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Abstract

This article unveils the often underestimated potential of a copula methodology introduced by Durante in 2009. It highlights
the remarkable ability of the method to generate a broad spectrum of copulas by exploiting various parametric functions.
We determine a collection of power-like, exponential-like, trigonometric-like, logarithmic-like, hyperbolic-like and error-like
functions, each dependent on one, two, or three parameters, effectively satisfying the necessary assumptions of Durante’s
method. The proofs provided rely on suitable differentiation, comprehensive factorizations, and judicious application of
mathematical inequalities. In the vast repertoire of copulas derived from this methodology, we present three distinct series
of eight new copulas, supported by a graphical analysis of their respective densities. This theoretical study expands the
understanding of copula generation and also introduces a new perspective on their construction in various contexts.
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1. Introduction

Copulas are mathematical constructs that play a pivotal role in modeling multi-dimensional dependence
types among random variables in various fields, including biology, finance, engineering, earth science,
and environmental science. They provide a flexible framework for capturing the intricate relationships
that exist between these variables, making them invaluable tools for risk assessment and statistical analy-
sis. Over the years, several copula families have been developed to describe different types of dependence
structures, ranging from the popular elliptical, extreme-value, and Archimedean copulas to more special-
ized structures like minimum-maximum-type and perturbed-type copulas. The key references on the
basics of copulas are [11, 18, 21]. Current developments are detailed in [4–6, 12, 19, 22–26, 28]. These
references collectively provide a solid foundation for further understanding and applying copula theory.
While the existing copulas have been crucial in a wide range of applications, researchers have continued
to explore innovative ways to extend the repertoire of copula models.
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In retrospect, Durante’s 2009 method described in [10, Corollary 3] represents a major step in this
direction. It offers a systematic scheme to construct new copulas based on two existing copulas and
auxiliary functions. More precisely, based on two (uni-dimensional) functions f(x) and g(x), x ∈ [0, 1],
satisfying some precise assumptions (to be specified later) and two (two-dimensional) copulas A(x, y)

and B(x, y), (x, y) ∈ [0, 1]2, the method established by Durante guarantees that the following two-
dimensional function is a valid copula:

C(x, y) = A

[
x

f(x)
,

y

g(y)

]
B [f(x), g(y)] , (x, y) ∈ [0, 1]2 (1)

Thus, it allows the creation of two-dimensional copulas with diverse structures by introducing func-
tions f(x) and g(x) of varying natures. In particular, these functions can subtly depend on tuning param-
eters for the sake of flexibility. In [10, page 388], examples based on simple linear, power, or maximum
functions are presented. Durante’s method has opened up interesting possibilities for copula modeling, as
it allows the development of copulas adapted to specific data characteristics and applications. However,
most of the related works focus on power functions only, as described in [10, Corollary 4] (see [5, 9, 20]).

In this article, we unveil the versatility of Durante’s method by presenting new and sophisticated
examples of functions f(x) and g(x), beyond the classical power function scenario. More precisely,
we exhibit a collection of power-like, exponential-like, trigonometric-like, logarithmic-like, hyperbolic-
-like and error-like functions, each dependent on one, two, or three parameters, effectively satisfying
the necessary assumptions of Durante’s method. The proofs provided rely on suitable differentiation
techniques, comprehensive factorizations, and well-chosen mathematical inequalities. On this basis and
equation (1), we demonstrate how Durante’s method can be exploited to construct a wide range of para-
metric copulas. A focus is put on three distinct series of eight new copulas. We also perform a graphical
study to show the versatility of the associated copula densities by varying the values of the parameters.
Thus, the contributions of this study aim to provide a comprehensive overview of Durante’s method, mak-
ing it accessible to a wider audience of researchers and practitioners, and how it can be used to develop
custom copulas suitable for their specific modeling needs.

The subsequent sections of this article are organized as follows: In Section 2, we investigate the
foundational aspects of copulas and Durante’s method within the context of mathematical principles.
Section 3 introduces flexible parametric functions f(x) and g(x) that meet the essential criteria for ap-
plying this method. Section 4 is dedicated to the derivation of a set of novel copulas. Finally, Section 5
proposes a comprehensive conclusion.

2. Mathematical background

2.1. Copulas

To begin, let us recall the definition of a (two-dimensional) copula.

Definition 1. A (two-dimensional) function C(x, y), (x, y) ∈ [0, 1]2, is said to be a copula if it satisfies
the following properties:
P1. C(x, 1) = C(1, x) = x for any x ∈ [0, 1].
P2. C(x, 0) = C(0, x) = 0 for any x ∈ [0, 1].
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P3. C(x1, y1) − C(x1, y2) − C(x2, y1) + C(x2, y2) ≥ 0 for any (x1, x2, y1, y2) ∈ [0, 1]4 with x1 ≤ x2

and y1 ≤ y2.

In the absolutely continuous case, implying that the mixed derivative of C(x, y) is defined almost ev-
erywhere, the property P3 is equivalent to ∂2C(x, y)/(∂x∂y) ≥ 0 for any (x, y) ∈ (0, 1)2. In this case,
the copula density is defined by c(x, y) = ∂2C(x, y)/(∂x∂y). We may refer to [11, 18, 21]. In fact, cop-
ulas may exhibit rich diversity in their shapes and structures. From Archimedean copulas, characterized
by their properties of symmetry and tail dependence, to elliptical copulas, capturing multi-dimensional
normality, the range of copulas is vast. Table 1 presents some classical and recently introduced copulas,
along with the appropriate references.

Table 1. Some selected classical and recently introduced copulas

Name) Definition Parameter(s) Reference
Independence xy ✗ (classic)

Farlie–Gumbel–Morgenstern (FGM) xy[1 + α(1− x)(1− y)] α ∈ [−1, 1] [13, 21]

Ali–Mikhail–Haq (AMH)
xy

1− α(1− x)(1− y)
α ∈ [−1, 1] [1]

Clayton (C) (x−α + y−α − 1)−1/α α > 0 [7]

Frank (F) − 1

α
log

[
1 +

[exp(−αx)− 1][exp(−αy)− 1]

exp(−α)− 1

]
α ∈ R/{0} [14]

Gumbel–Hougaard (GH) exp
[
−{[− log(x)]α + [− log(y)]α}1/α

]
α ≥ 1 [16, 17]

Gumbel–Barnett (GB) xy exp[−α log(x) log(y)] α ∈ [0, 1] [2, 15]

Celebioglu–Cuadras (CC) xy exp[−α(1− x)(1− y)] α ∈ [−1, 1] [3, 8]

Chesneau (C) xy exp

[
−α

(
1− 1

x

)(
1− 1

y

)]
α ∈ [0, 1] [6]

These copulas have diverse functional features, depend on one tuning parameter (except the indepen-
dence copula), and possess their own qualities. It is worth mentioning that some of them are implemented
in many software programs to ease their applicability. For reasons explained later, these copulas will be
considered as baselines in our investigations of Durante’s method.

2.2. Durante’s method

To elucidate Durante’s method, it is necessary to outline four specific assumptions. They are described
by the class denoted as Θ and into the Corollary 3 in [10]. Based on a general function f(x), x ∈ [0, 1],
these assumptions are as follows:
A1. f(1) = 1.
A2. f(0) ̸= 1 and f(0) ≥ 0.
A3. f(x) is increasing.
A4. x/f(x) is increasing.

They are less stringent than it seems at a first glance, as developed in the first part of the article.
We are now in the position to present Durante’s method.
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Proposition 1. [10, Corollary 3] Let us consider two functions f(x) and g(x) that satisfy assumptions
A1–A4. Then, for any copula A(x, y) and B(x, y), the following function is a copula:

C(x, y) = A

[
x

f(x)
,

y

g(y)

]
B [f(x), g(y)] , (x, y) ∈ [0, 1]2

Thus, based on Durante’s method, thanks to the open choices for f(x) and g(x), and also the copulas
A(x, y) and B(x, y), we can construct a plethora of new copulas, which can be exchangeable or not. If
we focus on f(x) or g(x), the given examples of parametric functions in [10, page 388] are as follows:

• f(x) = [(b− a)x+ a]/b for (a, b) ∈ (0, 1)2 with a < b,
• f(x) = x1−c for c ∈ [0, 1),
• f(x) = max(x, 1/d) with d > 1.

These examples possess the dual merits of simplicity and comprehensiveness in illustrating the ap-
plicability of Durante’s method for extending and parameterizing various copulas. Notably, in contem-
porary literature, the significance of [10, Corollary 3] often materializes within a specific context where
f(x) = x1−a for a ∈ [0, 1) and g(x) = x1−b for b ∈ [0, 1), corresponding to [10, Corollary 4]. As
sketched in the introduction, this scenario is exemplified in works such as [5, 9, 20].

This article attempts to elucidate the potential inherent in the aforementioned [10, Corollary 3] and its
capacity to generate various copulas beyond those currently established. This exploration is undertaken
by presenting original parametric functions that satisfy assumptions A1–A4, as outlined in the following
section. Through this investigation, we aim to highlight the versatility and wide applicability of Durante’s
method in modeling copulas.

3. Examples of parametric functions

Several kinds of parametric functions f(x) satisfying assumptions A1, A2, A3, and A4 are described
in this section, namely power-like, exponential-like, trigonometric-like, logarithmic-like, hyperbolic-like
and error-like functions.

3.1. Power-like functions

The proposition below exhibits a two-parameter power-like function that satisfies the required assump-
tions.

Proposition 2. Let (a, b) ∈ R2. The following function satisfies assumptions A1–A4:

f(x) = [a+ (1− a)xb]1/b, x ∈ [0, 1]

for a ∈ (0, 1).

Proof. We have f(1) = [a + (1 − a)]1/b = 1; A1 is satisfied. Moreover, since a ∈ (0, 1), we have
f(0) = a1/b ̸= 1 and f(0) ≥ 0; A2 is fulfilled. Let us now investigate A3. We have

f ′(x) = (1− a)xb−1[a+ (1− a)xb]1/b−1
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Since a ∈ (0, 1), it is immediate that f ′(x) ≥ 0, implying that f(x) is increasing. Therefore, A3 is
satisfied. It remains to prove A4. By using standard differentiation rules and some arrangements, we
obtain (

x

f(x)

)′

= a[a+ (1− a)xb]−1/b−1

Since a ∈ (0, 1), it is immediate that [x/f(x)]′ ≥ 0, implying that x/f(x) is increasing. Therefore,
A4 is fulfilled. The proof is completed. □

In Proposition 2, it is important to notice that b ∈ R without restriction; we may take b negative in
particular. Furthermore, one can prove that f(x) is convex for b < 1, concave for b > 1 and linear for
b = 1 (case also covered in [10, page 388]); f(x) has comprehensible properties that makes it interesting
to consider as a prime choice into Durante’s method.

The result below presents an alternative three-parameter power-like function that successfully meets
the necessary assumptions, but under some technical conditions on the parameters.

Proposition 3. Let (a, b, c) ∈ R3. The following function satisfies assumptions A1–A4:

f(x) = 1 + a(1− c)b − a(1− cx)b, x ∈ [0, 1]

for c ≤ 1, abc > 0, a[1− (1− c)b] ≤ 1, and either

• a(1− b)b < 0, or
• a(1− b)b ≥ 0 and abc(1− c)b−1 ≤ 1.

Proof. It is clear that f(1) = 1 + a(1− c)b − a(1− c)b = 1; A1 is fulfilled. Since a ̸= 0 and c ̸= 0,
we have f(0) = 1 + a(1− c)b − a(1− c× 0)b = 1 + a[(1− c)b − 1] ̸= 1 and, since a[1− (1− c)b] ≤ 1,
we have f(0) ≥ 0; A2 is satisfied.

Let us now investigate A3. We have

f ′(x) = abc(1− cx)b−1

Since abc > 0 and c ≤ 1, it is immediate that f ′(x) ≥ 0, implying that f(x) is increasing. Therefore,
A3 is fulfilled.

For A4, we aim to prove that, under the considered conditions on a, b and c, we have [x/f(x)]′ ≥ 0,
implying that x/f(x) is increasing. By using classical differentiation rules and a suitable arrangement,
we obtain (

x

f(x)

)′

=
1− a[1− cx(1− b)](1− cx)b−1 + a(1− c)b

[1 + a(1− c)b − a(1− cx)b]2

It is clear that [1 + a(1− c)b − a(1− cx)b]2 ≥ 0. As a result, the property [x/f(x)]′ ≥ 0 is established
if a, b and c satisfy the following inequality:

sup
x∈[0,1]

{
a[1− cx(1− b)](1− cx)b−1 − a(1− c)b

}
≤ 1 (2)
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Let us now investigate it. By setting h(x) = a[1− cx(1− b)](1− cx)b−1 − a(1− c)b, we have

h′(x) = a(1− b)bc2x(1− cx)b−2

Since c ≤ 1, it is clear that (1 − cx)b−2 ≥ 0. Let us now distinguish the cases a(1 − b)b < 0 and
a(1− b)b ≥ 0.

• For a(1 − b)b < 0, we have h′(x) ≤ 0. This implies that h(x) is decreasing, so sup
x∈[0,1]

h(x) = h(0)

= a[1− (1− c)b], and the inequality in equation (2) becomes a[1− (1− c)b] ≤ 1, which is an initial
assumption.

• For a(1 − b)b ≥ 0, we have h′(x) ≥ 0. This implies that h(x) is increasing, so sup
x∈[0,1]

h(x) = h(1)

= a[1− c(1− b)](1− c)b−1−a(1− c)b = abc(1− c)b−1, and the inequality in equation (2) becomes
abc(1− c)b−1 ≤ 1.

As a result, under the additional conditions: a(1− b)b < 0 and a[1− (1− c)b] ≤ 1, or a(1− b)b ≥ 0

and abc(1− c)b−1 ≤ 1, A4 is satisfied. This ends the proof. □

To highlight the complexity of the conditions on the parameters, let us notice that abc > 0 implies
that either a > 0, b > 0 and c > 0, or a > 0, b < 0 and c < 0, or a < 0, b > 0 and c < 0, or a < 0, b < 0

and c > 0. Some configurations are excluded based on other conditions, but this must be considered on
a case-by-case basis.

In the special case b = 1 and c = 1, the condition abc(1− c)b−1 ≤ 1 must be read as a ≤ 1, with the
use of the convention (1− c)b−1 = 00 = 1 (see [27]). In this case, we thus have the condition a ∈ (0, 1].

3.2. Exponential-like functions

The result below exhibits a three-parameter exponential-like function that fulfills the assumptions of
Durante’s method.

Proposition 4. Let (a, b, c) ∈ R3. The following function satisfies assumptions A1–A4:

f(x) = exp[a(1− c)b − a(1− cx)b], x ∈ [0, 1]

for c ≤ 1, abc > 0, and either

• bc ≤ 1 and abc(1− c)b−1 ≤ 1, or
• bc > 1 and a(1− 1/b)b−1 ≤ 1.

Proof. It is clear that f(1) = exp[a(1 − c)b − a(1 − c)b] = exp(0) = 1; A1 is fulfilled. Moreover,
since a ̸= 0 and c ̸= 0, we have f(0) = exp{a[(1− c)b− 1]} ≠ 1 and since an exponential term is always
positive, we have f(0) ≥ 0; A2 is satisfied.

Let us now investigate A3. We have

f ′(x) = abc(1− cx)b−1 exp[a(1− c)b − a(1− cx)b]

The exponential term is always positive and, since abc > 0 and c ≤ 1, it is clear that abc(1− cx)b−1 ≥ 0.
As a result, we have f ′(x) ≥ 0, implying that f(x) is increasing; A3 holds.
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For A4, we aim to prove that, under the considered conditions on a, b and c, we have [x/f(x)]′ ≥ 0,
implying that x/f(x) is increasing. By using standard differentiation rules and appropriate factorizations,
we obtain (

x

f(x)

)′

= exp[a(1− cx)b − a(1− c)b]
[
1− abcx(1− cx)b−1

]
The exponential term is always positive. Since abc > 0 and c ≤ 1 imply that abcx(1 − cx)b−1 ≥ 0,

the property [x/f(x)]′ ≥ 0 is obtained if a, b and c satisfy the following inequality:

abc sup
x∈[0,1]

x(1− cx)b−1 ≤ 1 (3)

Let us now demonstrate that the considered conditions on a, b and c make this inequality true. By
setting h(x) = x(1− cx)b−1, we have

h′(x) = (1− cx)b−2(1− bcx)

Since c ≤ 1, it is clear that (1− cx)b−2 ≥ 0. Let us now distinguish the cases bc ≤ 1 and bc > 1.

• For bc ≤ 1, we clearly have 1 − bcx ≥ 0 and h′(x) ≥ 0. This implies that h(x) is increasing, so
sup

x∈[0,1]
h(x) = h(1) = (1− c)b−1, and the inequality in equation (3) becomes abc(1− c)b−1 ≤ 1.

• For bc > 1, the equation h′(x) = 0 has the solution x = 1/(bc) ∈ [0, 1]. Since h(x) ≥ 0 with
h(0) = 0, this is a maximum point, and we have sup

x∈[0,1]
h(x) = h[1/(bc)] = [1/(bc)](1 − 1/b)b−1,

and the inequality in equation (3) becomes a(1− 1/b)b−1 ≤ 1.

As a result, under the additional conditions: bc ≤ 1 and abc(1 − c)b−1 ≤ 1, or bc > 1 and a(1 −
1/b)b−1 ≤ 1, A4 is satisfied. The desired result is established. □

The proposition below presents an alternative variant; it illustrates a two-parameter polynomial-
-exponential-like function that satisfies the required assumptions.

Proposition 5. Let (a, b) ∈ R2. The following function satisfies the assumptions A1–A4:

f(x) = 1− a(1− x) exp(−bx), x ∈ [0, 1]

for a ∈ (0, 1] and b ≥ 0.

Proof. Since a ̸= 0, we have f(1) = 1− a(1− 1) exp(−b× 1) = 1; A1 is fulfilled. Since a ∈ (0, 1],
we have f(0) = 1− a(1− 0) exp(−b× 0) = 1− a ≠ 1 and f(0) ≥ 0; A2 is fulfilled. Furthermore, we
have

f ′(x) = a exp(−bx)[1 + b(1− x)]

The exponential term is always positive. Since a > 0 and b ≥ 0 implying that 1 + b(1− x) ≥ 1 ≥ 0,
we get f ′(x) ≥ 0. As a result, f(x) is increasing; A3 holds. On the other hand, we have(

x

f(x)

)′

=
exp(bx){exp(bx)− a[1 + bx(1− x)]}

[1− a(1− x) exp(−bx)]2



68 C. Chesneau

It is clear that [1 − a(1 − x) exp(−bx)]2 ≥ 0 and exp(bx) ≥ 0. Also, since b ≥ 0, we have
1 + bx(1 − x) ≥ 1 ≥ 0. By using a ∈ (0, 1] and the following well-known exponential inequality:
exp(u) ≥ 1 + u for u ∈ R, we get

exp(bx)− a[1 + bx(1− x)] ≥ exp(bx)− [1 + bx(1− x)]

≥ 1 + bx− [1 + bx(1− x)] = bx2 ≥ 0

As a result, we have [x/f(x)]′ ≥ 0, so that x/f(x) is increasing; A4 is fulfilled. This ends the proof. □

We can notice that, for b = 0, we get f(x) = 1− a(1− x) = (1− a) + ax, which is presented in [10,
page 388].

Other kinds of parametric functions are considered in the next subsections.

3.3. Trigonometric-like functions

The proposition below illustrates a two-parameter sine-like function that satisfies the required assump-
tions.

Proposition 6. Let (a, b) ∈ R2. The following function satisfies assumptions A1–A4:

f(x) =

[
sin(ax)

sin(a)

]b
, x ∈ [0, 1]

for a ∈ (0, π/2] and b ∈ (0, 1].

Proof. It is clear that f(1) = [sin(a)/ sin(a)]b = 1; A1 is satisfied. Since b ∈ (0, 1], we have
f(0) = [sin(a× 0)/ sin(a)]b = 0 ̸= 1 and f(0) ≥ 0; A2 are fulfilled. Furthermore, we have

f ′(x) =
1

[sin(a)]b
ab cos(ax)[sin(ax)]b−1

Since a ∈ (0, π/2] and b ∈ (0, 1] (in fact, b > 0 is enough at this step), it is immediate that f ′(x) ≥ 0.
As a result, f(x) is increasing. So A3 is fulfilled. On the other hand, we have(

x

f(x)

)′

= [sin(a)]b[sin(ax)]−b−1[sin(ax)− abx cos(ax)]

Since b ∈ (0, 1] and ax ∈ (0, π/2], by applying the following well-known trigonometric inequality:
sin(u) ≥ u cos(u) for u ∈ [0, π/2], we get(

x

f(x)

)′

≥ [sin(a)]b[sin(ax)]−b−1[sin(ax)− ax cos(ax)] ≥ 0

Hence [x/f(x)]′ ≥ 0, so that x/f(x) is increasing; A4 is satisfied. The proof is completed. □

Similarly, the subsequent result presents a two-parameter arctangent-like function that fulfills the
necessary assumptions. We recall that arctan(x) is the inverse function of tan(x).
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Proposition 7. Let (a, b) ∈ R2. The following function satisfies assumptions A1–A4:

f(x) =

[
arctan(ax)

arctan(a)

]b
, x ∈ [0, 1]

for a > 0 and b ∈ (0, 1].

Proof. Since a ̸= 0, we have f(1) = [arctan(a)/ arctan(a)]b = 1; A1 is satisfied. Also, since
b ∈ (0, 1], we have f(0) = [arctan(a × 0)/ arctan(a)]b = 0 ̸= 1 and f(0) ≥ 0; A2 is fulfilled.
Furthermore, we have

f ′(x) =
ab

(1 + a2x2) arctan(ax)

[
arctan(ax)

arctan(a)

]b
Since a > 0 and b ∈ (0, 1], all the main terms are positive, and it is clear that f ′(x) ≥ 0. As a result,

f(x) is increasing; A3 holds. On the other hand, we have(
x

f(x)

)′

=
1

(1 + a2x2) arctan(ax)

[
arctan(ax)

arctan(a)

]−b

[(1 + a2x2) arctan(ax)− abx]

Only the last term in the square bracket needs a sign study, the other main terms being positive. By
the following well-known arctangent inequality: arctan(u) ≥ u/(1 + u2) for u ≥ 0, we establish that(

x

f(x)

)′

≥ 1

(1 + a2x2) arctan(ax)

[
arctan(ax)

arctan(a)

]−b [
(1 + a2x2)

ax

1 + a2x2
− abx

]

=
1

(1 + a2x2) arctan(ax)
ax

[
arctan(ax)

arctan(a)

]−b

(1− b)

Thus, for b ∈ (0, 1], we have [x/f(x)]′ ≥ 0, so that x/f(x) is increasing; A4 is fulfilled. This ends
the proof. □

3.4. Logarithmic-like functions

The subsequent proposition elucidates a logarithmic-like function with two parameters, designed to meet
the required assumptions.

Proposition 8. Let (a, b) ∈ R2. The following function satisfies assumptions A1–A4:

f(x) =

[
log(1 + ax)

log(1 + a)

]b
, x ∈ [0, 1]

for b ∈ (0, 1], a ≥ b− 1 and a ̸= 0.

Proof. Since b ∈ (0, 1], a ≥ b − 1 > −1, a ̸= 0, let us mention that f(x) is well-defined because
log(1+a) and log(1+ax) are of the same sign. Since a ̸= 0, we have f(1) = [log(1+a)/ log(1+a)]b = 1;
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A1 is satisfied. Moreover, since b ∈ (0, 1], we have f(0) = [log(1 + a× 0)/ log(1 + a)]b = 0 ̸= 1 and
f(0) ≥ 0; A2 is fulfilled. Furthermore, we have

f ′(x) = b
a

(1 + ax) log(1 + ax)

[
log(1 + ax)

log(1 + a)

]b

Since a > −1, a and log(1+ax) of the same sign implying that a/ log(1+ax) ≥ 0, 1+ax ≥ 1−x ≥ 0

and b ∈ (0, 1], we have f ′(x) ≥ 0. As a result, f(x) is increasing; A3 holds. On the other hand, we have(
x

f(x)

)′

=
1

(1 + ax) log(1 + ax)

[
log(1 + ax)

log(1 + a)

]−b

[(1 + ax) log(1 + ax)− abx]

Let us distinguish the cases a ∈ (−1, 0) and a > 0.
For a ∈ (−1, 0), we have log(1 + ax) ≤ 0, a/ log(1 + ax) ≥ 0, 1 + ax ≥ 0 and, by the following

well-known logarithmic inequality: log(1 + u) ≤ u for u > −1, we have(
x

f(x)

)′

≥ 1

(1 + ax) log(1 + ax)

[
log(1 + ax)

log(1 + a)

]−b

[(1 + ax)ax− abx]

=
a

(1 + ax) log(1 + ax)
x

[
log(1 + ax)

log(1 + a)

]−b

(ax+ 1− b)

≥ a

(1 + ax) log(1 + ax)
x

[
log(1 + ax)

log(1 + a)

]−b

(a+ 1− b)

Thus, for a ≥ b−1 and b ∈ (0, 1], we have [x/f(x)]′ ≥ 0, so that x/f(x) is increasing; A4 is satisfied.
For a > 0, we have log(1+ax) ≥ 0, a/ log(1+ax) ≥ 0, 1+ax ≥ 0 and, by the following well-known

logarithmic inequality: log(1 + u) ≥ u/(1 + u) for u > −1, we have(
x

f(x)

)′

≥ 1

(1 + ax) log(1 + ax)

[
log(1 + ax)

log(1 + a)

]−b [
(1 + ax)

ax

1 + ax
− abx

]

=
a

(1 + ax) log(1 + ax)
x

[
log(1 + ax)

log(1 + a)

]−b

(1− b)

Thus, for b ∈ (0, 1], we have [x/f(x)]′ ≥ 0, so that x/f(x) is increasing; A4 is fulfilled. The list of
assumptions is proven. □

3.5. Hyperbolic-like functions

The result below presents a two-parameter hyperbolic cosine-like function that fulfills the necessary
assumptions. We recall that cosh(x) = [exp(x) + exp(−x)]/2.
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Proposition 9. Let (a, b) ∈ R2. The following function satisfies assumptions A1–A4:

f(x) =

[
cosh(ax)

cosh(a)

]b
, x ∈ [0, 1]

for a > 0, b > 0 and a2b ∈ (0, 1].

Proof. Since a ≠ 0, we have f(1) = [cosh(a)/ cosh(a)]b = 1; A1 is satisfied. We have f(0) =

[cosh(a× 0)/ cosh(a)]b = 1/[cosh(a)]b ̸= 1 and f(0) ≥ 0; A2 is fulfilled. Furthermore, we have

f ′(x) = ab tanh(ax)[sech(a) cosh(ax)]b

where tanh(x) = sinh(x)/ cosh(x) and sech(x) = 1/ cosh(x). Since a > 0 and b > 0, all the main terms
are positive, and it is clear that f ′(x) ≥ 0. As a result, f(x) is increasing; A3 holds. On the other hand,
we have (

x

f(x)

)′

= [1− abx tanh(ax)][sech(a) cosh(ax)]−b

By the following well-known hyperbolic tangent inequality: tanh(u) ≤ u for u ≥ 0, we get(
x

f(x)

)′

≥ (1− a2bx2)[sech(a) cosh(ax)]−b ≥ (1− a2b)[sech(a) cosh(ax)]−b

Thus, for a2b ∈ (0, 1], we have [x/f(x)]′ ≥ 0, so that x/f(x) is increasing; A4 is satisfied. This ends
the proof. □

A variant is proposed in the proposition below; it illustrates a two-parameter hyperbolic sine-like
function that fulfills the necessary assumptions. We recall that sinh(x) = [exp(x)− exp(−x)]/2.

Proposition 10. Let (a, b) ∈ R2. The following function satisfies assumptions A1–A4:

f(x) =

[
sinh(ax)

sinh(a)

]b
, x ∈ [0, 1]

for a > 0, b > 0 and (a+ 1)b ∈ (0, 1].

Proof. Since a ̸= 0, we have f(1) = [sinh(a)/ sinh(a)]b = 1; A1 is fulfilled. We have f(0) =

[sinh(a× 0)/ sinh(a)]b = 0 ̸= 1 and f(0) ≥ 0; A2 is satisfied. Furthermore, we have

f ′(x) = ab cotanh(ax)[csch(a) sinh(ax)]b

where cotanh(x) = cosh(x)/ sinh(x) and csch(x) = 1/ sinh(x). Since a > 0 and b > 0, all the main
terms are positive, and it is clear that f ′(x) ≥ 0. As a result, f(x) is increasing; A3 holds. On the other
hand, we have (

x

f(x)

)′

= [1− abx cotanh(ax)][csch(a) sinh(ax)]−b
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Owing to the following well-known hyperbolic cotangent inequality: cotanh(u) ≤ 1 + 1/[u(1 + u)]

for u ≥ 0, since b/(1 + ax) ≤ b, we get(
x

f(x)

)′

≥
(
1− abx− b

1 + ax

)
[csch(a) sinh(ax)]−b ≥ [1− (a+ 1)b][csch(a) sinh(ax)]−b

Thus, for (a+ 1)b ∈ (0, 1], we have [x/f(x)]′ ≥ 0, so that x/f(x) is increasing; A4 is fulfilled. This
finishes the proof. □

This completes the main list of proposed functions satisfying the assumptions of Durante’s method.
However, other types of functions, including special functions (integral, series, etc.), can be considered.
A complementary study supporting this claim is given below.

3.6. Complement. A special function

To begin, let us recall that the error function is defined by

erf(x) =
2√
π

∫ x

0

exp(−t2)dt, x ≥ 0

The result below exhibits a two-parameter error-like function that satisfies the assumptions of Du-
rante’s method.

Proposition 11. Let (a, b) ∈ R2. The following function satisfies assumptions A1–A4:

f(x) =

[
erf(ax)

erf(a)

]b
, x ∈ [0, 1]

for a > 0 and b ∈ (0, 1].

Proof. It is immediate that f(1) = [erf(a)/ erf(a)]b = 1; A1 is satisfied. Since b ∈ (0, 1] and
erf(0) = 0, we have f(0) = [erf(a× 0)/ erf(a)]b = 0 ̸= 1 and f(0) ≥ 0; A2 fulfilled. On the other hand,
we have

f ′(x) =
2√

π erf(ax)
ab exp(−a2x2)

[
erf(ax)

erf(a)

]b
Since a > 0 and b ∈ (0, 1], it is immediate that f ′(x) ≥ 0 as the product of positive functions.

Therefore, f(x) is increasing. So A3 is fulfilled. On the other hand, we have(
x

f(x)

)′

=

[
1− 2√

π erf(ax)
abx exp(−a2x2)

] [
erf(ax)

erf(a)

]−b

Since a > 0 and exp(−t2) is a decreasing positive function, we have
√
π erf(ax)

2
=

∫ ax

0

exp(−t2)dt ≥ exp(−a2x2)

∫ ax

0

dt = ax exp(−a2x2)
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Using this inequality and b ∈ (0, 1], we obtain(
x

f(x)

)′

≥
[
1− 2√

π erf(ax)
ax exp(−a2x2)

] [
erf(ax)

erf(a)

]−b

≥ 0

Hence [x/f(x)]′ ≥ 0, so that x/f(x) is increasing; A4 is satisfied. The proof is completed. □

The previous result is encouraging for further research in the direction of original functions to use in
a copula creation scheme.

4. Examples of copulas

This section shows how Durante’s method and the findings of the previous section can be combined to
create original multi-parameter copulas with versatile-shaped density.

4.1. Discussion on the baseline copulas

In addition to the choice of f(x) and g(x) in Durante’s method, there is a need to select two baseline
copulas, A(x, y) and B(x, y), as described in Proposition 1. However, in view of Durante’s method, the
baseline copulas A(x, y) and B(x, y) must not be too complex to obtain a tractable copula. With this in
mind, we will focus on the list of copulas presented in Table 1.

4.2. First series of new copulas

Owing to Durante’s method presented in Proposition 1 and the function described in Proposition 2, for
any copula A(x, y) and B(x, y), we define a new copula by

C(x, y) =A

{
x

[a1 + (1− a1)xb1 ]1/b1
,

y

[a2 + (1− a2)yb2 ]
1/b2

}

×B
{[

a1 + (1− a1)x
b1
]1/b1

,
[
a2 + (1− a2)y

b2
]1/b2}

, (x, y) ∈ [0, 1]2

with (a1, a2) ∈ (0, 1)2 and (b1, b2) ∈ R2. In particular, by taking A(x, y) as the independence copula to
simplify the situation, i.e., A(x, y) = xy, we obtain the following expression:

C(x, y) =
xy

[a1 + (1− a1)xb1 ]1/b1 [a2 + (1− a2)yb2 ]
1/b2

×B
{[

a1 + (1− a1)x
b1
]1/b1

,
[
a2 + (1− a2)y

b2
]1/b2}

, (x, y) ∈ [0, 1]2

Then we can choose any of the copulas in Table 1 for B(x, y), except the independence copula, which
leads to itself for C(x, y). In this way, the obtained copulas are described in Table 2. The following name
changes are given: FGM new 1 (FGM-N1) copula, AMH new 1 (AMH-N1) copula, etc.



74 C. Chesneau

Ta
bl

e
2.

N
ew

co
pu

la
s

ba
se

d
on

D
ur

an
te

’s
m

et
ho

d
(s

ee
Pr

op
os

iti
on

s
1,

2,
an

d
Ta

bl
e

1)

N
am

e
C

op
ul

a
C
(x
,
y
)

Pa
ra

m
et

er
(s

)

FG
M

-N
1

x
y
[ 1

+
α
{ 1

−
[ a

1
+
(1

−
a
1
)x

b
1
] 1/b 1

}{ 1
−
[ a

2
+
(1

−
a
2
)y

b
2
] 1/b 2

}]
α
∈
[−

1
,1
],
(a

1
,a

2
)
∈
(0
,1
)2

,(
b 1
,b

2
)
∈
R

2

A
M

H
-N

1
x
y

1
−

α
{ 1

−
[a

1
+
(1

−
a
1
)x

b
1
]1
/
b
1

}{ 1
−

[a
2
+
(1

−
a
2
)y

b
2
]1
/
b
2

}
α
∈
[−

1,
1
],
(a

1
,a

2
)
∈
(0
,1
)2

,(
b 1
,b

2
)
∈
R

2

C
-N

1
x
y

[a
1
+
(1

−
a
1
)x

b
1
]1
/
b
1
[a

2
+
(1

−
a
2
)y

b
2
]1
/
b
2
×

α
>

0,
(a

1
,a

2
)
∈
(0
,1
)2

,(
b 1
,b

2
)
∈
R

2

{ [ a
1
+
(1

−
a
1
)x

b
1
] −α/

b
1
+

[ a
2
+
(1

−
a
2
)y

b
2
] −α/

b
2
−
1
} −1/

α

F-
N

1
−

x
y

α
[a

1
+
(1

−
a
1
)x

b
1
]1
/
b
1
[a

2
+
(1

−
a
2
)y

b
2
]1
/
b
2
×

α
∈
R
/
{0
},

(a
1
,a

2
)
∈
(0
,1
)2

,(
b 1
,b

2
)
∈
R

2

lo
g

  1+
[ ex

p
{ −

α
[ a

1
+
(1

−
a
1
)x

b
1
] 1/b 1

} −
1][ ex

p
{ −

α
[ a

2
+
(1

−
a
2
)y

b
2
] 1/b 2

} −
1
]

ex
p
(−

α
)
−

1

  
G

H
-N

1
x
y

[a
1
+
(1

−
a
1
)x

b
1
]1
/
b
1
[a

2
+
(1

−
a
2
)y

b
2
]1
/
b
2
×

α
≥

1,
(a

1
,a

2
)
∈
(0
,1
)2

,(
b 1
,b

2
)
∈
R

2

ex
p

{ −
[{ −

1 b 1
lo
g
[ a

1
+
(1

−
a
1
)x

b
1
]} α

+

{ −
1 b 2
lo
g
[ a

2
+
(1

−
a
2
)y

b
2
]} α]

1
/
α
}

G
B

-N
1

x
y
ex
p

{ −
α

b 1
b 2

lo
g
[ a

1
+
(1

−
a
1
)x

b
1
] lo

g
[ a

2
+
(1

−
a
2
)y

b
2
]}

α
∈
[0
,1
],
(a

1
,a

2
)
∈
(0
,1
)2

,(
b 1
,b

2
)
∈
R

2

C
C

-N
1

x
y
ex
p
[ −

α
{ 1

−
[ a

1
+
(1

−
a
1
)x

b
1
] 1/b 1

}{ 1
−

[ a
2
+
(1

−
a
2
)y

b
2
] 1/b 2

}]
α
∈
[−

1
,1
],
(a

1
,a

2
)
∈
(0
,1
)2

,(
b 1
,b

2
)
∈
R

2

C
h-

N
1

x
y
ex
p
[ −

α
{ 1

−
[ a

1
+
(1

−
a
1
)x

b
1
] −1/b

1
}{ 1

−
[ a

2
+
(1

−
a
2
)y

b
2
] −1/b

2
}]

α
∈
[0
,1
],
(a

1
,a

2
)
∈
(0
,1
)2

,(
b 1
,b

2
)
∈
R

2



Diverse copulas through Durante’s method. . . 75

To the best of our knowledge, all the presented copulas are new. As one of the most intriguing
examples, let us focus on the FGM-N1 copula, which is defined by

C(x, y) = xy
[
1 + α

{
1−

[
a1 + (1− a1)x

b1
]1/b1}{

1−
[
a2 + (1− a2)y

b2
]1/b2}]

, (x, y) ∈ [0, 1]2

where α ∈ [−1, 1], (a1, a2) ∈ (0, 1)2 and (b1, b2) ∈ R2.
The FGM-N1 copula density is obtained as the mixed derivative of C(x, y), i.e., c(x, y)

= ∂2C(x, y)/(∂x∂y). After some mathematical manipulations, we get

c(x, y) =1 + α(1− a1)(1− a2)x
b1yb2

[
a1 + (1− a1)x

b1
]1/b1−1 [

a2 + (1− a2)y
b2
]1/b2−1

− α(1− a1)x
b1
[
a1 + (1− a1)x

b1
]1/b1−1

{
1−

[
a2 + (1− a2)y

b2
]1/b2}

− α(1− a2)y
b2
{
1−

[
a1 + (1− a1)x

b1
]1/b1} [

a2 + (1− a2)y
b2
]1/b2−1

+ α
{
1−

[
a1 + (1− a1)x

b1
]1/b1}{

1−
[
a2 + (1− a2)y

b2
]1/b2}

, (x, y) ∈ [0, 1]2

The more the shapes of such a copula density are varied, the more the subjacent dependence’s structure
is versatile and can adapt to various dependence scenarios.

To understand the possibilities of the FGM-N1 copula density, let us plot it for several values of the
parameters α, a1, a2, b1 and b2. Figures 1–4 represent it for the following parameter configurations:

Conf1: α = −0.5, a1 = 0.5, a2 = 0.5, b1 = −0.5 and b2 = −0.5,
Conf2: α = 0.5, a1 = 0.1, a2 = 0.7, b1 = −1 and b2 = −0.1,
Conf3: α = 0.3, a1 = 0.7, a2 = 0.2, b1 = 10 and b2 = −7,
Conf4.α = 0.7, a1 = 0.1, a2 = 0.8, b1 = 1.5 and b2 = −2.

a) b)

Figure 1. Plots of the FGM-N1 copula density under Conf1: a) contours, and b) shapes
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a) b)

Figure 2. Plots of the FGM-N1 copula density under Conf2: a) contours, and b) shapes

a) b)

Figure 3. Plots of the FGM-N1 copula density under Conf3: a) contours, and b) shapes

a) b)

Figure 4. Plots of the FGM-N1 copula density under Conf4: a) contours, and b) shapes
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These figures reveal completely different shapes depending on the parameter values: we observe
bump-like, spike-like, plate-like, and corner-like shapes. This demonstrates the versatile dependence
modeling aspect of the FGM-N1 copula density.

In addition, the following comments on the FGM-N1 copula can be made: it is non-exchangeable for
a1 ̸= a2 or b1 ̸= b2, it is not Archimedean, the medial correlation is obtained as

M =4C

(
1

2
,
1

2

)
− 1 =

[
1 + α

{
1−

[
a1 + (1− a1)2

−b1
]1/b1}

×
{
1−

[
a2 + (1− a2)2

−b2
]1/b2}]− 1

Kendall’s τ and Spearman’s ρ have the ranges [−0.22, 0.22] and [−0.33, 0.33], respectively, and a limit
analysis shows that it has no lower and upper tail dependences, i.e., λL = λU = 0, where λL and λU

denote the lower and upper tail dependence coefficients, respectively, which are similar characteristics to
those of the FGM copula. The main interest of the FGM-N1 copula remains in its high diversity in its
shape density structure, which can make a significant difference in capturing the maximum amount of
dependence information behind random variables.

4.3. Second series of new copulas

Based on Durante’s method and the function described in Proposition 5, for any copula A(x, y) and
B(x, y), we define a new copula by

C(x, y) =A

[
x

1− a1(1− x) exp(−b1x)
,

y

1− a2(1− y) exp(−b2y)

]
×B [1− a1(1− x) exp(−b1x), 1− a2(1− y) exp(−b2y)] , (x, y) ∈ [0, 1]2

with (a1, a2) ∈ (0, 1]2 and (b1, b2) ∈ [0,∞)2. In particular, by taking A(x, y) as the independence copula
to simplify the situation, the main copula is reduced to

C(x, y) =
xy

[1− a1(1− x) exp(−b1x)][1− a2(1− y) exp(−b2y)]

×B [1− a1(1− x) exp(−b1x), 1− a2(1− y) exp(−b2y)] , (x, y) ∈ [0, 1]2

Then we can choose any copula in Table 1 for B(x, y). In particular, the CC-N2 copula is defined by

C(x, y) = xy exp [−αa1a2(1− x)(1− y) exp(−b1x− b2y)] , (x, y) ∈ [0, 1]2

where α ∈ [−1, 1], (a1, a2) ∈ (0, 1]2 and (b1, b2) ∈ [0,∞)2.
Let us notice that it can be rewritten as

C(x, y) = xy exp [−θ(1− x)(1− y) exp(−b1x− b2y)] , (x, y) ∈ [0, 1]2

where θ = αa1a2 ∈ [−1, 1]. The parameter θ can be viewed as a single product parameter independent
of b1 and b2, making the CC-N2 copula a three-parameter one.
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Based on this simplified expression, the CC-N2 copula density is obtained as

c(x, y) = x exp [−θ(1− x)(1− y) exp(−b1x− b2y)]

× [θ(1− y) exp(−b1x− b2y) + θb1(1− x)(1− y) exp(−b1x− b2y)]

+ xy exp [−θ(1− x)(1− y) exp(−b1x− b2y)] [θ(1− x) exp(−b1x− b2y)

+ θb2(1− x)(1− y) exp(−b1x− b2y)]

× [θ(1− y) exp(−b1x− b2y) + θb1(1− x)(1− y) exp(−b1x− b2y)]

+ exp [−θ(1− x)(1− y) exp(−b1x− b2y)]

+ y exp [−θ(1− x)(1− y) exp(−b1x− b2y)]

× [θ(1− x) exp(−b1x− b2y) + θb2(1− x)(1− y) exp(−b1x− b2y)]

+ xy exp [−θ(1− x)(1− y) exp(−b1x− b2y)]

× [−θ exp(−b1x− b2y)− θb1(1− x) exp(−b1x− b2y)

− θb2(1− y) exp(−b1x− b2y)− θb1b2(1− x)(1− y) exp(−b1x− b2y)], (x, y) ∈ [0, 1]2

Let us plot this copula density for various values of the parameters θ, b1, and b2 in order to comprehend
its possible shapes. Figures 5–8 represent it for the following parameter configurations:

Conf1: θ = −1, b1 = 0.9 and b2 = 0.5, Conf2: θ = −0.6, b1 = 0.9 and b2 = 0.6,
Conf3: θ = 0.3, b1 = 0.4 and b2 = 0.1, Conf4: θ = 0.9, b1 = 0.7 and b2 = 2.

These figures illustrate the versatile dependence modeling aspect of the CC-N2 copula density, reveal-
ing entirely different shapes depending on the parameter values.

a) b)

Figure 5. Plots of the CC-N2 copula density under Conf1: a) contours, and b) shapes
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a) b)

Figure 6. Plots of the CC-N2 copula density under Conf2: a) contours, and b) shapes

a) b)

Figure 7. Plots of the CC-N2 copula density under Conf3: a) contours, and b) shapes

a) b)

Figure 8. Plots of the CC-N2 copula density under Conf4: a) contours, and b) shapes
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On the other hand, the following comments on the CC-N2 copula can be made: it is non-exchangeable
for b1 ̸= b2, it is not Archimedean, the medial correlation is obtained as

M = exp

{
−θ

4
exp

[
−1

2
(b1 + b2)

]}
− 1

Kendall’s τ and Spearman’s ρ have the ranges [−0.20,0.26] and [−0.29,0.38], respectively, and it has no
lower and upper tail dependences. These features are close to those of the CC copula. Thus, the main interest
of the CC-N2 copula remains in its high diversity in its shape density structure.

4.4. Third series of new copulas

Owing to Durante’s method and the function described in Proposition 6, for any copula A(x, y) and
B(x, y), we define a new copula by

C(x, y) = A

{
x

[
sin(a1)

sin(a1x)

]b1
, y

[
sin(a2)

sin(a2y)

]b2}
B

{[
sin(a1x)

sin(a1)

]b1
,

[
sin(a2y)

sin(a2)

]b2}
, (x, y) ∈ [0, 1]2

with (a1, a2) ∈ (0, π/2]2 and (b1, b2) ∈ (0, 1]2. In particular, by taking A(x, y) as the independence
copula to simplify the situation, the main copula is reduced to

C(x, y) = xy

[
sin(a1)

sin(a1x)

]b1 [ sin(a2)

sin(a2y)

]b2
B

{[
sin(a1x)

sin(a1)

]b1
,

[
sin(a2y)

sin(a2)

]b2}
, (x, y) ∈ [0, 1]2

Then we can choose any copula in Table 1 for B(x, y). In particular, the Ch-N3 copula is defined by

C(x, y) = xy exp

[
−α

{
1−

[
sin(a1)

sin(a1x)

]b1}{
1−

[
sin(a2)

sin(a2y)

]b2}]
, (x, y) ∈ [0, 1]2

where α ∈ [0, 1], (a1, a2) ∈ (0, π/2]2 and (b1, b2) ∈ (0, 1]2. The Ch-N3 copula density is obtained as

c(x, y) = exp

[
−α

{
1−

[
sin(a1)

sin(a1x)

]b1}{
1−

[
sin(a2)

sin(a2y)

]b2}]

×

[
1 + α2a1a2b1b2xy sin(a1) sin(a2)

{
cos(a1x)

[sin(a1x)]2

}{
cos(a2y)

[sin(a2y)]2

}
es

×

{
1−

[
sin(a1)

sin(a1x)

]b1}[
sin(a1)

sin(a1x)

]b1−1 [
sin(a2)

sin(a2y)

]b2−1
{
1−

[
sin(a2)

sin(a2y)

]b2}

− αa1a2b1b2xy sin(a1) sin(a2)

{
cos(a1x)

[sin(a1x)]2

}{
cos(a2y)

[sin(a2y)]2

}[
sin(a1)

sin(a1x)

]b1−1 [
sin(a2)

sin(a2y)

]b2−1

− αa1b1x sin(a1)

{
cos(a1x)

[sin(a1x)]2

}[
sin(a1)

sin(a1x)

]b1−1
{
1−

[
sin(a2)

sin(a2y)

]b2}

− αa2b2y sin(a2)

{
cos(a2y)

[sin(a2y)]2

}{
1−

[
sin(a1)

sin(a1x)

]b1}[
sin(a2)

sin(a2y)

]b2−1
]
, (x, y) ∈ [0, 1]2
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a) b)

Figure 9. Plots of the Ch-N3 copula density under Conf1: a) contours, and b) shapes

a) b)

Figure 10. Plots of the Ch-N3 copula density under Conf2: a) contours, and b) shapes

a) b)

Figure 11. Plots of the Ch-N3 copula density under Conf3: a) contours, and b) shapes
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a) b)

Figure 12. Plots of the Ch-N3 copula density under Conf4: a) contours, and b) shapes

To understand its shape possibilities, let us plot this copula density for several values of the parameters
α, a1, a2, b1 and b2.

Figures 9, 10, 11 and 12 represent it for the following parameter configurations:

Conf1: α = 0.9, a1 = 0.5, a2 = 1.3, b1 = 0.9 and b2 = 0.7,
Conf2: α = 0.2, a1 = 1.5, a2 = 0.3, b1 = 0.1 and b2 = 0.4,
Conf3: α = 0.8, a1 = 0.1, a2 = 0.6, b1 = 0.1 and b2 = 0.8,
Conf4: α = 1, a1 = 0.5, a2 = 1.5, b1 = 1 and b2 = 0.1.

These figures show how the Ch-N3 copula density can be used for versatile dependence modeling, with
completely different shapes revealed depending on the parameter values.

In addition, the following comments on the Ch-N3 copula can be made: it is non-exchangeable for
a1 ̸= a2 or b1 ̸= b2, it is not Archimedean, the medial correlation is obtained as

M = exp

[
−α

{
1−

[
sin(a1)

sin(a1/2)

]b1}{
1−

[
sin(a2)

sin(a2/2)

]b2}]
− 1

Kendall’s τ and Spearman’s ρ have the ranges [−0.65, 0] and [−0.83, 0], respectively, and a limit
analysis reveals that it is upper and lower tail dependent, which are characteristics also shared by the
Ch copula. Therefore, the gain is mainly in the flexibility of the Ch-N3 copula density shapes, which
demonstrate a higher capacity to adapt to adapt to various functional dependence details.

5. Conclusion

In conclusion, this article explores the often overlooked potential of Durante’s methodology introduced
in 2009, demonstrating its remarkable ability to generate a diverse range of copulas through the use
of various parametric functions. The rigorous exploration, including power, exponential, trigonomet-
ric, logarithmic, and hyperbolic functions, supported by extensive proofs and mathematical techniques,
establishes the robustness of the results. A summary of the considered functions is given in Table 5.
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Table 5. List of functions f(x) (or g(x)) satisfying Durante’s method assumptions considered in this article

Name Function f(x) Parameter(s)
Func1 [a+ (1− a)xb]1/b a ∈ (0, 1), b ∈ R

Func2 1 + a(1− c)b − a(1− cx)b c ≤ 1, abc > 0, a[1− (1− c)b] ≤ 1, and either a(1− b)b < 0,
or a(1− b)b ≥ 0 and abc(1− c)b−1 ≤ 1

Func3 exp[a(1− c)b − a(1− cx)b] c ≤ 1, abc > 0, bc ≤ 1 and either abc(1− c)b−1 ≤ 1,

or bc > 1 and a(1− 1/b)b−1 ≤ 1

Func4 1− a(1− x) exp(−bx) a ∈ (0, 1], b ∈ [0,∞)

Func5
[
sin(ax)

sin(a)

]b
a ∈ (0, π/2], b ∈ (0, 1]

Func6
[
arctan(ax)

arctan(a)

]b
a > 0, b ∈ (0, 1]

Func7
[
log(1 + ax)

log(1 + a)

]b
b ∈ (0, 1], a ≥ b− 1, a ̸= 0

Func8
[
cosh(ax)

cosh(a)

]b
a > 0, b > 0, a2b ∈ (0, 1]

Func9
[
sinh(ax)

sinh(a)

]b
a > 0, b > 0, (a+ 1)b ∈ (0, 1]

FuncComp
[
erf(ax)

erf(a)

]b
a > 0, b ∈ (0, 1]

Based on these functions, the determination of three distinct sets of eight new copulas further con-
tributes to the theory. A graphical analysis is made to support the shape versatility of the associated
copula densities. Beyond theoretical advances, this study introduces a new perspective on the construc-
tion of copulas in various contexts, opening new avenues for both creation and analysis. The “more than
two-dimensional case is also an interesting direction which needs more investigation.
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