the study, the combining algorithm places the models’ rank performances as the second best
according to the median value. However, when considering the error metrics MAE, MAPE and gMSE, it
is observed that it has the lowest rank median value.

Table 8. Out-of-sample forecasting performances
in terms of MSE with the median ranks

Models and algorithms Medians of ranks
ARIMA 11
SETAR 10
LSTAR 9
ANN 8
ETS 11
Mean combining 5
Median combining 2
Trimmed combining 6
Equal weighted between mean and median 3
Weighting algorithm proposed by [2] 5
Weighting algorithm proposed by [5] 7
Proposed algorithm 3

In this context, it is observed that selecting the proposed combining algorithm for out-of-sample fore-
casting performance across different datasets tends to reduce the risk of achieving lower forecasting ac-
curacy compared to other models. As shown in Figures 6–9, the proposed algorithm reduces the risk of
misjudgment in decision-making by providing the minimum loss functions among most of the datasets.
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Table 9. Out-of-sample forecasting performances
in terms of MAE with the median ranks

Models and algorithms Medians of ranks
ARIMA 10
SETAR 10
LSTAR 9
ANN 7
ETS 11
Mean combining 5
Median combining 6
Trimmed combining 5
Equal weighted between mean and median 4
Weighting algorithm proposed by [2] 4
Weighting algorithm proposed by [5] 8
Proposed algorithm 3

Table 10. Out-of-sample forecasting performances
in terms of gMSE with the median ranks

Models and algorithms Medians of ranks
ARIMA 10
SETAR 9
LSTAR 8
ANN 8
ETS 11
Mean combining 7
Median combining 6
Trimmed combining 6
Equal weighted between mean and median 6
Weighting algorithm proposed by [2] 5
Weighting algorithm proposed by [5] 8.5
Proposed algorithm 4

Table 11. Out-of-sample forecasting performances
in terms of MAPE with the median ranks

Models and algorithms Medians of ranks
ARIMA 10
SETAR 10.5
LSTAR 8
ANN 6
ETS 11
Mean combining 6
Median combining 8
Trimmed combining 6.5
Equal weighted between mean and median 7
Weighting algorithm proposed by [2] 4.5
Weighting algorithm proposed by [5] 4.5
Proposed algorithm 3.5

Figure 6. Heatmap of forecasting methods in terms of MSE
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Figure 7. Heatmap of forecasting methods in terms of MAE

Figure 8. Heatmap of forecasting methods in terms of gMSE

Figure 9. Heatmap of forecasting methods in terms of MAPE
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Figure 10. The Boxplot of the ranks in terms of MSE

Figure 11. The Boxplot of the ranks in terms of MAE

Figure 12. The Boxplot of the ranks in terms of gMSE
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Figure 13. The Boxplot of the ranks in terms of MAPE

The abbreviations of the forecasted models and the algorithms stand for model 1 – ARIMA, model 2
– SETAR, model 3 – LSTAR, model 4 – ANN, model 5 – ETS, algorithm 1 – mean combining, algorithm
2 – median combining, algorithm 3 – trimmed combining, algorithm 4 – equal weighted combining,
algorithm 5 – weighting based on the direct forecast, and algorithm 6 – weighting based on inverse rank.

In Figures 10–13, the boxplots of the ranks better display comparisons between the methods by using
three loss functions. The minimum average rank of the forecasting models and the combining algo-
rithms was achieved by using the proposed combining algorithm. Increasing the forecast accuracy in the
proposed algorithm helps to obtain competitive and outperforming forecasts. As a result, the proposed
algorithm needed less time in the decision-making process, had enhanced stability, and achieved high
forecast accuracy by providing promising results for all datasets.

The result of the Friedman test in Figures 14–17 shows that the mean scores of ranks in representative
forecasting models and combining algorithms are not equal in terms of different loss functions. The
proposed algorithm achieves the best rank in terms of the Friedman test.

Figure 14. The Friedman test in terms of comparisons of the ranks by MSE
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Figure 15. The Friedman test in terms of comparisons of the ranks by MAE

Figure 16. The Friedman test in terms of comparisons of the ranks by gMSE

Figure 17. The Friedman test in terms of comparisons of the ranks by MAPE
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The findings demonstrate that there is a difference between the forecasting performances of the pro-
posed algorithm and the compared combining algorithms with a Kendall’s W score of around 0.4, which
confirms the moderate agreement in five datasets.

5. Conclusions

This study introduces a meta-combining algorithm that performs well in all data sets by determining
the weights and considering the information in the minimum squared error and the maximum forecast
direction at the same time. Because it relies on the ranks calculated from two criteria, this algorithm
can be regarded as a robust weighting scheme. By creating algorithms that attempt to combine for
improved accuracy, the algorithm adopts the improvements to enhance forecasting performance. The
forecast improvements arise from two sources. First, applying the weighting algorithm considered the
best-fit model to time series data effectively reduces forecast errors. Second, using a weighting combining
algorithm based on forecast direction performance is essential for the success of forecast combinations.
In addition, the proposed algorithm incorporates the advantage of combining algorithm diversity with
different algorithms capturing the effectiveness of the forecasting procedure.

In doing this, we show the applicability of a meta-combining approach in time series forecasting
problems. This study also indicates that the forecast−combining algorithms can be compressed into
a single-algorithm approach to yield more accurate results. This new combining algorithm−based on
weighting retains a competitive predictive performance when compared with the other forecasting models
and combining algorithms while being simpler and producing more reliable decisions.

For future directions, a more complicated meta−combining method, which requires parameter estima-
tion to determine the weights in the combining method, may be developed. In addition, the form of the
combining equation can be changed to generate combined forecasts with a nonlinear structure. Lastly,
more data sets from different fields may be used to prove the value of the proposed method.
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