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Abstract

The study presents a tailored application of a multiple-input convolutional neural network (CNN) for tool state recognition
in the milling process. Our approach uniquely applies an 11-input CNN to classify tool wear in chipboard milling, utilizing
scalogram images derived from time-series signals. The primary objective was to categorize tool wear into three classes: green,
yellow, and red, signifying the progression of wear. The study involved 75 samples (25 samples per class), each comprising
11 signals transformed into scalograms via continuous wavelet transform. The dataset of 825 scalogram images enabled the
development of a CNN-based diagnostic model, achieving a notable accuracy of 96.00%, which is an improvement over a
previous methods (93.33%).
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1. Introduction

Furniture manufacturing is a complicated process, involving multiple steps and various problem along the
way. Different stages require high levels of precision. Poor or ill-timed decisions about tool maintenance
and/or exchange can result in a faulty product, not meeting the requirements and causing potential loss for
the manufacturing company [6, 10, 14, 16]. One of the key elements influencing the quality of products,
is tool condition monitoring during the milling process. This operation can be performed manually but
in that instance it is a time consuming one, with high possibility of operator missing key indications
of deteriorating tool state. Automating the process and providing additional insight is a high priority,
while the overall process is widely and excessively discussed one [8, 29, 30]. Important aspect of this
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procedure is the gradual deterioration of the cutting edge. In order to avoid unplanned and potentially
problematic tool stoppage, an automatic and online-working solution is necessary. Such system usually
needs to incorporate external identification of edge wear, such as signals recorded while the machine is
operating [11, 27].

Numerous works focusing on wood-based materials are available [20, 21], with some approaches
focused on determining most useful signals for identifying the tool condition during machining process
[9, 13, 16, 23, 28, 31]. While the overall proceedings are well described, there still is a need for a more
precise solutions, easier to incorporate in the production environment.

Machine learning is one area, where such solutions can be created. There are various methods and
applications available, both for vision and signal based systems [1, 4, 5, 13, 25]. Different researchers
consider problems related to the production process, its different aspects, and applications including very
complex problem such as tree species recognition [7]. Such approaches show, that different algorithms
can be well adapted to even most complicated tasks, assuming appropriate input data will be prepared.

There are various solutions focusing on different parts of the tool condition monitoring process. While
the signals are common input in the wood industry applications, different solutions can include various
machine learning approaches, often using different data. One common type of input are images. For
example, CNNs are often paired with such data [6, 14, 15, 18, 19]. Such solutions often include vari-
ous approaches to the problem of training artificial neural networks, like data augmentation or transfer
learning using networks such as AlexNet [12, 22], prepared for ImageNet database [24, 26]. Although
strictly image-based approaches are quite popular, there are some problems related to this kind of input.
Usually in order to achieve satisfactory accuracy rate, large amounts of training data are necessary. Re-
quirements for any given problem might differ, requiring tight cooperation with the manufacture. In that
aspect changes in signals are easier to measure, assuming the proposed methodology is able to compute
large amounts of data obtained from various sensors.

Using signals as a base input for a neural network poses series of problems. Firstly, the changes in
signals are not always consistent throughout all data obtained from used sensor set. This can lead to
problems in final solution, making it unable to accurately point out the key indicators of the deteriorating
tool quality. Additionally, especially for signals that require very high precision while recording, the size
of input data files can differ significantly between various sources. Research presented in this paper is
largely based on the idea of using data thus available in a more optimal way, without losing the advantage
of more precise measurements it provides.

A relatively small section of approaches in this area considers transferring signals into images. For
examplem, in [3] sound signals are converted to images using short-time Fourier transform. Authors first
denoise the original signal and then convert it to images. After that process, the pre-trained CNN model
is used to perform the deep feature extraction [18]. Last stage of method uses a support vector machine
for the classification. Different solution [2], similarly to the approach presented in this paper, uses set of
signals converted to scalograms. Authors use constant-Q transform with non-stationary Gabor transform,
fusing features from vibration and acoustic signals with multiple input CNN in order to diagnose state
of induction motor. They chose above methodology, with the assumption that computing continuous
wavelet transform (CWT) is too time consuming, and in turn sacrificing the overall method accuracy.
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In the presented research, a multiple input CNN architecture, using total of 11 separately recorded
signals, is prepared and tested. Obtained data is down-sampled and converted to scalograms using CWT,
in order to retain as much information from the original source as possible. To the best of authors
knowledge, the proposed network architecture is first of its kind, both in general approach to signal
preprocessing and incorporation as input, as well as the overall structure.

The rest of the work is organized as follows. In section 2, an overall discussion of used materials
and data acquisition process is presented. Section 3 outlines the data preparation process, including
the preprocessing stage and scalogram generation. The resulting dataset, CNN structure and performed
experiments are described in section 4. Final paper conclusions are presented in section 6.

2. Materials

The main goal of the experiment was to build a diagnostic system capable to accurately measure the
level of tool wear. The tests were done using a CNC machining centre (Jet 130; Busellato, Thiene,
Italy), equipped with single edge cutter head with exchangeable carbide cutting edge, 40mm in diameter
(Faba SA, Baboszewo, Poland), presented in Figure 1a). The mounted piece of chipboard is shown in
Figure 1b).

a) b)
Figure 1. Edge cutter head (a) and example of chipboard piece mounted on the machining centre (b)

The state of the used tool was denoted as one of the tree states: green which means tool in a good state,
yellow, defining tool in an intermediate state, and red, denoting tool that needs to be exchanged due to
high wear level. The ranges for each state were measured using VB-max parameter defined as maximal
flank wear. The ranges for each class were defined as follows:

• VB-max below 0.15 – green class;
• VB-max in the range: (0.151; 0.25) – yellow class;
• VB-max equal or above 0.3 – red class.
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During the tests, a sample of a chipboard (DecoBoard P2, Pfleiderer) with dimensions of 300×150 mm
was mounted on a measuring platform and a groove with a depth of 6 mm was milled. The spindle speed
was set at 18,000 rpm with the feed rate equal to 0.15 mm per tooth.

2.1. Data acquisition

In order to ensure that acquired data is of the highest possible quality, a set of specialized sensors was
selected for the measurement process. The entire set included following elements:

• X and Y forces (50kHz sampling rate) (Kistler 9601A sensor),
• acoustic emission (Kistler 8152B),
• noise (Brüel & Kjær 4189),
• vibrations (Kistler 5127B),
• finest HR 30 current.

During the tests, the milling process was stopped in order to determine the tool wear at different stages.
The Mitutoyo TM-505 workshop microscope was used for those measurements. Standards used during
the experiments are presented in Table 3 and the real physical properties are listed in Table 2. Full list of
used equipment is shown in Table 1, while Figure 2 outlines the test stand setup.

Table 1. Apparatuses used to test the physical
and mechanical parameters of wood-based materials

Parameter Measuring apparatus

Density, kg/m3 laboratory scale, calipers
Static bending strength, MPa VebThuringerIndustriewerk SP 10
Elasticity modulus, MPa VebThuringerIndustriewerk SP 10
Screw retention, N/mm VebThuringerIndustriewerk SP 10
Tensile strength, MPa VebThuringerIndustriewerk SP 10
Brinell hardness, HB CV Instruments CV-3000LP8
Swelling 24 h, % calipers
Water absorption 24h, % calipers
Density profile GreCon density Analyzer X-ray

Table 2. Selected mechanical and physical parameters
of chipboard (Pfleiderer, DecoBoard P2 model)

Physical parameter Value

Density, kg/m3 670
Tensile strength, MPa 0.39
Swelling 24 h, % 61.8
Elasticity modulus, MPa 2950
Static bending strength, MPa 15.35

Obtained results were saved as a class label for the performed experiments. The registration was made
at various degrees of wear:

• 4 times for the green state,
• 2 times for the yellow state,
• 3 times for the red state.
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Two separate cards were used for acquisition, with different sampling speeds: National Instrument
PCI-6111 and NIPCI-6034E. Tests were performed in accordance with CEN EN 310 (1994) and CEN
EN 1534 (2020), using an Brinell CV 3000LDB tester (CV Instruments, Surrey, UK) as well as Instron
3382 testing machine (Norwood, MA, USA) respectively.

PC computer was used for the recording process, with National Instruments software, i.e. Lab
ViewTM environment (National Instruments Corporation, ver. 2015 SP1, Austin, Texas, USA) using
the NI PCI - 6034E and NI PCI – 6111 (Austin, Texas, USA) data acquisition cards. Two cards were
used due to presence of signals with different frequency. To adequately record AE signal, card with
high sampling frequency was required (2 MHz, measuring window of 0.3 s). Remaining signals were
recorded at a frequency of 50 kHz, with 1.1s measuring window. The signals were connected to the cards
separately for each frequency range, using BNC-2110 connection boxes.

Table 3. List of standards used in testing the properties of wood-based materials

Property Norm
Static bending strength, MPa PN-EN 310
Elasticity modulus, MPa PN-EN 310
Screw retention, N/mm PN-EN 320
Tensile strength, MPa PN-EN 319
Swelling 24h, % PN-EN 317
Water absorption 24h, % PN-D-04234, PN-D-04213, PN-D-04213:1964
Sand content, % ISO 3340 (PN-76/D-04245)

Figure 2. Outline of the measuring track used for the data collection during the machining process
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In order to ensure minimal noise and changes in recorded signals, all sensors were kept in the same
position in relation to the cutting zone and work-piece, through the entire measurement process. Outline
of the measuring track is presented in Figure 2. The overall data structure of the obtained set is presented
in Table 4.

Table 4. Data structure in the obtained dataset after recording all signals

Data set Variable
Length

of one trial
Sampling

frequency [Hz] Measure time [s]

DataHigh acoustic emission 27,999,960 5,000,000 5.59
DataLow force X 700,000 200,000 3.50
DataLow force Y 700,000 200,000 3.50
DataLow noise 700,000 200,000 3.50
DataLow vibration 700,000 200,000 3.50
DataCurrent device current 30,000 50,000 0.60
DataCurrent device voltage 30,000 50,000 0.60
DataCurrent head current 30,000 50,000 0.60
DataCurrent head voltage 30,000 50,000 0.60
DataCurrent servo current 30,000 50,000 0.60
DataCurrent servo voltage 30,000 50,000 0.60

3. Data preparation

3.1. Downsampling based on reinterpolation

In the presented approach, the chosen input files were scalograms derived from the initial signals, rep-
resented as time series data. Due to large size of the more precisely measured signals, further usage
can pose some problems. It was important to initially measure those elements with high accuracy, since
using lower frequencies might have resulted in some errors and changes in the overall shape of signal
curve. Therefore it was decided, that instead of lowering the initial quality of measured data, it will be
reinterpolated before presenting it as an input for the multiple input CNN.

In order to retain the original signal shape, the entire length of it was divided into sections, and
interpolated to feet in the given range. Since in presented experiments few signals of different lengths
were recorded, they were all downsampled to the size of shortest signal (30,000). Figure 3 shows an
example of originally registered signal, and its shape after the reinterpolation procedure. As can be seen,
by using this method the general signal shape is retained, while the overall complexity is significantly
reduced. Table 5 shows all original signal lengths, and final values after the downsampling procedure.
Overview of the procedure used for this operation is presented in Algorithm 1.

Input: n > 1 /* desired length of the downsampled signal */

Input: signal /* original signal */

oL← length(signal) /* length of the original signal */

k ← linearspace(1, oL, n) /* generate new resolution for the downsampled signal */

downsampled← reinterpolation(1 : oL, signal, k) /* output - downsampled signal */

Algorithm 1. Finding the largest element
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In the presented method linear space generates n points where spacing between the points equals
(oL− 1)/(n− 1). Reinterpolation function used is linear interpolation method defined as follows:

Vq = reinterpolation (X, V, Xq) (1)

where: Vq – interpolated points used to find the underlying function V = F (X) at the query points Xq,
X – is a vector, V – is a vector with the same size as X , Xq is the same size as set of query points Vq.

a) b)
Figure 3. Original signal obtained during data acquisition (a), and a downsampled data

used for scalogram generation (b); the general shape is retained

Table 5. The structure of the data variables in data sets

Data set Signal Length of one trial
Length of one trial
after reinterpolation

DataHigh acoustic emission 27,999,960 30,000
DataLow1 force X 700,000 30,000
DataLow2 force Y 700,000 30,000
DataLow3 noise 700,000 30,000
DataLow4 vibration 700,000 30,000
DataCurrent1 device current 30,000 30,000
DataCurrent2 device voltage 30,000 30,000
DataCurrent3 head current 30,000 30,000
DataCurrent4 head voltage 30,000 30,000
DataCurrent5 servo current 30,000 30,000
DataCurrent6 servo voltage 30,000 30,000

3.2. Scalogram generation

After the data reinterpolation process, all of the 75 data samples (each represented by 11 signals total),
the signals are converted to scalograms. The images are then used as an input for the CNN network —
initial layer has total of 11 inputs — one for each of the signals. Using scalograms images is a significant
improvement, since it allows automatic feature extraction to take place. This removes the necessity for
hand-crafting them.

A scalogram is a two-dimensional visual representation of a signal that provides information about
its frequency and variation over time. It is obtained by applying the CWT to the signal in question. The
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scalogram serves as a powerful tool for the analysis of non-stationary signals, enabling researchers to
identify and characterize time-varying frequency patterns in the data.

In a scalogram, the X-axis represents time, and the Y -axis represents the scale (which is inversely
proportional to frequency). The colour or intensity at each point in the plot signifies the magnitude of the
wavelet coefficients, providing a measure of the signal’s energy distribution across different time scales
and frequencies. By examining the scalogram, one can discern localized features such as transient events
or frequency modulations, which may not be readily apparent in traditional time-domain or frequency-
domain representations.

From the tool condition monitoring point of view it is an important factor. Changes in individual
signals might not be noticeable enough or achieved class thresholds can differ between them, blurring
the results clarity. Using scalograms not only provides a reasonable way for representing changes in
time, but also can provide additional insight into them. For approaches such as CNN, it can lead to more
accurate and stable results.

In order to generate scalograms as accurately as possible, CWT with filter bank is used. Default
wavelet for this is set as analytic Morse (3, 60) wavelet. The Morse wavelet is a parametric family of con-
tinuous wavelets that are well-suited for the analysis of non-stationary signals due to their ability to adapt
their time-frequency localization properties. The Morse wavelet is characterized by two parameters, the
order (γ) and the symmetry (β). These parameters control the time-frequency localization, concentration
of energy, and the number of oscillations in the wavelet. The time-bandwidth and symmetry parameters
for the Morse wavelets can both be varied to tune it for the specific solution needs. Additionally, analytic
Morlet (Gabor) wavelet (or bump wavelet) can be used.

One additional operation that is performed in order to optimize the solution is precomputing the filters.
Using multiple input CNN, with set of 11 signals is a computationally costly operation, hence improving
the process is necessary. CWT can use such previously prepared filters as input, reducing number of
calculation that need to be performed on the fly. In turn, with filter bank used, the wavelets can be
visualized in time and frequency domains. In order to gain additional insight, filter banks with specific
frequency or period ranges, and measure with multiple 3dB bandwidths can also be created. To further
improve obtained results, quality factor can be defined for the wavelets in the filter bank.

For the presented approach, the filters are normalized so that the peak magnitudes for all passbands
are approximately equal to 2. The default filter bank is designed for a signal with 1024 samples and uses
the analytic Morse (3, 60) wavelet. Additionally it uses the default scales: approximately 10 wavelet
bandpass filters per octave (10 voices per octave). The highest-frequency passband is designed so that
the magnitude falls to half of the peak value at the Nyquist frequency.

As implemented, the CWT uses L1 normalization. With L1 normalization, equal amplitude oscil-
latory components at different scales have equal magnitude in the CWT. It provides a more accurate
representation of the signal. The amplitudes of the oscillatory components agree with the amplitudes of
the corresponding wavelet coefficients. Making sure that the resulting signals are as close to the original
as possible was one of the key points in the presented experiments. L1 normalization, along with the data
preparation process made sure, that as much of the original information will be retained as possible.The
general overview of the used scalogram generation method is presented in Algorithm 2.
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Require: fs > 0 ▷ sampling frequency of input signal
Require: signal ▷ original signal
n← length(signal) ▷ length of the input signal
fb← cwtfilterbank(n, fs) ▷ generate a continuous wavelet transform (CWT) filter bank
[cfs, frq]← wt(fb, signal) ▷ generate continuous wavelet transform with filter bank

▷ cfs - continuous wavelet transform (CWT) coefficients
▷ frq - frequencies corresponding to the scales of cfs

t = (0 : n− 1)/fs ▷ calculate time range based on sampling frequency
scalogram_image← pcolor(t, frq, abs(cfs)) ▷ create scalogram in the image form.

Algorithm 2. Scalogram generation algorithm

a) b) c)

d) e) f)

g) h) i)

Figure 4. Exemplary scalograms generated for Curr1 (top row), High1 (middle row)
and Low1 (bottom row) signals. For each scalogram, examples representing individual classes

are shown in columns: a), d), g) – green, b), e), h) – yellow, c), f), i) – red
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4. Methods

Previous approaches to tool wear classification show that even minimal adjustments can result in signif-
icant changes to the overall solution performance [14, 18, 19, 27]. Drawing from those experiences, the
method proposed focuses on taking advantage of the strengths offered by different parts of the solution.
For example, the use of signals ensures precise data, retaining information about the milling process
and changing tool state. At the same time, this input in its unchanged form, introduces to much noise,
blurring the borders between recognized classes. Using scalograms ensures, that as much of important
information as possible will be retained in a form offering most advantages to the CNN. Finally, novel
structure of the network in itself works well with the dataset prepared in this way.

4.1. Data sets for numerical experiments

The final dataset used for the network training consisted of 825 scalogram images, representing signals
recorded during the milling process. The set was divided into training, validation and test sets, according
to established practices in the artificial neural network training.

One important research goal presented in this paper was the incorporation of the overall manufacturer
requirements in terms of solution performance. Key property in that case was reduction of critical errors
between border classes:

• denoting example from green class as red, in which case a good tool will be discarded, resulting in
unnecessary production downtime,

• classifying red instance as green, which can lead to poor product quality and financial loss associated
with the need to discard such element.

Both cases are highly undesirable, and should be avoided.

4.2. Applying CNN for image classification

CNNs have emerged as a powerful tool for image classification tasks, with a profound impact in computer
vision tasks. This class of deep learning models has demonstrated remarkable performance in classifying
images by exploiting spatial, hierarchies and local connectivity patterns. CNNs employ a series of archi-
tectural components and techniques, to effectively learn and classify images. Such elements can include
convolutional layers, activation functions, pooling layers, and fully connected layers.

The architecture of a CNN is typically composed of multiple layers arranged in a hierarchical man-
ner. In this structure each layer performs a specific operation. The input image is processed sequentially
through consecutive layers, ultimately resulting in a predicted class label. The main layers in a CNN are
the convolutional layers, activation functions, pooling layers, and fully connected layers, which are inter-
connected to form a deep architecture. CNNs also employ batch normalization and dropout techniques
to improve model stability and prevent overfitting.

A typical CNN architecture uses the following layers, arranged sequentially:
1. Input layer. The initial layer responsible for receiving raw image data in the form of a matrix with

pixel values.
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2. Convolutional layers. Layers performing the main computational operations by convolving the
input image with learnable filters, detecting features such as edges, corners, and textures.

3. Activation layers. Following the convolutional layers, activation layers introduce non-linearity into
the network by applying an activation function to the output of the convolution (such as the Rectified
Linear Unit - ReLU).

4. Pooling layers. Layers performing the down-sampling operations to reduce the spatial dimensions
of the feature maps, decreasing computational complexity and controlling overfitting.

5. Fully connected layers. Layers responsible for integrating high-level features extracted from the
previous layers and making the final classification decision; they employ traditional feedforward
neural network architecture and include an output layer with a Softmax activation function, gener-
ating class probabilities.

Additionally, key components of a CNN include:

• Filters. Also known as convolutional kernels; filters are learnable weight matrices that slide over
the input image during the convolution operation; they are responsible for detecting specific patterns
and features within the image.

• Feature maps. The output of the convolutional layers; feature maps represent the spatial arrange-
ment of the detected features in the image.

• Stride. The step size by which filters slide over the input image during convolution, affecting the
spatial dimensions of the resulting feature maps.

• Padding. The process of adding extra pixels around the input image before convolution, ensuring
that the spatial dimensions of the feature maps are preserved.

Convolution used in CNN is a mathematical operation that combines the input image matrix and the
filter matrix. It is performed by element-wise multiplication of the overlapping regions between the input
and the filter, followed by summing up the results. This operation is repeated for each location in the
input image, producing a feature map that highlights the presence of specific features.

During the training process, the CNN adjusts its filter weights to minimize the classification error.
This is achieved through backpropagation - an algorithm that calculates the gradient of the loss function
with respect to each weight by applying the chain rule. The gradients are then used to update the filter
weights using optimization techniques. Used methods can include stochastic gradient descent (SGD) or
more advanced methods like Adam.

To prevent overfitting and enhance generalization, CNNs employ regularization techniques such as
L1 and L2 regularization, dropout, and batch normalization. Data augmentation is another approach to
improving the model’s performance. Such operations usually involve generation of new training samples
by applying random transformations, such as rotation, scaling, or flipping, to the original images.

4.3. Multiple input CNN architecture

The multiple input CNN architecture proposed in this paper consist of 11 inputs. The layers are described
as follows:
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1. ImageInputLayers (11 inputs total). Architecture contains 11 ImageInputLayers, each accepting
an input image of size 128×128×3, which means that each input image has a resolution of 128×128
pixels with 3 color channels (RGB).

2. Convolution2DLayer (11 layers). Each of the 11 ImageInputLayers is connected to its correspond-
ing Convolution2DLayer with 64 filters of size 3×3×3. These layers perform the convolution oper-
ation on the input images, learning to extract relevant features from the input data.

3. BatchNormalizationLayer (11 layers). Each of the 11 Convolution2DLayer is connected to a
BatchNormalizationLayer with 64 channels. These layers normalize the activations of the previous
layer to stabilize the training process and improve convergence.

4. ReLULayer (11 layers). Each of the 11 BatchNormalizationLayers is connected to a ReLULayer.
ReLU (Rectified Linear Unit) is an activation function that introduces non-linearity into the network
by applying the function max(0, x) to the input, where x is the input value.

5. MaxPooling2DLayer (11 layers). Each of the 11 ReLULayers is connected to a MaxPooling2
DLayer with a stride of 1x1. Max-pooling reduces the spatial dimensions of the input by selecting
the maximum value within a specified window size, which in this case is 1x1, meaning there is no
reduction in spatial dimensions.

6. DepthConcatenationLayer (single layer). The 11 MaxPooling2DLayer outputs are concatenated
along the depth dimension, forming a single tensor that is passed to the subsequent layers.

7. Convolution2DLayer (single layer). The DepthConcatenationLayer is connected to a Convolu-
tion2DLayer with 128 filters of size 3x3x704. This layer performs another round of feature extrac-
tion on the combined output from the previous layers.

8. BatchNormalizationLayer (single layer). This Convolution2DLayer is connected to a BatchNor-
malizationLayer with 128 channels, normalizing the activations before passing them to the next
layer.

Table 6. Architecture of multiple inputs CNN model designed from scratch

No. Layer In Out Image size Convolution
Stride

padding
Batch
norm

1 ImageInputLayer 0 1 128×128×3
2 Convolution2DLayer 1 1 64 3×3×3 1×1/same
3 BatchNormalizationLayer 1 1 64
4 ReLULayer 1 1
5 MaxPooling2DLayer 1 1 1×1/same
6 ImageInputLayer 0 1 128×128×3
7 Convolution2DLayer 1 1 64 3×3×3 1×1/same
8 BatchNormalizationLayer 1 1 64
9 ReLULayer 1 1
10 MaxPooling2DLayer 1 1 1×1/same
11 ImageInputLayer 0 1 128×128×3
12 Convolution2DLayer 1 1 64 3×3×3 1×1/same
13 BatchNormalizationLayer 1 1 64
14 ReLULayer 1 1
15 MaxPooling2DLayer 1 1 1×1/same
16 ImageInputLayer 0 1 128×128×3



Multiple input CNN architecture. . . 53

No. Layer In Out Image size Convolution
Stride

padding
Batch
norm

17 Convolution2DLayer 1 1 64 3×3×3 1×1/same
18 BatchNormalizationLayer 1 1 64
19 ReLULayer 1 1
20 MaxPooling2DLayer 1 1 1×1/same
21 ImageInputLayer 0 1 128×128×3
22 Convolution2DLayer 1 1 64 3×3×3 1×1/same
23 BatchNormalizationLayer 1 1 64
24 ReLULayer 1 1
25 MaxPooling2DLayer 1 1 1×1/same
26 ImageInputLayer 0 1 128×128×3
27 Convolution2DLayer 1 1 64 3×3×3 1×1/same
28 BatchNormalizationLayer 1 1 64
29 ReLULayer 1 1
30 MaxPooling2DLayer 1 1 1×1/same
31 ImageInputLayer 0 1 128×128×3
32 Convolution2DLayer 1 1 64 3×3×3 1×1/same
33 BatchNormalizationLayer 1 1 64
34 ReLULayer 1 1
35 MaxPooling2DLayer 1 1 1×1/same
36 ImageInputLayer 0 1 128×128×3
37 Convolution2DLayer 1 1 64 3×3×3 1×1/same
38 BatchNormalizationLayer 1 1 64
39 ReLULayer 1 1
40 MaxPooling2DLayer 1 1 1×1/same
41 ImageInputLayer 0 1 128×128×3
42 Convolution2DLayer 1 1 64 3×3×3 1×1/same
43 BatchNormalizationLayer 1 1 64
44 ReLULayer 1 1
45 MaxPooling2DLayer 1 1 1×1/same
46 ImageInputLayer 0 1 128×128×3
47 Convolution2DLayer 1 1 64 3×3×3 1×1/same
48 BatchNormalizationLayer 1 1 64
49 ReLULayer 1 1
50 MaxPooling2DLayer 1 1 1×1/same
51 ImageInputLayer 0 1 128×128×3
52 Convolution2DLayer 1 1 64 3×3×3 1×1/same
53 BatchNormalizationLayer 1 1 64
54 ReLULayer 1 1
55 MaxPooling2DLayer 1 1 1×1/same
56 DepthConcatenationLayer 11 1
57 Convolution2DLayer 1 1 128 3×3×704 1×1/same
58 BatchNormalizationLayer 1 1 128
59 ReLULayer 1 1
60 FullyConnectedLayer 1 1 2097152××
61 ReLULayer 1 1
62 FullyConnectedLayer 1 1 128××
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No. Layer In Out Image size Convolution
Stride

padding
Batch
norm

63 ReLULayer 1 1
64 FullyConnectedLayer 1 1 64××
65 ReLULayer 1 1
66 FullyConnectedLayer 1 1 32××
67 SoftmaxLayer 1 1
68 ClassificationOutputLayer 1 0

9. ReLULayer (single layer). This BatchNormalizationLayer is connected to a ReLULayer, introduc-
ing non-linearity into the network.

10. FullyConnectedLayers and ReLULayers (3 pairs). The architecture has three pairs of FullyCon-
nectedLayers and ReLULayers with 128, 64, and 32 units, respectively. The FullyConnectedLayers
enable the network to learn higher-level features and representations from the extracted features,
while the ReLULayers introduce non-linearity.

11. SoftmaxLayer. The last FullyConnectedLayer is connected to a SoftmaxLayer with 3 classes. The
SoftmaxLayer normalizes the input into a probability distribution over the 3 classes.

12. ClassificationOutputLayer (single layer). Finally, the architecture ends with a ClassificationOut-
putLayer, which computes the categorical cross-entropy loss for training and provides the final class
predictions for the input images.

In summary, presented multiple input CNN architecture is a deep learning model with 11 input
branches, each containing a series of Convolutional, Batch Normalization, ReLU, and MaxPooling lay-
ers. These branches are then combined using a DepthConcatenationLayer and followed by additional
Convolutional, Batch Normalization, ReLU, FullyConnected, and Softmax layers to produce a final clas-
sification output. Overall network structure is visualized in Figure 5, while full outline of the used layers
is presented in Table 6.

4.4. Improved approach for drill wear classification

As shown in previous research [17], connecting different classifiers into ensemble and using voting
method to obtain final classification can improved overall results. Similar approach was used for fi-
nal solution presented in this paper. While initial experiments obtained some acceptable results, there
were still not satisfactory, and additional work to improve overall score was required. The evaluation of
a machine learning model involves the partitioning of a dataset containing 75 samples into three distinct
subsets: the training set, the validation set, and the test set. In this instance, the dataset is divided such
that there are 60 samples for training, 10 samples for validation, and 5 samples for testing. Additionally,
a k-fold cross-validation technique is employed, where k = 15.

The purpose of dividing the dataset into these three subsets is to ensure a rigorous and unbiased as-
sessment of the model’s performance. The training set is utilized for fitting the model, allowing it to learn
patterns and relationships within the data. The validation set is used to tune the model’s hyperparameters
and to gauge its performance during the training process. This enables the identification of potential
issues such as overfitting or underfitting, which can then be addressed before the final evaluation. Lastly,
the test set serves as an independent subset of data that is employed to evaluate the model’s performance,
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Figure 5. Multiple input CNN architecture with 11 input image layers.

providing a reliable estimation of its generalization capabilities when applied to previously unseen data.
The application of k-fold cross-validation is intended to further enhance the robustness of the evaluation
process. This technique involves dividing the dataset into k equally sized partitions, where k = 15 in
this case. The model is then trained and validated k times, with each partition serving as the validation
set exactly once, while the remaining k− 1 partitions are combined to form the training set. The average
performance across all k iterations is calculated to yield a more reliable and stable performance metric.
This process helps to minimize potential biases arising from the initial partitioning of the dataset and
provides a more accurate assessment of the model’s true performance.

To transition from the k-fold (k = 15) cross-validation to a confusion matrix, you must first complete
the k-fold cross-validation process and then aggregate the predictions for each fold. The steps involved
in that process are as follows:

1. Perform k-fold cross-validation:

A. Divide the dataset into k equally sized partitions (folds).

B. For each fold, train the model on the remaining k − 1 folds combined as the training set, and
validate the model on the current fold as the validation set.

C. Store the predictions and true labels for each validation set.

2. Aggregate predictions:
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A. Combine the predictions and true labels from all k validation sets to form a single set of predic-
tions and true labels.

3. Generate the confusion matrix:

A. Compare the aggregated predictions to the true labels and create a matrix that represents the
number of occurrences for each possible combination of predicted and true classes.

B. The rows of the matrix represent the true classes, while the columns represent the predicted
classes. Each cell in the matrix contains the count of instances where the model predicted a
particular class (column) when the true class was another (row).

4. Interpret the confusion matrix:

A. Diagonal elements represent correct predictions (true positives and true negatives), while off-
diagonal elements represent incorrect predictions (false positives and false negatives).

B. Analyse the confusion matrix to determine the model’s performance metrics, such as accuracy,
precision, recall, and F1-score.

5. Results and discussion

The results for the proposed approach were compared with previously prepared solutions, including one
based on gradient boosting, extreme gradient boosting and random forest algorithms. The outline of the
training progress of our CNN model over 200 iterations is presented in Figure 6. The top panel displays
the model’s accuracy as a percentage, while the bottom panel shows the loss. In the accuracy graph, the
solid blue line indicates the mean accuracy across the training batches, with the shaded area representing
one standard deviation from the mean. The dashed black line shows the validation accuracy. Notably,
the validation accuracy closely follows the training accuracy, suggesting a good generalization of the
model. The black dots indicate the epochs where the model achieved a new peak in validation accuracy.
The final accuracy achieved by the model is denoted by the ’Final’ marker at the end of the training
process. The loss graph illustrates the decline in both training (orange line) and validation (black line)
loss over time, which is a typical behavior of a converging model. The initial sharp decrease indicates
rapid learning, which gradually stabilizes as the model optimizes. The black dots represent points of
minimum validation loss, coinciding with the peaks in validation accuracy.

Obtained accuracy results for all methods, and final solution presented in this paper are presented in
Table 7. Confusion matrix outlining the overall class predictions, with associated classification errors
is shown in Figure 7. As can be seen, the presented approach performed well both in terms of overall
accuracy – achieving highest score from all of the methods – and overall classification. Total of 3 in-
stances were misclassified: 2 times example from red class was classified as yellow, and once yellow
class was classified as red. It is important to note, that there are no instanced of red-green or green-red
misclassifications (the most influential ones in terms of tool condition monitoring).

The overall performance of the multiple inputs CNN model is summarized in the Table 8 The model
achieved an impressive overall accuracy of 96.00%. This high accuracy indicates that the model is highly
effective in classifying the tool condition into the correct categories (green, yellow, red) based on the input
scalogram images derived from the milling process signals. Furthermore, the precision (macro average)
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Figure 6. Outline of the training process for the proposed multiple input CNN architecture

Table 7. Final classification results with previously prepared approaches

Mode Parameters Accuracy [%]
Multiple inputs CNN 269.2M total learnables 96.00

Extreme gradient boosting
learning_rate = 0.1
n_estimators = 100 93.33

Random forest
n_estimators = 100
min_samples_split = 2
min_samples_leaf = 1

86.66

Gradient boosting
min_samples_split = 2
min_samples_leaf = 1 86.66

Figure 7. Confusion matrix outlining classification results for the proposed solution
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of the model is 96.05%, suggesting that the model has a high level of reliability in its predictions. The
recall (sensitivity, macro average) stands at 96.00%, which means that the model is capable of correctly
identifying the majority of the relevant instances across all classes. The F1 score (macro average), which
is a balance between precision and recall, is calculated to be 95.99%. This high F1 score underscores the
model’s balanced performance in both precision and sensitivity.

Table 8. Overall classification metrics
for multiple inputs CNN model

Metric Value [%]
Overall accuracy 96.00
Precision (macro average) 96.05
Recall (sensitivity, macro average) 96.00
F1 Score (macro average) 95.99

A more detailed insight into the model’s performance is provided by the class-wise classification
metrics, as presented in the Table 9. This analysis allows us to understand how the model performs for
each specific class.

Table 9. Class-wise classification metrics
for multiple inputs CNN model [%]

Class Precision Sensitivity Specificity F1 score
Green 100.00 100.00 100.00 100.00
Yellow 92.31 96.00 96.00 94.12
Red 95.83 92.00 98.00 93.88

Green class. For the green class, which represents tools in good condition, the model achieved 100%
precision, sensitivity, and F1 score. This result indicates a perfect classification performance for this
class, with no misclassifications.

Yellow class. The model showed a precision of 92.31% and a sensitivity of 96.00% for the yellow
class, indicating tools in an intermediate state. The slightly lower precision suggests a few instances of
over-predicting the yellow class, but a high sensitivity indicates a strong ability to correctly identify most
of the yellow class instances. The F1 score for this class is 94.12%.

Red class. For the red class, indicating tools that need to be exchanged due to high wear, the model
achieved a precision of 95.83% and a sensitivity of 92.00%. The high precision shows the model’s ability
to correctly identify the red class instances with minimal false positives, while the slightly lower sensitivity
indicates some misses in identifying all the red class instances. The F1 score for the red class is 93.88%.

The results of the multiple inputs CNN model demonstrate its effectiveness in tool condition monitor-
ing in a milling process. The high overall accuracy and balanced precision and recall across all classes
indicate that the model is robust and reliable. Particularly noteworthy is the model’s exceptional perfor-
mance in classifying the green class without any errors, which is crucial for avoiding unnecessary tool
changes and associated downtime. The slight variations in precision and sensitivity for the yellow and red
classes suggest areas for further refinement. However, these results are still highly promising, indicating
that the model can successfully differentiate between the varying degrees of tool wear, which is essential
for effective tool maintenance and cost reduction.
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In conclusion, the multiple inputs CNN model exhibits a strong potential for practical applications in
tool condition monitoring. Future work may focus on further optimization of the model and expanding
the dataset to enhance the model’s generalization capabilities.

6. Conclusions

In this study, we introduced a multiple input CNN architecture, tailored for tool state recognition in
milling processes. The development and implementation of this model have led to several significant
findings and advancements in the field.

Foremost among these is the model’s exceptional accuracy in classifying tool wear. It achieved an
overall accuracy of 96.00%, a notable improvement over conventional methods. This high degree of
accuracy not only demonstrates the model’s robustness but also its reliability for practical applications in
industrial settings.

The model’s performance in classifying the state of tools was particularly remarkable. For tools in
good condition (green class), it achieved perfect scores in precision, sensitivity, and F1 score. When
identifying tools in an intermediate state (yellow class), the model showed a precision of 92.31% and
a sensitivity of 96.00%. In the critical red class, indicative of tools requiring replacement, the model’s
precision and sensitivity were 95.83% and 92.00%, respectively. These results highlight the model’s
adeptness at distinguishing between various levels of tool wear with a high degree of accuracy.

Another key aspect of our study was the effective use of scalogram images derived from time-series
signals. This approach allowed the CNN to extract detailed and nuanced features, facilitating the identifi-
cation of complex patterns indicative of tool wear. Such a method is evidence of the significant potential
of deep learning techniques in industrial and manufacturing applications.

The ability of the model to minimize errors in tool wear categorization is particularly beneficial for
its application in real-world scenarios. This precision is vital in reducing unnecessary tool changes,
optimizing production efficiency, and ensuring the quality of the final product.

However, our study also identified areas for potential improvement, especially in the yellow and red
classes, where there were slight variations in precision and sensitivity. This finding provides a clear
direction for future research and efforts to optimize the model.

In conclusion, the multiple input CNN model showcased in this study represents a significant step forward
in the realm of tool condition monitoring. Its high accuracy and nuanced class-specific performance have the
potential to revolutionize milling processes by enhancing tool maintenance, reducing operational costs, and
ensuring product quality. Future research will aim to refine this model further, expand the dataset for more
comprehensive training, and explore its application in various other industrial contexts.
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