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Abstract

The most commonly used form of regularization typically involves defining the penalty function as a ℓ1 or ℓ2 norm. However,
numerous alternative approaches remain untested in practical applications. In this study, we apply ten different penalty
functions to predict electricity prices and evaluate their performance under two different model structures and in two distinct
electricity markets. The study reveals that LQ and elastic net consistently produce more accurate forecasts compared to other
regularization types. In particular, they were the only types of penalty functions that consistently produced more accurate
forecasts than the most commonly used LASSO. Furthermore, the results suggest that cross-validation outperforms Bayesian
information criteria for parameter optimization, and performs as well as models with ex-post parameter selection.
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1. Introduction

Electricity price forecasting (EPF) is a critical task for many participants in the power market, including
power generators, traders and consumers. Accurate predictions of electricity prices enable one to make
informed decisions regarding production, purchasing, and sales [23, 25]. In particular, forecasting of day-
ahead market prices is of great importance for decision-making in electricity markets [16]. This auction-
based market plays a crucial role in ensuring the reliability and efficiency of the power system [17]. The
day-ahead market not only allows adjusting the long-term position to actual exposure [12, 13], but is also
a reference point for over-the-counter (OTC) trading and settlement.

One of the main challenges in developing reliable electricity price forecasting models is the high
volatility of the electricity market [33]. Many traditional forecasting models fail to capture these complex
dynamics, resulting in inaccurate forecasts [14]. To overcome this problem, researchers have turned to
regularization techniques to improve the accuracy of their models. Regularization is a method used in
machine learning and statistical modeling to prevent the overfitting of a model by adding a penalty term
to the model’s objective function.
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Although regularization has been widely applied in machine learning and related fields, its use in
electricity price forecasting is still limited. To our knowledge, up to now, only three out of ten considered
in this paper penalty functions have been tested in the EPF context. The first research that incorporated
regularization in this context was conducted by Barnes and Balda [3], who used ridge regression to assess
the financial viability of battery storage in electricity markets. More recently, Ludwig et al. [15] and
Ziel et al. [37] applied the least absolute shrinkage and selection operator (LASSO) to improve prediction
accuracy. Lastly, Uniejewski et al. [31] utilized elastic net to automate variable selection in the electricity
market. In this paper, we investigate the performance of ten different types of regularization to forecast
electricity prices. The techniques we consider are adaptive LASSO, clipped LASSO, concave potential
function, elastic net, forward-LASSO adaptive shrinkage, LASSO, LQ, minimax concave PLUS, ridge
regression and smoothly clipped absolute deviation.

We assess the performance of those regularization types using two datasets from the German EPEX
SPOT and Iberian OMIE markets and two model structures well-established in the literature. We employ
also cross-validation (CV) or Bayesian information criteria (BIC) to select the value of the tuning param-
eter (λ) and compare their performance. Finally, we propose a fully automated approach to select all the
regularization parameters based on CV. The accuracy of price forecasts obtained with regularized models
is compared with the benchmark models estimated with ordinary least square (OLS).

The paper is structured as follows. In Section 2, we provide a brief overview of the datasets. Next,
in Section 3 we outline the regularization techniques considered and summarize related research on the
EPF. In Section 4, we compare the accuracy of the forecasts obtained with the proposed methods, and
finally, in Section 5, we conclude the results.

2. Datasets

This empirical study utilized datasets from two distinct Cpean markets, each covering a period of
seven years. The first market is the German EPEX SPOT. It has recently experienced a significant in-
crease in the share of renewable generation and underwent major structural changes, making it an attrac-
tive target for analysis. The data were obtained from the transparency platform (https://transparency.
entsoe.eu) and consist of five hourly time series (see top panel in Figure 1):

• day-ahead electricity prices for the DE-AT-LU bid zone until 30.9.2018 and DE-LU afterwards

• day-ahead total load forecasts for Germany

• day-ahead solar generation forecasts for Germany

• day-ahead wind (on-shore) generation forecasts for Germany

• day-ahead wind (off-shore) generation forecasts for Germany

The second market examined in the study is the Spanish OMIE market. Unlike the German market,
the Iberian one does not allow prices to drop below zero. This feature, along with the rapid development
of the market, makes it an interesting subject for analysis. Data were also collected from the transparency
platform and comprise four hourly time series (bottom panel in Figure 1).

• day-ahead marginal electricity prices for Spain

• day-ahead total load forecasts for Spain

https://transparency.entsoe.eu
https://transparency.entsoe.eu
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• day-ahead solar generation forecasts for Spain

• day-ahead wind (on-shore) generation forecasts for Spain
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Figure 1. Day-ahead prices and day-ahead load forecast time series for German EPEX (top panel)
and Spanish OMIE (bottom panel) from 1.1.2015 to 31.12.2021.

The vertical dashed line marks the beginning of the out-of-sample test period (29.12.2016)

It should be noted that until 30.06.2021, the Spanish electricity market had a price cap between 0 and
180 C/MWh. In the second half of 2021, this limit was changed to a wider price range between -500
and 3 000 C/MWh. However, as the change does not affect the price series, but rather was caused by a
change in price dynamics, it has not been included in the model.

Both time series span 2557 days, ranging from 1.1.2015 to 31.12.2021. Missing or doubled values
(corresponding to the time change) were replaced by the average of the closest observations and the
arithmetic mean of the values from doubled hours, respectively.

The structure of the price series in both European markets underwent notable changes during the
seven-year period under study, as shown in Figure 1. The onset of 2020, coupled with the emergence
of the COVID-19 pandemic, followed by the Russian invasion of Ukraine in 2022, induced substantial
shifts in electricity price dynamics in 2020–2021.
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3. Methodology

The volatility and irregularity of electricity prices pose a challenge in producing accurate forecasts. Out-
liers in the data, caused by sudden spikes, can distort model coefficients and lead to higher in-sample
errors for non-spiky periods. To address this issue, Uniejewski et al. [32] proposed various functions
of variance stabilizing transformations (VST) to reduce the variation in the data and improve forecast
accuracy. In this paper, the normal probability integral transform (N-PIT) is applied to each (price and
exogenous variables) time series:

xd, h = N−1(F̂Xd, h
(Xd, h))

where F̂Xd, h
is a empirical cumulative distribution function of sample Xd, h and N−1 is the inverse func-

tion of the standard normal distribution.
In the next step, the transformed time series are used as the inputs of the forecasting models which

are estimated via OLS or one of ten different regularization types. After generating forecasts of the trans-
formed price (p̂d, h), the inverse transformation is applied to obtain the final forecasts of the electricity
price P̂d, h = F̂−1

Pd, h
(N(p̂d, h)).

3.1. Models

The price forecasting task is implemented separately for each hour. For each day of the out-of-sample
period, this results in 24 different parameter sets. This so-called multivariate framework is a common ap-
proach in the EPF literature (see [38] for a discussion of the differences between the uni- and multivariate
frameworks). The 24 individual models are independent of each other, but their estimation is based on
the same set of information.

The day-ahead forecasts of the hourly electricity price for both markets are determined within a rolling
window scheme using a 728-day calibration window. First, all considered models are calibrated to data
from the initial calibration period (1.1.2015–29.12.2016), and forecasts for all 24 hours of the next day
(30.12.2016) are determined. Then, the window is rolled forward by one day; the models are re-estimated,
and forecasts for all 24 hours of 31.12.2016 are computed. This procedure is repeated until the predictions
for the 24 hours of the last day in the sample (31.12.2021) are made.

The optimal choice of calibration window length is the subject of lively discussion [11, 29], in this
paper the 728-day calibration window is used. The choice was based on limited empirical tests comparing
the prediction accuracy of models calibrated to the considered window and three shorter calibration sizes.

3.1.1. Parsimonious ARX model

To assess the impact of different types of regularization on prediction accuracy, two different model
structures are used in this study. The undoubted advantage of using regularization is the almost unlimited
number of initially considered explanatory variables in the model. As a result, expert knowledge becomes
less important. For this reason, studies incorporating regularization usually focus on parameter-rich
model structures, and the concept is very rarely considered for estimating models with only a few inputs.

To address this literature gap, as the first underlying model, we propose a parsimonious autoregressive
structure, which is a well-established model in the EPF literature [38]. The transformed price on day d
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and hour h (i.e., pd, h) is modeled by the following equation:

pd, h =β1pd−1, h + β2pd−2, h + β3pd−7, h + β4p
max
d−1 + β5p

min
d−1 + β6pd−1,24+

+ β7ld, h + β8sd, h + β9w
on
d, h + β10w

off
d, h +

7∑
i=1

β10+iD
i
d + εd, h

where pd−1, h, pd−2, h and pd−7, h account for the autoregressive terms and correspond to prices from the
same hour of the previous day, two days before, and a week before, respectively. The midnight price of
electricity for the previous day, which is the last known price at the time of prediction, is represented
by pd−1,24. pmax

d−1 and pmin
d−1 are the maximum and minimum prices of the previous day. The transformed

day-ahead load forecast for a given hour of a day is represented by ld, h, while transformed day-ahead
forecasts of solar, on-shore wind, and off-shore wind generation are represented by sd, h, won

d, h, and woff
d, h,

respectively. Finally, D1
d, . . . , D

7
d are weekday dummies and εd, h is the noise term. Note that off-shore

wind generation is excluded from the model for the OMIE market, as there is no installed capacity in
Spain. The model consisting of 17 (16 for OMIE) regressors is referred to as ARX throughout the paper.

3.1.2. Parameter rich model

The second model structure, denoted by the fARX model, is a more complex autoregressive model that
incorporates 277 (229 for OMIE) regressors. The first 72 regressors (pd−i, h∗) refer to the autoregressive
terms and consist of information on prices from all hours from one, two, and seven days before forecasted
day d. The next six variables account for the non-linear terms and are reflected by the minimum (pmin

d−i)
and maximum (pmax

d−i) of all prices from one, two, and three days before day d. Another 192 regressors
(144 for OMIE) refer to exogenous variables. The model uses information on prediction of load (ld−i, h),
wind (won

d−i, h and woff
d−i, h) and solar generation (sd−i, h) for all hours of the day d and the previous day.

Lastly, similarly to the ARX model, to capture the weekly seasonality, the model consists of seven dummy
variables D1

d, . . . , D
7
d. The formula for the fARX model is as follows:

pd, h =
∑

i∈{1,2,7}

24∑
h∗=1

βp
i, h∗pd−i, h∗ +

3∑
i=1

(
βip

max
d−i + βi+3p

min
d−i

)
+

1∑
i=0

24∑
h∗=1

(
βL
i, h∗ld−i, h∗ + βS

i, h∗sd−i, h∗ + βon
i, h∗won

d−i, h∗ + βoff
i, h∗woff

d−i, h∗

)
+

7∑
i=1

β6+iD
i
d + εd, h

The ARX and fARX models are considered baseline models that are estimated with regularization
procedures discussed in the following Section 3.2.

3.2. Regularization

The concept of regularization involves minimizing the objective function of the original model and adding
a penalty to the model parameters. In this study, the objective function is the residual sum of squares
(RSS), and the regularization is defined by the following equation:



272 B. Uniejewski

β = argmin
∑
d, h

(
pd, h −

N∑
i=1

βix
i
d, h

)2

︸ ︷︷ ︸
RSS

+
N∑
i=1

g(β;λ, ·)︸ ︷︷ ︸
penalty function

(1)

where pd, h represents the dependent variable (it is the price series) and xd, h is a matrix of independent
variables consisting of model inputs. Finally, the g(β) is the penalty function, also known as the regular-
ization term, applied to the parameter vector β = {β1, β2, . . . , βN}.

The most commonly used form of regularization involves defining the penalty function as an order
norm ℓ1 or ℓ2, scaled by a tuning parameter λ. However, numerous alternative approaches exist, which
have yet to be tested in real-world applications. To our best knowledge, only three out of the ten consid-
ered regularization types have been previously tested in the EPF context and only LASSO is commonly
used in the literature. In this study, ten penalty functions are used to generate the electricity price fore-
casts, and their performance is compared against the unregularized benchmarks.

Regularization can be utilized to identify the most important variables in the model by selecting an
appropriate penalty function. This procedure involves fitting the full model with all predictors using
an algorithm that reduces the coefficients of less significant explanatory variables toward zero. One
of the benefits of using automatic variable selection methods is their ability to handle a large number of
explanatory variables, thus reducing the dependence on expert knowledge, which is often unverified [31].

To conduct the research, we used the Matlab toolbox of McIlhagga [19]. The toolbox utilizes Fisher
scoring over an active set with orthant projection [26, 28]. It offers an automated selection of the tuning
parameter λ using information criteria or cross-validation. In this study we decided to compare Bayesian
information criteria and cross-validation with 7 folds. Moreover, for penalty functions with an extra reg-
ularization parameter, the toolbox allows one to utilize CV to select the optimal value of both parameters
simultaneously, making the model fully automated (this feature is unavailable for BIC).

3.2.1. Adaptive LASSO

The adaptive least absolute shrinkage and selection operator (aLASSO) penalty function was first intro-
duced by Zou [39]. The adaptive weights in the model are used for penalizing different coefficients in
the ℓq penalty. According to the author, the adaptive LASSO performs as well as if the true underlying
model was given in advance. Although originally the adaptive LASSO model was defined only for the
ℓ1 penalty, it was further generalized to allow for the ℓq norm penalty. The adaptive penalty function is
defined as follows:

g(β;λ, q) = λ
|βi|q

β∗
i

(2)

where β∗
i is a vector of weights estimated with an unregularized model, λ is the tuning parameter and q

is the additional parameter that refers to the ℓq norm. In this paper β∗
i is defined as a vector of weights

estimated with OLS, λ is selected automatically via BIC or CV and q takes one of the values from the
grid Q = {1, 1.5, 2}.
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3.2.2. Clipped LASSO

The clipped least absolute shrinkage and selection operator (cLASSO) [2] is another penalty function
that aims to generalize LASSO. The idea of clipped LASSO is to set a threshold for the maximum value
of the penalty for estimated weights. It is defined as follows:

g(β;λ, α) = λmin {|βi| , α} (3)

where λ is the tuning parameter and α is responsible for the threshold of the penalty. Based on limited
pretests we consider α from a grid A = {0.5, 1, 1.5}, whereas λ is selected automatically via BIC or
cross-validation.

3.2.3. Concave potential function

The regularization term of concave potential function (CPF) [24] is the sum of the values obtained by
applying the potential function (PF) to each regressor. The penalty function is defined as follows:

g(β;λ, k) = λ
k |βi|

k + |βi|
(4)

where λ is the tuning parameter and k is an additional parameter that refers to the shape of the penalty.
Note that if k → ∞ the penalty becomes equivalent to a standard LASSO penalty. In this paper, the
additional parameter k is selected from the initial grid K = {5, 15, 25}.

3.2.4. Elastic net

The elastic net (EN) [40] can be viewed as an extension of ridge regression and LASSO. This penalty
function incorporates a combination of linear and quadratic penalty terms:

g(β;λ, α) = λ(α |βi|+ (1− α) |βi|2) (5)

where α ∈ [0, 1]. When α = 1, the elastic net reduces to LASSO, and with α = 0, it becomes a ridge
regression. Note also that every elastic net problem can be rewritten as a LASSO problem on augmented
data. Therefore, for fixed λ and α, the computational difficulty of the elastic net solution is similar to
the LASSO problem [9]. Just like in the other cases the value of λ is automatically selected via BIC or
cross-validation. The additional parameter α takes one of the values from the grid A = {0.25, 0.5, 0.75}.

The elastic net was already applied in the context of forecasting electricity prices. In particular, it was
first used by Uniejewski et al. [31], where it produced the most accurate forecast across all considered
automated variable selection methods. Recently, the method is gaining in popularity and more and more
authors decide to estimate their forecasting models with elastic net [for example 1, 4, 21, 22]

3.2.5. FLASH

The forward-LASSO adaptive shrinkage (FLASH) was introduced by Radchenko and James [27]. To be
precise, the FLASH algorithm does not fall specifically under penalized optimization techniques, but it
has an implicit penalty. It follows a hierarchical approach similar to least-angle regression [5] (LARS)
and forward selection by incrementally adding one variable to the model, but with a unique feature of



274 B. Uniejewski

adjusting the level of shrinkage at each step to optimize the selection of the next variable. The penalty
for coefficients in the active set is specified as:

g(β;λ, γ) = λ(1− γ) |βi| (6)

In this paper, the additional parameter γ takes one of the values from the grid G = {0.25, 0.5, 0.75}.

3.2.6. LASSO

Least absolute shrinkage and selection operator (LASSO) was formally introduced by Tibshirani [30]. It
has achieved great success in statistics and is widely used in various applications. The penalty function
is defined as a ℓ1 norm scaled by the tuning parameter λ:

g(β;λ) = λ |βi| (7)

where λ is the tuning parameter. It indicates how significant the variables have to be to remain in the final
model. While for λ = 0 the method reduces to ordinary least squares (OLS), as the parameter increases,
more and more variables are considered irrelevant and eliminated from the final model. In this research
LASSO is treated as fully-automated model as the the value of λ parameter is selected automatically via
BIC or cross-validation. LASSO is a regularization method that has been widely used in EPF but only in
the past decade. Some of the earliest examples of research that employed LASSO in the context of EPF
include [7, 15, 31, 35–37].

3.2.7. LQ

LQ regularization [8] is another type of penalty function, after elastic net, that tries to fit between LASSO
and ridge regression. This time instead of mixing linear and quadratic terms, the LQ regularization
proposes to use a ℓq norm, for q ∈ (1, 2):

g(β;λ, q) = λ |βi|q (8)

In this paper, we consider three values of q from the grid Q = {1.25, 1.5, 1.75}. Note that due to the
toolbox requirements [19], we had to impose the upper limit of the set of possible λ values. Thus, in the
LQ regularization, the tuning parameter cannot exceed a threshold equal to 2.

3.2.8. MC+

MC+ is a penalized variable selection method for high-dimensional linear regression [18, 34]. Compared
to LASSO, which is fast and continuous but biased, MC+ is nearly unbiased and accurate. The method
consists of two elements: a minimax concave penalty (MCP) and a penalized linear unbiased selection
(PLUS) algorithm. The MCP ensures the convexity of the penalized loss in sparse regions to the greatest
extent possible, given certain thresholds for variable selection. The PLUS algorithm computes multiple
exact local minimizers of a possibly nonconvex penalized loss function in a certain main branch of the
graph of critical points of the penalized loss. The penalty is defined as follows:
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g(β;λ, γ) =


λ |βi| −

β2
i

2γ
for |βi| ≤ γλ

λ2γ

2
for γλ < |βi|

(9)

The additional parameter γ ≥ 1 takes one of the values from the grid G = {1, 3, 5}. As for all other
methods, the tuning parameter λ is selected automatically via BIC or cross-validation.

3.2.9. Ridge

Ridge regression is one of the first regularization method introduced in statistics [10]. Ridge regression
is very similar to LASSO but the linear penalty function is substituted with a quadratic norm:

g(β;λ) = λ |βi|2 (10)

where λ ≥ 0. Note that for λ = 0, we get the standard OLS estimator; for λ → ∞, all βi’s tend to zero;
while for intermediate values of λ, we are balancing two ideas: minimizing the RSS and shrinking the
coefficients toward zero (and each other). The toolbox [19] requires us to specify the maximum value of
λ. In this study, the maximum value has been set to 5.

Although ridge regression is one of the most classical forms of regularization, it very rarely appears in
the EPF literature. Apart from Barnes and Balda [3] – the first paper that utilizes ridge regression in the
context of evaluating the profitability of battery storage – the method has only been mentioned a couple
of times [for example 20, 31].

3.2.10. SCAD

The smoothly clipped absolute deviation (SCAD) [6] corresponds to a quadratic spline function with
knots at λ and αλ. This penalty function leaves large values of β not excessively penalized and makes
the solution continuous. The resulting solution is given by:

g(β;λ, α) =


λ |βi| for |βi| ≤ λ

− |βi|2 + 2αλ |βi| − λ2

2(α− 1)
for λ < |βi| ≤ αλ

λ2(1 + α)

2
for |βi| > αλ

(11)

The additional parameter α ≥ 2 takes one of the values from the grid A = {10, 20, 30}.

3.2.11. Penalties comparison

In this study, the considered penalties can be classified into three groups, each representing a different
approach to regularization. The first group includes standard methods widely used in the literature, rep-
resented by LASSO and ridge regression. These methods are based on simple ℓ1 or ℓ2 norms. Ridge
regression uses a quadratic shrinkage factor that shrinks all βi parameters toward zero, but not exactly to
zero, making it suitable for models with a small number of inputs. Conversely, LASSO focuses on both
parameter shrinkage and variable selection, making it well suited for parameter-rich models.
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The second group includes methods that attempt to combine or enhance the capabilities of the standard
approaches. These include adaptive LASSO, elastic net, FLASH, and LQ regularization. The comparison
between them is shown in the left panel of Figure 2. Note that Adaptive LASSO and FLASH regular-
ization are not included in the plot. Adaptive LASSO, which depends on the q parameter, has the same
shape as LASSO, LQ, or ridge, and differs only in the scale, which depends on the value of β∗. FLASH,
on the other hand, is not defined as a penalty, but rather as an optimization algorithm, so it cannot be
easily plotted.

g
(

;
,

)

Figure 2. Shapes of different penalty functions (for λ = 1) of the considered regularization types depending
on the value of the estimated weight (β). For clarity, the plot is divided into two panels. The left panel shows

penalty functions for the elastic net and LQ regularizations compared to standard approaches
such as LASSO and ridge regression. The right panel displays the penalties for all concave functions considered.

Note that adaptive LASSO and FLASH regularization are not included in the plot (see Section 3.2.11)

The third group goes in a different direction and is represented by methods such as Clipped LASSO,
Concave PF, MC+ or SCAD. These approaches use concave penalties, which means that the growth rate
of the penalties decreases as the absolute value of β increases. In particular, for Clipped LASSO, MC+,
and SCAD, the penalty function becomes constant after a certain threshold. This allows the weights
corresponding to less important variables to shrink to zero very quickly, while not penalizing βi too
much for the most important inputs. The right panel of figure 2 illustrates the comparison between these
concave penalties, giving an insight into their characteristics.

4. Results

Linear measures such as mean absolute error provide a simple and easy-to-understand assessment of the
average forecasting error. However, linear measures have limitations such as the inability to capture the
variance of errors which can lead to misleading conclusions. Therefore, in this study, we use the root
mean square errors (RMSE). The measure is defined by the following equation:

RMSE =

√√√√ 1

24D

D∑
d=1

24∑
h=1

ε̂2d, h. (12)

where, ε̂d, h = Pd, h − P̂d, h is the forecasting error for day d and hour h.
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4.1. OLS

Table 1 shows the results of the ARX and fARX models estimated using the OLS method. It can be seen
that, surprisingly, the less complex ARX model produces more accurate results for the OMIE market in
terms of RMSE, and only slightly worse for the EPEX market. The relatively poor performance of the
parameter-rich model is due to the overfitting problem.

Table 1. RMSE of the forecast obtained
with two considered baseline models

estimated with OLS

EPEX OMIE
ARX fARX ARX fARX

13.55 12.65 9.78 10.35

Bold text highlights the best
model within each market.

The result of the OLS-estimated models presented in Table 1 should be considered as a reference point
for other regulization-based estimation techniques.

4.2. Regularization results

4.2.1. Adaptive

Table 2. RMSE of the prediction obtained with two considered
baseline models estimated with adaptive LASSO

EPEX OMIE
ARX fARX ARX fARX

CV BIC CV BIC CV BIC CV BIC

1 14.61 15.67 12.12 15.39 9.79 10.20 9.63 10.26
1.5 15.06 15.84 12.13 15.32 9.81 10.26 9.62 10.27
2 15.28 15.78 12.19 15.42 9.84 10.28 9.58 10.33
CV 14.68 12.17 9.79 9.62

The best result within each model is underlined, while the best model
within each market is highlighted in bold.

Table 2 shows the RMSE of the ARX and fARX models estimated using the adaptive LASSO method.
The results for each market are divided into two sub-columns referring to two model structures (ARX
and fARX). In addition, for each model, the results are reported for two λ selection methods. Finally,
the first three rows refer to a model with a fixed q parameter, and the last row (CV) presents the result
of the fully automated approach when both λ and q are selected by cross-validation. Some important
conclusions can be drawn from the results presented in the Table 2:

• The parameter-rich fARX model outperforms the parsimonious ARX model in both markets, al-
though the difference is more pronounced in the EPEX market.

• Cross-validation is a better method in terms of prediction accuracy for selecting the λ parameter
than BIC for adaptive LASSO, especially when using the parameter-rich fARX model.
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• Among all considered values of the additional parameter, q = 1 performs best on average in terms
of RMSE. However, the fully automated approach is only slightly worse (by less than 0.5%) than
the optimal value of the parameter. This indicates that CV can be successfully applied to select
values of both parameters (λ and q).

4.2.2. Clipped LASSO

Table 3. RMSE of the prediction obtained with two considered
baseline models estimated with clipped LASSO

EPEX OMIE
ARX fARX ARX fARX

CV BIC CV BIC CV BIC CV BIC

0.5 13.93 15.28 11.96 17.56 9.74 10.18 9.39 12.03
1.0 13.91 15.20 11.95 17.48 9.80 10.53 9.39 12.17
1.5 13.91 15.23 11.95 17.45 9.81 10.58 9.38 12.25
CV 13.91 11.95 9.77 9.39

The best result within each model is underlined, while the best model
within each market is highlighted in bold.

Table 3 reports the RMSE of the models estimated using the clipped LASSO method. The results
are presented in a format similar to the tables in the previous sections. In particular, the results for each
market are reported for two model structures (ARX and fARX) and two methods of α selection. There
are several important conclusions that can be drawn from the results presented in the Table 3:

• Similar to the adaptive LASSO, the fARX model outperforms the parsimonious ARX model.
• Considering the method used to select the λ parameter, the CV beats the BIC by a large margin.
• The optimal value of the parameter γ varies across models and markets. This time the fully auto-

mated approach performs best for EPEX market and only slightly worse (for OMIE) than the best
ex-post value of the parameter.

4.2.3. Concave PF

Table 4. RMSE of the prediction obtained with two considered
baseline models estimated with concave PF

EPEX OMIE
ARX fARX ARX fARX

CV BIC CV BIC CV BIC CV BIC

5 13.93 15.37 11.97 17.67 9.81 10.46 9.42 11.87
15 13.92 15.22 11.96 17.59 9.81 10.51 9.41 11.99
25 13.91 15.22 11.96 17.54 9.81 10.54 9.41 11.92
CV 13.93 11.96 9.82 9.41

The best result within each model is underlined, while the best model
within each market is highlighted in bold.

Table 4 presents the RMSE of the forecasts obtained with models estimated using the concave PF
regularization method. Some important conclusions can be drawn from the results presented in Table 4:
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• As previously, the most accurate forecasts are produced by the parameter-rich model (fARX).
• In terms of selecting the value of the λ parameter, cross-validation clearly outperforms BIC, espe-

cially in the case of the fARX baseline model where BIC struggles to select the optimal λ value.
• The value k = 25 performs best on average in terms of predictive accuracy, outperforming all other

considered values of the additional parameter. The fully automated approach shows only a small
performance loss compared to the optimal value of the parameter (less than 0.1%), indicating that it
is a good performing alternative.

4.2.4. Elastic net

Table 5. RMSE of the prediction obtained with two considered
baseline models estimated with elastic net

EPEX OMIE
ARX fARX ARX fARX

CV BIC CV BIC CV BIC CV BIC

0.25 13.81 14.94 11.92 20.33 9.81 10.55 9.35 12.62
0.50 13.84 14.87 11.95 18.35 9.80 10.61 9.34 12.03
0.75 13.87 15.02 11.96 18.16 9.79 10.48 9.31 11.76
CV 13.87 11.96 9.79 9.32

The best result within each model is underlined, while the best model
within each market is highlighted in bold.

Table 5 displays the RMSE of the elastic net estimated models. The results for each market are
presented in the same table format as in the previous sections. These results allow us to draw some
important conclusions:

• The fARX model produces the most accurate forecasts. However, the ARX model performs better
when the value of the λ parameter is selected with BIC.

• Cross-validation clearly outperforms BIC, with the difference being more visible for fARX model.
• The values α = 0.25 and α = 0.75 perform best for EPEX and OMIE, respectively. The fully

automated approach tends to produce very similar results (in terms of prediction accuracy) to the
α = 0.75 model.

4.2.5. FLASH

Table 6 shows the RMSE of the forecasts obtained with models estimated using the FLASH regularization.
The results are presented in a format similar to the tables in the previous sections. In particular, for
each market, the results are divided into two model structures (ARX and fARX) and two methods of λ
selection. From the results in Table 6, some important conclusions can be drawn:

• The fARX clearly outperforms the ARX model.
• Regarding the choice of the λ parameter, cross-validation outperforms BIC by a substantial margin,

especially for the EPEX market.
• The value γ = 0.25 performs best on average for both markets. The fully automated approach tends

to produce forecasts that are only slightly less accurate than the best model.
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Table 6. RMSE of the prediction obtained with two considered
baseline models estimated with FLASH algorithm

EPEX OMIE
ARX fARX ARX fARX

CV BIC CV BIC CV BIC CV BIC

0.25 13.92 15.35 11.97 15.73 9.83 10.52 9.40 10.69
0.5 13.90 15.33 11.98 15.21 9.85 10.45 9.41 10.53
0.75 13.81 15.29 11.97 14.61 9.92 10.41 9.46 10.32
CV 13.82 11.98 9.92 9.42

The best result within each model is underlined, while the best model
within each market is highlighted in bold.

4.2.6. LASSO

Table 7. RMSE of the forecast obtained with two considered
baseline models estimated with LASSO regularization

EPEX OMIE
ARX fARX ARX fARX

CV BIC CV BIC CV BIC CV BIC

13.91 15.23 11.94 17.74 9.81 10.57 9.39 12.63

The best result within each model is underlined, while the best
model within each market is highlighted in bold.

The RMSE of the models estimated using LASSO are presented in Table 7. The results are divided
into two model structures (ARX and fARX) and two methods of selecting λ values for each market.
Note that the LASSO regularization has only one parameter, so both CV and BIC are fully automated
approaches. The results in Table 7 lead to several important conclusions:

• The fARX model produces the most accurate price predictions, but ARX outperforms fARX in
some cases.

• Cross-validation beats BIC by a large margin for selecting the λ parameter, especially for the fARX
model.

4.2.7. Lq

Table 8. RMSE of the prediction obtained with two considered
baseline models estimated with adaptive LASSO.

EPEX OMIE
ARX fARX ARX fARX

CV BIC CV BIC CV BIC CV BIC

1.25 13.85 13.54 11.92 32.68 9.79 9.77 9.33 28.15
1.5 13.79 13.54 11.92 29.42 9.80 9.77 9.34 22.40
1.75 13.74 13.54 11.95 22.70 9.82 9.77 9.39 16.13
CV 13.85 11.93 9.78 9.34

The best result within each model is underlined, while the best model
within each market is highlighted in bold.
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The RMSE of the predictions estimated with LQ regularization is shown in Table 8. The presentation
of the results follows a similar format to the previous sections, where the results are divided into two
model structures (ARX and fARX) and two methods of selecting the value of the λ parameter for each
market. The first three rows in each panel correspond to a model with a fixed parameter α, while the
last row (CV) represents the results of the fully automated approach. From the results in Table 8, several
important conclusions can be drawn:

• The fARX model produces the best prediction in terms of forecast accuracy. However, it performs
very weakly when BIC is used to select the value of the λ parameter.

• The performance of the two methods for selecting the optimal value of the λ parameter depends on
the structure of the model. In particular, BIC performs better for the parsimonious ARX model but
fails to select λ for the more complex fARX model.

• The value q = 1.25 performs best on average regarding RMSE. The fully automated approach
performs only slightly worse than the optimal ex-post model for the fARX model, but substantially
worse for the ARX structure.

4.2.8. MC+

Table 9. RMSE of the prediction obtained with two considered
baseline models estimated with MC+

EPEX OMIE
ARX fARX ARX fARX

CV BIC CV BIC CV BIC CV BIC

1 13.98 15.59 12.00 16.27 9.83 10.16 9.41 10.52
3 13.93 15.35 11.99 16.98 9.81 10.47 9.41 11.21
5 13.92 15.27 11.98 17.11 9.81 10.45 9.40 11.36
CV 13.99 12.00 9.84 9.40

The best result within each model is underlined, while the best model
within each market is highlighted in bold.

Table 9 shows the RMSE of the models estimated by the MC+ regularization. The format of the table
is the same as in the previous sections. There are some important conclusions that can be drawn from the
results in the Table 9:

• The fARX model outperforms the ARX model on average for both methods of selecting the tuning
parameter λ.

• Cross-validation consistently outperforms BIC for λ value selection by a large margin, especially in
the EPEX market.

• The optimal value of the parameter γ varies across models, but on average the γ = 5 performs best.
While the fully automated approach is slightly outperformed by the optimal parameter values in
each case, it remains a reasonable alternative. This suggests that using a fully automated approach
can lead to satisfying results without having to rely on expert parameter choices.
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4.2.9. Ridge

Table 10. RMSE of the forecast obtained with two considered
baseline models estimated with ridge regularization

EPEX OMIE
ARX fARX ARX fARX

CV BIC CV BIC CV BIC CV BIC

13.70 13.53 12.02 22.79 9.83 9.77 9.39 15.99

The best result within each model is underlined, while the best
model within each market is highlighted in bold.

In Table 10, we present the RMSE of the models estimated by ridge regression. The results are
divided into two model structures (ARX and fARX) and two methods of selecting λ values for each
market. Ridge regression, similar to LASSO, has only one parameter, and thus both CV and BIC are
fully automated approaches. There are several important conclusions that can be drawn from the results
presented in the Table 10:

• The parameter-rich fARX model produces the most accurate forecasts, but in the ARX outperforms
fARX.

• In terms of selecting the value of the parameter λ, CV outperforms the information criteria for the
fARX model, but BIC performs better for the parsimonious ARX model.

4.2.10. SCAD

Table 11. RMSE of the prediction obtained with two considered
baseline models estimated with SCAD regularization

EPEX OMIE
ARX fARX ARX fARX

CV BIC CV BIC CV BIC CV BIC

10 13.71 14.75 12.18 15.00 9.98 10.13 9.47 10.10
20 13.82 15.03 12.15 14.85 9.91 10.12 9.51 10.22
30 13.86 14.91 12.13 15.06 9.85 10.10 9.56 10.38
CV 13.76 12.15 9.97 9.51

The best result within each model is underlined, while the best model
within each market is highlighted in bold.

Table 11 presents the RMSE of the models estimated using the SCAD regularization. The presentation
of the results follows a similar format to the previous sections, where the results are divided into two
model structures (ARX and fARX) and two methods of selecting the value of the λ parameter for each
market. The first three rows in each panel correspond to a model with a fixed α parameter, while the last
row (CV) represents the results of the fully automated approach. Several important conclusions can be
drawn from the results presented in the Table 11:

• The fARX model outperforms the ARX model on average for both methods of selecting the tuning
parameter λ.
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• For selecting the value of the λ parameter, cross-validation consistently outperforms BIC by a large
margin.

• It is impossible to identify a clear winner among models and markets regarding the optimal value
of the α parameter, as it varies among them. Even though the fully automated approach is slightly
inferior to the optimal parameter values in most cases, it is still a valuable option. This means that
relying on a fully automated approach can yield satisfying results.

4.3. Summary of the results

Sections 4.2.1–4.2.10 present the results for each regularization technique separately. While the conclu-
sions varied depending on the penalty function used, some common factors remained consistent across
most regularization types. Based on the results in Tables 2-11, the most important conclusions can be
summarized as follows:

• In general, the fARX model with cross-validation as the λ selection method produces the most
accurate forecasts for both markets. Although BIC slightly outperforms CV in some cases, this
is only true for the parsimonious ARX model, which on average produces less accurate forecasts
compared to fARX.

• BIC is not recommended for selecting the tuning parameter λ, especially for models with a large
number of parameters.

• For the vast majority of regularization types, the accuracy of the forecast obtained with the fully
automated approach, where all parameters were selected by cross-validation, is very similar to the
best model selected ex-post. This shows that the presented solutions are robust and can be applied
to different markets and time series without pre-selecting their parameters.

In the previous sections, the accuracy of the forecasts was only compared within a certain penalty
function. However, the purpose of this study is to identify the best type of regularization in the context
of the EPF. To rank the penalty functions, Table 12 summarizes the results for all ten considered regular-
ization types. Table 12 shows the percentage change compared to the OLS estimated model. The relative
measure is defined as

rRMSEreg =
RMSEreg − RMSEOLS

RMSEOLS × 100%

where RMSEreg is the root mean squared error of the given regularization type. RMSEOLS is the RMSE

value for the predictions obtained with the corresponding OLS-estimated model.
Table 12 shows the percentage change compared to OLS estimation for the fully automated ap-

proaches and the best ex-post models. For each model and market, we present the result of the pro-
cedure when all parameters are selected with CV and the results underlined in Tables 2–11. Note that the
negative value in Table 12 indicates that the model estimated with a given regularization type is better
in terms of predictive accuracy than the same model estimated with OLS. Moreover, considering that
the most common regularization technique in the EPF application is LASSO, the results of models that
outperform LASSO-estimated equivalents are underlined.
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Table 12. RMSE of the forecasts obtained using different
regularization techniques compared to the models estimated using OLS [%]

EPEX OMIE
ARX fARX ARX fARX

CV best CV best CV best CV best

aLASSO 8.33 7.88 –3.83 –4.19 0.13 0.10 –7.13 –7.44
cLASSO 2.69 2.65 –5.56 –5.56 0.00 –0.36 –9.32 –9.44
CPF 2.82 2.69 –5.47 –5.49 0.41 0.37 –9.10 –9.15
EN 2.41 1.97 –5.48 –5.79 0.19 0.17 –10.00 –10.11
FLASH 2.00 1.97 –5.34 –5.39 1.51 0.52 –9.01 –9.25
LASSO 2.66 –5.64 0.32 –9.29
LQ 2.26 –0.03 –5.71 –5.84 0.09 –0.06 –9.80 –9.91
MC 3.27 2.76 –5.17 –5.31 0.66 0.40 –9.21 –9.23
Ridge –0.11 –4.98 –0.09 –9.29
SCAD 1.57 1.20 –4.01 –4.12 1.94 0.72 –8.16 –8.53

The results for each model are presented in two columns. The first column (CV) shows the result
of the model with all parameters automatically selected by CV. The second column (best) shows
the result of the model with the λ parameter selected by CV or BIC (the better one selected
ex-post) and the other selected from the grid according to ex-post performance. The best result
in each column is bolded and any one better than LASSO is underlined.

Several important conclusions can be drawn from the results reported in Table 12:

• The most accurate forecasts for the parsimonious ARX model are obtained with a fully automated
approach using ridge regression and the BIC method to select the tuning parameter λ.

• Overall, the OLS estimation is hard to beat for the ARX model. Only two types of regularization
managed to produce more accurate forecasts for both markets, and only by a small margin. In
particular, the ARX model estimated with the LQ regularization with the q parameter selected ex-
post outperformed the OLS estimation by 0.03% and 0.06% for the EPEX and OMIE markets,
respectively.

• On the other hand, for the parameter-rich fARX model, estimation with any regularization function
outperforms the OLS-estimated model for both markets.

• In the case of the fARX model, the LASSO estimation is very hard to beat for other regularization
functions. Only the elastic net and LQ are able to consistently outperform LASSO.

• Across all the regularization types, the LQ regularization performs best on average. It produces
more accurate forecasts than the LASSO-estimated models in all cases.

• The second best regularization type in terms of forecast accuracy is the elastic net. In particular, it
outperforms LASSO in seven out of eight cases.

• It is worth noting the very good performance of Clipped LASSO for the OMIE market. It per-
forms best of all regularization types for ARX and outperforms LASSO for fARX. However, it is
outperformed by other methods for the EPEX market.

5. Conclusions

The study investigated the use of different types of penalties for regularization in the context of the
EPF. It compares the performance of ten regularization techniques, including adaptive LASSO, clipped
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LASSO, concave potential function, elastic net, forward LASSO adaptive shrinkage, LASSO, LQ, mini-
max concave PLUS, ridge regression, and smoothly clipped absolute deviation, using two data sets from
the German EPEX SPOT and Iberian OMIE markets and two different model structures.

The results show that for both markets, the parameter-rich fARX model with cross-validation as the
parameter selection method produces the most accurate forecasts. Conversely, using BIC to select the
optimal λ value is not advisable for the majority of regularized models. The study recommends using
cross-validation to select all parameters in a fully automated manner. The accuracy of such models is
similar to the best models selected ex-post, and at the same time it does not require additional expert
knowledge.

OLS estimation is hard to beat for the parsimonious ARX model, but ridge regression slightly out-
performs the benchmark. For the parameter-rich fARX model, the estimation with any regularization
function far outperforms the OLS-estimated model for both markets. The analysis shows that the LQ
and elastic net techniques perform better than others on average in terms of RMSE. In particular, they
were the only types of penalty functions that consistently produced more accurate forecasts than the most
commonly used LASSO.
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