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Abstract

When solving real-world decision-making problems, it is important to deal with imprecise quantitative values modeled by
numerical intervals. Although a different extension of the multi-criteria decision-making methods could deal with intervals,
many of them are complex and lack such properties as robustness to rank reversal. We present an extension of the stable
preference ordering towards ideal solution (SPOTIS) rank reversal free method to deal with imprecise data. This extension
of SPOTIS is also rank reversal-free. It offers a new efficient approach for solving multi-criteria decision-analysis problems
under imprecision and can use different metrics of distance between intervals. The proposed approach is compared to the
popular interval technique for order preference by similarity to ideal solution) extension and performs very similarly to it. We
also show on a practical example that the interval TOPSIS approach is not robust to rank reversal, contrary to our new SPOTIS
extension approach, which offers a stable decision-making behavior.

Keywords: interval values, MCDA, SPOTIS, decision-making

1. Introduction

Interval data could appear in every part of the decision-making problem. Intervals could appear in the
data due to imprecise measurements, the uncertain nature of the data, missed data, and others. In this
case, the decision maker should handle the imprecision of the data to solve the problem. By eliminating
imprecision, the decision maker loses important information about alternatives. Therefore, to properly
deal with imprecise data, the interval extensions of the multi-criteria decision-analysis (MCDA) methods
should be used.

For solving multi-criteria decision-making problems in a crisp environment, one could use a wide
range of different methods, such as TOPSIS (technique fororder preference by similarity to ideal solu-
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tion), VIKOR (visekriterijumska optimizacija i kompromisno resenje, in Serbian), ELECTRE (eLimi-
nation and choice translating reality), and other [47]. Some of those methods are more popular in the
domain and have different extensions over time, such as extensions for the interval or fuzzy calcula-
tions. However, with all those existing methods, it is hard to pick one that is most suitable for the
actual problem and will provide the most reliable solution. The different methods provide results that
could differ significantly [36]. Another problem is a rank reversal (RR) paradox, which appears when
the number of alternatives in a set changes. Most of the popular MCDA methods are susceptible to it.

In 2020, Dezert et al. proposed a stable preference ordering towards ideal solution (SPOTIS) ap-
proach, which has several advantages over the classical MCDA method. It is easy to use and robust
to RR phenomena by design [7]. Although the SPOTIS method is relatively new, the usability and
reliability of this method have already been proved in different scientific works [40, 48]. In 2021,
Shekhovtsov et al. proposed an approach that allows the use of the SPOTIS method with interval data.
However, this approach has several flaws and cannot easily process interval criteria weights and in-
terval data bounds. In this paper, we introduce a new generalized approach to dealing with interval
data with the SPOTIS method. The proposed approach could be used with interval criteria weights and
data bounds in order to provide robust ranking in a full imprecise framework modeled by numerical
intervals.

The main contribution is a new generalization of the SPOTIS method for working with imprecise
data. The approach proposed in this paper is completely resistant to RR phenomena, builds a full
model of the decision problem, and allows the use of different functions to determine the distance
between interval values. If the distance function works as a generalization on degenerated intervals,
the method will coincide with the original SPOTIS method. This work is an extension of the initial
research presented in [38]. This new approach is more general because it allows using IR intervals in
each part of a decision problem, for example, in a decision matrix, in criteria bounds, and in criteria
weights. It significantly improves the previously proposed extension, which can process only the
interval decision matrix, not the weights or criteria bounds. To prove the superiority of the proposed
approach, we compare it with the interval TOPSIS (technique for order preference by similarity ideal
solution) method [15].

The remainder of the paper is organized as follows: Section 2 contains the literature review on
recent trends in interval data MCDA methods and a short review of their practical applications. Section
3 describes how the interval arithmetic works and introduces all functions required to understand the
proposed approach. Section 4 introduces three variations of the proposed interval SPOTIS method and
contains numerical examples that show how the calculations are performed. Section 5 contains the
study case on the data from [15]. In this section, our new proposed method is compared to the interval
TOPSIS approach. In Section 5.1, we prove on a practical example that interval SPOTIS resisted rank
reversal (RR) phenomena and interval TOPSIS does not resist RR. We also show the expanded example
in Section 5.2. This example demonstrates how the proposed method is performed in the case where
interval values are involved in every part of the decision problem. Section 6 contains a discussion of
the results, and Section 7 contains conclusions and directions for future works.
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2. Literature review

Different researchers propose extensions of the popular MCDA methods to deal with imprecise values,
such as interval values. Table 1 contains references for a literature review of recent trends in interval-
valued extensions of MCDA methods. One of the first interval methods was the TOPSIS extension
proposed by [15]. The I-TOPSIS method proposed by Jahanshahloo et al. allows the use of an interval
decision matrix with crisp criteria weights and obtains crisp results, which are easy to compare.

Table 1. Extensions of the MCDA methods for imprecise data

Acronym Extended form
Decision
matrix Weights Results Reference

I-TOPSIS
Interval technique for order preference
by similarity to ideal solution ✓ × × [15]

COPRAS Complex proportional assessment ✓ × × [51]

VIKOR
Visekriterijumska optimizacija
i kompromisno resenje (in Serbian) ✓ × ✓ [37]

ELECTRE Elimination and choice translating reality ✓ ✓ − [44]
MOORA multi-objective optimization on the basis of ratio analysis ✓ × × [42]

DI-TOPSIS
Direct interval technique for order preference
by Ssimilarity to ideal solution ✓ × × [9]

EDAS Evaluation based on distance from average solution ✓ × × [43]
COMET Characteristic objects method ✓ − ✓ [34]
ELECTRE-
-IDAT

Elimination and choice translating reality
-interval data and target-based ✓ × × [14]

CODAS Combinative distance-based assessment ✓ × × [25]

MARCOS
Measurement of alternatives and ranking
according to compromise solution ✓ × ✓ [23]

Checkmark represented as an interval, × as crisp numbers, – as other (details in the text)

Another extension of the TOPSIS method, called DI-TOPSIS, was also proposed by [9]. In 2008,
Zavadskas et al. proposed a COPRAS-G extension of the COPRAS method to select effective dwelling
house walls under an interval environment [51]. In 2009, Sayadi et al. proposed an extension of the
VIKOR method for interval values [37]. This approach is interesting because the final preferences of the
alternatives are presented as intervals. However, the weights were crisp values. Another extension of
the MCDA method in the interval environment is the extension of the ELECTRE method proposed by
Vahdani et al. in 2010. This extension allows interval weights, however the results are presented as an
outranking matrix, and building a full ranking could be a problem here [44]. There are also extensions
for such methods as MOORA proposed by [42], and EDAS which is proposed by [43]. Both extensions
allow for interval values only in the decision matrix and return crisp preference values. Both papers use
a numerical example from [52]. Another interesting method that has an interval extension is a COMET
[34]. Because of how the COMET method works, the COMET’s extension does not use any weights, and
the final preferences are represented as intervals. In 2019, Jahan et al. presented another extension for the
ELECTRE method called the ELECTRE-IDAT method [14]. This extension allows target-based decision-
making under an interval environment. Unlike the previous ELECTRE extension, this extension results
in crisp preference values, which are easier to rank, but do not allow the use of interval weights. The
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most recent works on extending the MCDA method to deal with intervals were done by Mathew et al. and
Liu. Matthew and Thomas[25] extend the CODAS method to address intervals to select the best flexible
manufacturing system among available alternatives. CODAS extension does not accept interval weights
and returns crisp preference values. In 2023, Liu proposed an extension for the MARCOS method
to select the best renewable desalination. The resulting preference values are presented as intervals,
therefore an additional method should be used to rank them.

Interval extensions of multi-criteria decision-making are often used in different fields. For example,
[10] used the PIVN-AHP (parametric form of interval number analytic hierarchy process) to evaluate
criteria weight for the problem of evaluating performance for the requirement of a school teacher. The
AHP interval was also used to evaluate criteria weights in [21]. Another extension that is used very often
is Jahanshahloo’s interval TOPSIS. For example, in [27], the authors used interval TOPSIS to select
doffing tube components for rotor-spun yarn weft knitting fabrics. Interval TOPSIS, DI-TOPSIS, and
VIKOR methods were used [2] to select the material family for capacitor applications. COPRAS-G
method was used to evaluate investment projects under interval data [33]. The interval extensions of
the MCDA method are also useful in group decision-making problems. For example, [50], and [1] used
Jahanshahloo’s interval TOPSIS to solve supplier selection problems.

Besides that, there are many other works that investigate the uncertainty or imprecise data in multi-
criteria decision making. They often use very advanced mathematical algorithms and, therefore, are very
difficult to understand and use in many cases. For example, in 2022, Diao et al. showed how to use [8]
spherical fuzzy sets for group decision making. Dembczyński et al. demonstrated the usefulness of rough
sets for decision-making under imprecise data [4]. There are also other researchers who have proposed
their own methodologies to handle uncertainty and imprecision in the data to make robust and effective
decisions [22, 26, 49].

Although different proposed extensions could operate on imprecise data (i.e., numerical intervals),
there is no simple but robust method that will be resistant to the RR paradox and deal with interval values
in complex decision-making problems. The interval extension of the SPOTIS proposed in this paper fills
this gap because of its universality, simplicity, and robustness to rank reversal.

3. Preliminaries

3.1. Definition of the interval

A closed interval x is defined as

x = [x, x̄] = {x|x ≤ x ≤ x̄ ∧ x, x̄, x ∈ R} (1)

where x = inf(x) is the infimum of x and x̄ = sup(x) is the supremum of x. Any real number x ∈ R can
be expressed as the degenerate interval x = [x, x]. A non-degenerate interval is called a proper interval.
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3.1.1. Basic arithmetic operations

Interval arithmetic (IA) is an arithmetic defined on intervals of IR. Its development started mainly with
Moore’s works [28–31], however, there are also other scientists who developed it. The basic arithmetic
operations on closed intervals are defined as follows:

• Addition x+ y = [x+ y, x̄+ ȳ]

• Subtraction x− y = [x− ȳ, x̄− y]. In particular, −x = [−x̄,−x], because −x = [0, 0]− [x, x̄].

• Multiplication x ·y = [min{S×(x,y)},max{S×(x,y)}], where S×(x,y) ≜ {xy, xȳ, x̄y, x̄ȳ} is the
set of all possible products of endpoints of x and y.

In particular, −x = [−x̄,−x] because −x = [−1,−1]× [x, x̄] = [x, x̄]× [−1,−1].
• Division x/y = [min{S÷(x,y)},max{S÷(x,y)}], if 0 /∈ y and where

S÷(x,y) ≜ {x/y, x/ȳ, x̄/y, x̄/ȳ}

is the set of all possible divisions of endpoints of x and y.

If 0 ∈ y then the division by y can be handled with more effort using extended interval arithmetic
[16, 28] not detailed in this paper.

Algebraic properties such as associativity, commutativity and neutral elements hold for x,y, z ∈ IR:

• Associativity (x+ y) + z = x+ (y + z) and (xy)z = x(yz).

• Commutativity (x+ y) = (y + x) and (xy) = (yx).

• Neutral element (addition): 0+ x = x+ 0 = x, where 0 ≜ [0, 0], 0 · x = x · 0 = 0

• Neutral element (multiplication) 1 · x = x · 1 = x, where 1 ≜ [1, 1].

The distributivity law does not hold for proper intervals; however, sub-distributivity low does:
∀x,y, z ∈ IR, x(y + z) ⊆ xy + xz. Proper intervals also do not have additive or multiplicative
inverses.

3.1.2. Basic interval functions

To understand how the interval arithmetic SPOTIS extension works, a definition of the absolute value of
the interval should be provided. Other interval functions can be found elsewhere [28, 41].

Absolute value [41]:

|x| =


[|x̄|, |x|], if x̄ ≤ 0

[|x|, |x̄|], if x ≥ 0

[0,max{|x|, |x̄|}], if x < 0 and x̄ > 0

(2)

3.2. Distances between intervals

There are many different ways to define the distance between two intervals. For this research, we chose
three of them to compare how they perform in the interval SPOTIS method.
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Hausdorff distance between two intervals x and y is generally defined as dH(x,y) = max
x∈x
{min
y∈y

d(x, y)}.
In other words, it is a maximum distance between x ∈ x to its nearest point y ∈ y. d(x, y) could be an any
metric, such as L1 or L2, etc. In this paper, we will use the L1 Hausdorff metric defined by

dH(x,y) = max{|x− y|, |x̄− ȳ|} (3)

Example 1. Hausdorff distance between x = [1, 3] and y = [2, 5]:

dH([1, 3], [2, 5]) = 2 (4)

Example 2. Hausdorff distance between x = [4, 4] and y = [1, 1], i.e., intervals x and y are degener-
ate:

dH([4, 4], [1, 1]) = 3 (5)

In the second example, we calculated the distance between 1 and 4 and got three as a result, which is
expected.

Wasserstein’s distance was successfully used in the framework of belief functions to solve decision-
making problems under uncertainty [5, 12, 13]. Wasserstein’s distance between x,y ∈ IR is

dW (x, y) ≜

√[
x+ x̄

2
−

y + ȳ

2

]2
+

1

3

[
x̄− x

2
−

ȳ − y

2

]2
, (6)

which corresponds to Mallows’ distance [24] between two probability distributions when we assume that
each interval is the support of a uniform distribution.

Example 1. Wasserstein’s distance between x = [1, 3] and y = [2, 5] is

dW ([1, 3], [2, 5]) ≈ 1.5275 (7)

The result here differs from the result obtained using the Hausdorff distance. It is because the Haus-
dorff distance is L1 and the Wasserstein’s is L2.

Example 2. Wasserstein’s distance between x = [4, 4] and y = [1, 1]

dW ([4, 4], [1, 1]) = 3 (8)

Similarly to the Hausdorff distance, the distance between two degenerate intervals works as expected,
i.e., Wasserstein’s distance between 1 and 4 is 3.

Euclidean distance between intervals assumes that intervals are represented by a point (x, x̄) on
a plane. It is defined as the Euclidean distance between two points and was presented in [18]

dE(x,y) =
√

(x− y)2 + (x̄− ȳ)2 (9)

Example 1. Euclidean distance between x = [1, 3] and y = [2, 5]
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dE([1, 3], [2, 5]) ≈ 2.2361 (10)

In this case, the result is also different from the Hausdorff distance, because this distance is L2.
Example 2. Euclidean distance between x = [4, 4] and y = [1, 1]

dE([4, 4], [1, 1]) ≈ 4.2426 (11)

When definition (9) is used for degenerated intervals, it does not work as one could expect. According
to this definition, the distance between 1 and 4 is approximately 4.24.

3.3. Correlation coefficients

Weighted Spearman’s rank correlation coefficient

For a sample of size N , the rank values xi and yi are defined by equation (12). In this approach, we
consider that the positions at the top of both rankings are more important. The weight of significance is
calculated for each comparison. It is the element that determines the main difference to Spearman’s rank
correlation coefficient, which examines whether the differences appeared and not where they appeared
[32].

rw = 1− 6
∑N

i=1(xi − yi)
2((N − xi + 1) + (N − yi + 1))

N4 +N3 −N2 −N
(12)

Rank similarity coefficient

. For a sample of size N , the rank values xi and yi are defined by equation (13) [35]. It is an asymmetric
measure. The weight of a given comparison is determined based on the significance of the position in the
first ranking, which is used as a reference ranking during the calculation.

WS = 1−
N∑
i=1

2−xi
|xi − yi|

max(|xi − 1|, |xi −N |)
(13)

3.4. Ordering interval preferences

Suppose that we have two intervals x = [x, x̄] and y = [y, ȳ]. Then according to [45], the degree of
possibility x ≥ y is defined as P (x ≥ y). In the literature, various mathematical definitions can be
found [3, 11, 19, 20]. For example, Wang et al. [46] presented a simple equation (14) which provides the
degree of possibility that one interval is greater than another. Currently, this approach seems to be the
most popular in the literature

P(x ≥ y) =
max

(
0, x̄− y

)
−max (x− ȳ, 0)

x̄+ ȳ − y − x
(14)

We assume that we have N alternatives evaluated using the appropriate MCDA method. A suitable
MCDA method must be applicable, correctly selected according to [47], and return the preference results
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in the form of intervals. The generalized SPOTIS method described in Section 3.1 will be used in the
following.

As a result of the evaluation, we obtained preference intervals p for all alternatives, which can be
written as pi = [p

i
, p̄i], where i = 1, . . . , N . Then, the possibility degree (PD) matrix with all values of

the possible degree should be determined as follows (15):

PD = [P (pi ≥ pj)]N×N (15)

where i = 1, . . . , N , j = 1, . . . , N , and P is used one of the equation (14). Then we count the
cumulative probability vector PR in according to (16):

PRi =
N∑
j=1

PDij (16)

Finally, the alternatives are ranked from the highest to the smallest value of PRi, where the highest
value means the maximum cumulative possibility degree.

However, when we use this approach with the proposed interval SPOTIS method, we need to order
alternatives in ascending order, e.g., from the smallest (closer to the ideal solution point (ISP)) to the
largest (farther from ISP).

Another interesting approach is to compare the intervals proposed by [6] and based on a geometrical
interpretation of the intervals. However, in this paper, we will use Wang’s possibility degree method
because it is more popular in the literature.

3.5. Stable preference ordering towards ideal solution

The SPOTIS method is a relatively new MCDA method proposed by [7]. It is based on the concept of
reference objects. Unlike other MCDA methods, such as TOPSIS, it uses arbitrary set decision problem
bounds as reference objects. This way, the SPOTIS method is completely free from the rank-reversing
paradox. Despite the novelty of the method, it has been used in multiple scientific works and was ex-
tended to work under fuzzy environment [39].

To apply this method, the expert should define data boundaries. For each criterion Cj the maximum
Smax
j and minimum Smin

j bounds should be selected. Ideal Solution Point (ISP) S∗
j is defined as S∗

j = Smax
j

for profit criterion and as S∗
j = Smin

j for cost criterion. The decision matrix is defined as X = (xij)m×n,
where xij is the attribute value of the ith alternative for jth criterion.

Step 1. Calculation of the normalized distances to the ISP

dij(Ai, S
∗
j ) =

|Sij − S∗
j |

|Smax
j − Smin

j |
(17)

Step 2. Calculation of weighted normalized distances d(Ai, S
∗) ∈ [0, 1]

d(Ai, S
∗) =

N∑
j=1

wjdij(Ai, S
∗
j ) (18)
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Step 3. Determine the final ranking by ordering the alternatives by d(Ai, S
∗) values. Better alterna-

tives have smaller values of d(Ai, S
∗).

To apply this MCDA method easily, one can use pymcdm library written in Python, which contains the
implementation of the SPOTIS and some other popular MCDA methods [17].

4. Proposed approach

4.1. Interval decision matrix and interval ideal solution point

In order to work with interval values, we modified equation (19), so we could calculate the distance
between Sij and S∗

j , which are now interval values.

dij(Ai, s
∗
j) =

∣∣Sij − S⋆
j

∣∣∣∣Smax
j − Smin

j

∣∣ (19)

Step 1. Calculate the distances from every decision matrix interval value S̃ij from the interval ISP value
S̃⋆
j . In the case of real-valued ISP, we could use degenerated interval [x, x]. Hausdorff’s and Wasserstein’s

distance functions work well with them, too. It will be demonstrated in the Preliminaries section.

dij(Ai, s̃
∗
j) =

d(S̃ij, S̃
⋆
j )∣∣Smax

j − Smin
j

∣∣ , (20)

where d(·, ·) could be either Hausdorff, Wasserstein’s distance, or any other distance between intervals.
Step 2. Aggregate these values using the weighted sum

di(Ai, s̃
∗) =

N∑
j=1

wjdij(Ai, s̃
∗
j) (21)

When using d(·, ·) which is not generalization and does not work properly for real numbers, we need to
use equation (22) which is given later and represents bounds as degenerative interval values.

4.1.1. Numerical example 1

This numerical example demonstrates how the proposed extension can be applied to the interval decision
matrix using the real-valued bounds and weights but with an interval ISP. Consider the decision matrix
presented in Table 2 and the chosen interval ISP. The ISP was chosen as an interval between the highest
or lowest value for each criterion and the chosen bound for this criterion. That is, for C1 which is profit,
we define ISP as S∗

1 = [11, 12], because 11 is the largest value for this criterion and Smax
1 = 12 is the

upper bound for this criterion.
The criteria bounds Smin

j and Smax
j for this example are defined as real numbers and are presented in

Table 3. We also show the criteria weights chosen for this example.
When we have defined the decision matrix, ISP, criteria bounds, and weight, we could apply equation

(20) and calculate the normalized distances from the ISP dij(Ai, s
∗
j), which are presented in Table 4. In
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Table 2. Decision matrix for numerical example 1
and chosen ISP (S̃∗

j )

C1 C2 C3

S̃∗
j [11.0, 12.0] [–6.0, –4.0] [3.5, 5.0]

A1 [10.5, 11.0] [–4.0, –3.1] [1.5, 1.8]
A2 [–4.7, –4.0] [–1.0, 0.5] [3.4, 3.5]
A3 [7.6, 8.3] [–0.3, 0.5] [1.1, 1.5]
A4 [3.0, 3.3] [7.0, 7.5] [–5.5, –5.2]

Table 3. Criteria bounds and weights
for numerical example 1

C1 C2 C3

Smin
j –5 –6 –8

Smax
j 12 10 5
wj 0.2 0.3 0.5

this and the following examples, we will use Wasserstein’s distance between two real-valued intervals
defined as (6).

Table 4. Normalized distances from the ISP: dij(Ai, s̃
∗
j )

C1 C2 C3

A1 0.0449 0.0928 0.2018
A2 0.9324 0.2970 0.0689
A3 0.2089 0.3195 0.2282
A4 0.4913 0.7661 0.7389

Next, we could apply weights and calculate the aggregated normalized distances from the ISP using
equation (21). Weighted normalized distances and aggregated values are presented in Table 5.

The values di(Ai, s̃
∗) are the final preference values for each alternative Ai. The alternative A1 has

a preference value of 0.1377, which means that it is the closest to the ISP. Therefore, A1 is the best
alternative. The full ranking is as follows:

A1 > A3 > A2 > A4

4.2. Interval decision matrix, ISP and bounds

To deal with interval-valued decision problem bounds, we should replace equation (20) with the new
formula (22) described below.
Updated step 1. Calculate the distances from every decision matrix interval value S̃ij from the inter-
val ISP value S̃⋆

j . Use one of the available distance functions d(·, ·) to calculate the distance between
S̃max
j , S̃min

j which are also interval values now.

dij(Ai, s̃
∗
j) =

d(S̃ij, S̃
⋆
j )

d(S̃max
j , S̃min

j )
, (22)
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Table 5. Weighted normalized distances from the ISP
with final preference value (di(Ai, s̃

∗))

C1 C2 C3 di(Ai, s̃
∗)

A1 0.0090 0.0278 0.1009 0.1377
A2 0.1865 0.0891 0.0345 0.3100
A3 0.0418 0.0958 0.1141 0.2517
A4 0.0983 0.2298 0.3695 0.6976

Updated step 2. Normalized distance from decision matrix values to ISP dij(Ai, s̃
∗
j) is real precise values,

because the result of the d(·, ·) function is a real value. Therefore, equation (21) used in Step 2 remains
the same.

4.2.1. Numerical example 2

This numerical example shows how to deal with decision problems with an interval decision matrix,
interval ISP, and interval criteria bounds. A decision problem like this could appear when several experts
cannot agree on the criteria bounds, so we can use an interval value here. The decision matrix and ISP
are the same as in numerical Example 1 (Table 2).

In this example, we introduce the interval-valued criteria bounds presented in Table 6. They were
created similarly to ISPs in numerical example 1. For example, the arbitrarily chosen upper bound
for C1 is Smax

1 = 12 and the largest value from the decision matrix for C1 is 11, therefore S̃max
j =

[11, 12]. In this table, we also provide a distance between upper and lower interval bounds calculated
using Wasserstein’s distance. This value is used as a denominator in equation (22) in Step 1 of the
modified SPOTIS algorithm.

Table 6. Criteria bounds, normalization denominator
and criteria weights

C1 C2 C3

S̃min
j [–5.0, –4.7] [–6.0, –4.0] [–8.0, –5.5]

S̃max
j [11.0, 12.0] [7.5, 10.0] [3.5, 5.0]

dW (S̃max
j , S̃min

j ) 16.35 13.75 11.0
wj 0.2 0.3 0.5

The next step is a calculation of the normalized distances from the ISP using equation (22). The
results are presented in Table 7.

Table 7. Normalized distances
from the ISP dij(Ai, s̃

∗
j )

C1 C2 C3

A1 0.0467 0.1079 0.2384
A2 0.9694 0.3456 0.0815
A3 0.2172 0.3717 0.2696
A4 0.5108 0.8914 0.8730
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After applying the weights from Table 6, we could calculate the final preference values calculated
using equation (21). Table 8 contains weighted normalized distances from the ISP and the final preference
value di(Ai, s̃

∗), which could be interpreted as a weighted distance from the ISP.

Table 8. Weighted normalized distances from the ISP
with final preference value (di(Ai, s̃

∗))

C1 C2 C3 di(Ai, s̃
∗)

A1 0.0093 0.0324 0.1192 0.1609
A2 0.1939 0.1037 0.0407 0.3383
A3 0.0434 0.1115 0.1348 0.2898
A4 0.1022 0.2674 0.4365 0.8061

In the second example, the alternative A1 got a preference value of 0.1609. Therefore, it has first place
in the ranking. The order of the other alternatives is the same as for the first example:

A1 > A3 > A2 > A4

Notice how we get the same rankings despite the preference values differing.

4.3. Interval decision matrix, ISP, bounds and weights

Updated step 1. The normalized distances from the ISP are calculated with equation (22). In this step,
we do not use criteria weights.
Updated step 2. Criteria weights are used in this step. Because the criteria weights are interval, this step
is modified. The value dij(Ai, s̃

∗
j) ∈ R and w̃j ∈ IR. Therefore, the result of the computations in this

step d̃i(Ai, s̃
∗) ∈ IR.

d̃i(Ai, s̃
∗) =

N∑
j=1

w̃jdij(Ai, s̃
∗
j) (23)

Interval weights should fulfill the following rule (24) [44]

mid

(
M∑
j=1

w̃j

)
= 1 (24)

where mid(x) =
x+ x̄

2
defines the middle point of the interval x.

Alternatively, one could use a more admissible rule on the weights. For, it should be ensured that
there should exist at least one precise weights vector in an imprecise weights vector, so the sum of these
precise weights equals one. This rule is more general. However, the stability of this approach should be
investigated in detail.

Those equations could also be used on R if they are represented as degenerative intervals. Hausdorff
and Wasserstein’s distances work as a generalization in this case.
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4.3.1. Numerical example 3

In this simple numerical example, we demonstrate how to apply the last variation of the interval SPOTIS
extension to a decision problem, which includes an interval decision matrix, interval criteria bounds,
interval weights, and an interval ISP.

The decision matrix for this example remains the same as for numerical examples 1 and 2 and is shown
in Table 2. We also use the same interval criteria bounds as for the second example, but now weights are
presented as interval values. Criteria bounds and the distance between them are shown in Table 9. We
also present interval weights in this table. Instead of w1 = 0.2 for C1 we use w̃1 = [0.15, 0.25] and so on.
The sum of the weights fulfills the property (24) presented by [44].

Table 9. Criteria bounds, normalization denominator
and criteria weights

C1 C2 C3

Smin
j [–5.0, -4.7] [–6.0, –4.0] [–8.0, –5.5]

Smax
j [11.0, 12.0] [7.5, 10.0] [3.5, 5.0]∣∣Smax
j − Smin

j

∣∣ 16.35 13.75 11.0
w̃j [0.15, 0.25] [0.25, 0.35] [0.45, 0.55]

After applying equation (22) to the decision matrix presented in Table 2, we obtain normalized dis-
tances from the ISP presented in Table 10. These distances are the same as for the second numerical
example (Table 7) because we apply the same equation to the same interval decision matrix and the same
interval bounds and interval ISP.

Table 10. Normalized distances
from the ISP: dij(Ai, s̃

∗
j )

C1 C2 C3

A1 0.0467 0.1079 0.2384
A2 0.9694 0.3456 0.0815
A3 0.2172 0.3717 0.2696
A4 0.5108 0.8914 0.8730

Next, we apply equation (23) to the normalized distances in order to obtain weighted normalized
distances and then aggregate them. The resulting value is an interval because we multiply the normalized
distance from the ISP, which is a real value, and the criterion weight, which is an interval. Therefore, we
need to use a methodology that allows ordering preferences with interval values, for example, the one
presented in Section 3.4.

Table 12 contains the possibility degree matrix calculated using equation (14), as well as cumulative
probability degree. Because the possibility degree function determines the probability that interval Ai is
greater than or equal to Aj , we should order alternatives by the cumulative probability degree ascending.
Therefore, we have a ranking A1 > A3 > A2 > A4, which is the same ranking as for the other two
numerical examples.
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Table 11. Weighted normalized distances from the ISP
with final preference value (di(Ai, s̃

∗))

C1 C2 C3 di(Ai, s̃
∗)

A1 [0.01, 0.01] [0.03, 0.04] [0.11, 0.13] [0.14, 0.18]
A2 [0.15, 0.24] [0.09, 0.12] [0.04, 0.04] [0.27, 0.41]
A3 [0.03, 0.05] [0.09, 0.13] [0.12, 0.15] [0.25, 0.33]
A4 [0.08, 0.13] [0.22, 0.31] [0.39, 0.48] [0.69, 0.92]

Numbers are rounded up to two digits.

Table 12. Possibility degree matrix
with all values P (Ai ≥ Aj)

Ai\Aj A1 A2 A3 A4

N∑
j=1

PDij

A1 0.50 0.00 0.00 0.00 0.50
A2 1.00 0.50 0.71 0.00 2.22
A3 1.00 0.28 0.50 0.00 1.78
A4 1.00 1.00 1.00 0.50 3.50

5. Study case

In this section, we present a study case previously presented in [15]. The data shows the comparison of
fifteen bank branches, which corresponds to fifteen alternatives. Four financial ratios are used as criteria
for these banks. We use these data to examine the applicability of the proposed method and compare it
with the results presented in the original study.

Table 13 describes the four criteria. Criterion C1 is a cost criterion, and the others are profit. Each
criterion has a precise weight valued wj = 0.25. In this experiment, we do not use interval weight
because interval TOPSIS does not support them. Criteria bounds were determined based on the decision
matrix by rounding values, that is, the criterion C1 has the smallest value, 58.69. Therefore, Smin

1 = 50

was chosen as the lower bound for this criterion.

Table 13. Criteria description

Cj Weight Type Smin
j Smax

j S∗
j

C1 0.25 cost 50 3070 50
C2 0.25 profit 100000 3200000 3200000
C3 0.25 profit 400 55000 55000
C4 0.25 profit 50 7000 7000

The decision matrix from [15] is presented in Table 14. All values in the presented decision matrix
are interval values. The matrix contains fifteen alternatives from A1 to A15 and four criteria described
previously.

Next, we apply the proposed interval SPOTIS approach, that is, equations (20) and (21) to obtain
preference values for those fifteen alternatives. We also use three different distance functions defined for
IR. Therefore, Table 15 contains four preference vectors PX and ranking RX , defined as follows:
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Table 14. Decision matrix

Ai C1 C2 C3 C4

A1 [500.37, 961.37] [2696995, 3126798] [26364, 38254] [965.97, 6957.33]
A2 [873.7, 1775.5] [1027546, 1061260] [3791, 50308] [2285.03, 3174.0]
A3 [95.93, 196.39] [1145235, 1213541] [22964, 26846] [207.98, 510.93]
A4 [848.07, 1752.66] [390902, 395241] [492, 1213] [63.32, 92.3]
A5 [58.69, 120.47] [144906, 165818] [18053, 18061] [176.58, 370.81]
A6 [464.39, 955.61] [408163, 416416] [40539, 48643] [4654.71, 5882.53]
A7 [155.29, 342.89] [335070, 410427] [33797, 44933] [560.26, 2506.67]
A8 [1752.31, 3629.54] [700842, 768593] [1437, 1519] [58.89, 86.86]
A9 [244.34, 495.78] [641680, 696338] [11418, 24108] [1070.81, 2283.08]
A10 [730.27, 1417.11] [453170, 481943] [2719, 2955] [375.07, 559.85]
A11 [454.75, 931.24] [309670, 342598] [2016, 2617] [936.62, 1468.45]
A12 [303.58, 630.01] [286149, 317186] [14918, 27070] [1203.79, 4335.24]
A13 [658.81, 1345.58] [321435, 347848] [6616, 8045] [200.36, 399.8]
A14 [420.18, 860.79] [618105, 835839] [24425, 40457] [2781.24, 4555.42]
A15 [144.68, 292.15] [119948, 120208] [1494, 1749] [282.73, 471.22]

• PSH , RSH – preference values and ranking for interval SPOTIS with Hausdorff’s distance (3),

• PSW , RSW – preference values and ranking for interval SPOTIS with Wasserstein’s distance (6),

• PSE , RSE – preference values and ranking for interval SPOTIS with Euclidean distance (9),

• PT , RT – preference values and ranking for interval TOPSIS ([15]).

Table 15. Preference values and rankings for interval SPOTIS
with different distances and interval TOPSIS.

Ai PSH PSW PSE PT RSH RSW RSE RT

A1 0.4512 0.3037 0.4796 0.6991 2 1 1 1
A2 0.6975 0.5588 0.8307 0.4747 9 6 7 6
A3 0.5667 0.5466 0.7742 0.5065 4 5 5 4
A4 0.8423 0.8108 1.1517 0.3260 14 14 14 14
A5 0.6658 0.6596 0.9335 0.4401 7 9 9 9
A6 0.4378 0.3835 0.5519 0.5640 1 2 2 2
A7 0.5798 0.5129 0.7337 0.4969 5 4 4 5
A8 0.9417 0.8777 1.2516 0.2198 15 15 15 15
A9 0.6497 0.5898 0.8391 0.4746 6 8 8 8
A10 0.7928 0.7656 1.0864 0.3578 13 13 13 13
A11 0.7542 0.7266 1.0306 0.3967 11 10 10 11
A12 0.6667 0.5751 0.8271 0.4747 8 7 6 7
A13 0.7870 0.7570 1.0744 0.3613 12 12 12 12
A14 0.5555 0.4676 0.6738 0.5365 3 3 3 3
A15 0.7516 0.7429 1.0517 0.4115 10 11 11 10

Due to the difference in those distance functions, we also got different preference values and slightly
different rankings. Table 15 contains the resulting preference vectors rounded up to four digits. In
columns, PSH , PSW , PSE a smaller value means a better alternative, and for the column, PT it is reversed,
i.e., better alternatives have a bigger preference value. Alternative A1 got the first place in the rankings
RSW , RSE , RT , because all Wasserstein’s and Euclidean distances are both L2, as well as distance
used in the interval TOPSIS method. This alternative got second in the ranking RSH , which uses L1

Hausdorff distance. Alternative A6 got the first position in the RSH ranking and the second position
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in other rankings. The third position in all rankings is taken by the alternative A14. The ranking RSH

is more different from the other rankings because it is based on L1 distance functions, and the others
are based on L2 distance functions. Rankings RSW , RSE , and RT are more similar: the tail and head of
those rankings are the same, and there are some changes in the middles of those rankings. The preference
values PSE were calculated using equation (22) due to how it handles degenerative intervals. If equation
(20) was used, the preference values could be larger than 1.

a) b)

Figure 1. Heatmaps of weighted Spearman’s rw (a) and rank similarity WS (b) coefficients

To compare the obtained rankings numerically, we use two correlation coefficients described in Sec-
tion 3.3: the weighted Spearman correlation coefficient (rw), and the rank similarity coefficient (WS).
The results of these comparisons are presented in Figures 1a) and 1b).

The heatmap in Figure 1a) presents rw correlations between the ranking in Table 15. The range of
this correlation value is [−1, 1], where 1 means a strong correlation between two rankings. However, the
rankings obtained are very similar according to this correlation coefficient. The rankings RSW , RSE and
RT have correlation values in the range [0.988, 0.996], which means they are very similar. The correlation
between RSH ranking and the other ranking is lower because we have used L1 Hausdorff distance.

Similar values can be seen on another heatmap, which is presented in Figure 1b). The range of these
values is [0, 1], which is not typical for correlation coefficients. The value 1 means perfect correlation,
and 0 means lack of correlation between rankings. These values are very similar to the correlations rw
and show that the RSH ranking is less correlated with the other three rankings. The rankings based on L2

distance are more similar.

5.1. Rank reversal in the interval TOPSIS method

One of the advantages of the original SPOTIS method is that it is rank reversal free by design. Providing
criteria bounds allows for building a complete decision problem model to order alternatives stably. The
proposed interval extension of the SPOTIS method also has this property. In this section, we provide a
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simple experiment that demonstrates the RR behavior in the interval TOPSIS rankings and shows that
the SPOTIS method is resistant to it in a practical example.

To explain the experiment clearly, we use Algorithm 1. First, we define the interval decision matrix for
this experiment, as well as the criteria weights and the criteria types. The decision matrix X contains N
alternatives. The next step is to evaluate the preference values for the complete decision matrix X using
the chosen multi-criteria decision analysis method eval() as specified in lines 1-2 of the Algorithm 1.
Next, for each alternative Ai, we construct the decision matrix X ′, which contains all alternatives except
Ai, which is specified on line 4. On lines 5-6 we evaluate the alternatives N − 1 in the decision matrix
X ′ to obtain the preference vector P ′ and then ranking R′ which contains N − 1 values. On lines 7-8, we
construct the preference vector P ′

Full, which contains the same values as PFull, but without ith value, e.g.,
without preference for the alternative Ai. Then, we build the ranking R′

Full from P ′
Full. The last thing is

to calculate the correlation between these two rankings and write them as well as the correlation value.

Require: Interval Decision matrix X with N alternatives
Require: Weights W
Require: Criteria types T
1: PFull ← eval(X,W, T ) {Evaluate alternatives and rank for full matrix X}
2: RFull ← rank(PFull)

3: for i in 1, 2, 3, . . . , N do
4: X ′ ← X without alternative Ai

5: P ′ ← eval(X ′,W, T )

6: R′ ← rank(P ′)

7: P ′
Full ← PFull without ith value.

8: R′
Full ← rank(P ′

Full)

9: cr ← correlation(R′, R′
Full)

10: Write cr and R′ in order to visualize later
11: end for

Algorithm 1: Pseudocode for the RR sensitivity analysis experiment

We conducted an experiment described with Algorithm 1 for interval TOPSIS [15] and for the pro-
posed interval SPOTIS method for the data from the study case. The decision matrix contains the values
presented in Table 14 and uses the criteria weights, types, and bounds defined in Table 13.

First, the procedure described with Algorithm 1 was applied for the interval TOPSIS method. Vector
rankings R′ and correlation values between them and the ranking created based on the full decision matrix
were saved and then visualized in Figure 2. For the sake of readability, we only visualize the ranking in
which the rank reversal paradox occurs. Each alternative is represented with a color line, which allows
following it an easy way to see how the relative position of this alternative changes between subsequent
rankings. The first and last columns show the full ranking, and the other columns show rankings created
without certain alternatives. For example, column w/o A1 represents the ranking without alternative A1.
Instead of the dot, which should represent A1 in the column w/o A1 dashed line is drawn. In the upper
part of Figure 2, we add a visualization of the rw correlation values between the following ranking.

When the relative order of the alternatives changes in the subsequent ranking, we observe a crossing
of the lines on the visualization. For example, alternative A3 forth position) was better than alternative
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A7 (fifth position) in the full ranking, then after removing A1 from the set of alternatives, we observe that
alternatives A3 and A7 change their relative order, and now A7 is better. This means that a rank reversal
paradox has occurred.

The next interesting situation is how the alternatives A9 and A12 behave in those rankings. Their
relative positions change in several rankings. Another interesting alternative is alternative A2, which was
better or worse than alternatives A9 and A12 in different rankings.

Figure 2. Visualisation that shows the rank reversal behavior in the interval TOPSIS method

Because of changes in the relative order of the alternatives when the interval TOPSIS method is used,
we cannot be certain that when we add a new alternative or remove the one that is not relevant, we will
obtain the same order for the unchanged set of the alternatives.

On the other hand, the SPOTIS method and proposed interval extension of the SPOTIS method are
resistant to the rank reversal by design. We ran the experiment described with Algorithm 1 for the interval
SPOTIS method with Wasserstein’s distance. We used the same data as for the experiment with interval
TOPSIS. On the visualization, we present the rankings, which were presented on the visualization of the
interval TOPSIS method.

The visualization in Figure 3 follows the same rules as described for the visualization of the interval
TOPSIS rankings. We can see that the lines that represent alternatives are mostly parallel and do not cross
themselves. In this situation, when the alternative is removed (dashed lines), the lines touch but do not
cross. For example, when we remove alternative A6 from the evaluated decision matrix, alternative A14

takes the place of A6, but the relative order of the alternatives is preserved. A similar situation could be
observed in the columns w/o A2 and w/o A3. When the alternative A2 is missed, the alternative A3 takes
its place in the ranking and the other way around. However, their relative positions to other alternatives
never change.This experiment proves practically that there is no rank reversal in the SPOTIS method
when the set of alternatives changes. That means that when we need to add a new alternative or remove
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the one that is no longer relevant, we are guaranteed to obtain stable ordering of the unchanged part of
the alternatives’ set.

Figure 3. Visualisation that shows lack of the rank reversal when interval SPOTIS method with Wasserstein distance is used

5.2. Interval SPOTIS working with all imprecise data

To demonstrate the stability of the proposed interval SPOTIS method, we present another example in
which we extend the problem presented in Section 5. We introduce the interval weights and interval
criteria bounds defined similarly to the interval weights and bounds of the simple numerical examples in
Section 4. In this example, we use the interval decision matrix from the study case presented in Table 14.
Table 16 contains the description of the criteria used. The table was extended for the interval version of
the criteria weights and criteria bounds.

The interval weights w̃j are small intervals around equal weights wj , which fulfills the property (24),
and the interval bounds S̃min

j and S̃max
j are made as an interval between some arbitrarily chosen maximum

and minimum points and the highest and smallest values in the decision matrix. For example, S̃min
1 =

[50.0, 58.69], where 50 is an arbitrarily valued value and 58.69 is a real value from the decision matrix.

Table 16. Description of criteria with interval weights and interval bounds.

Cj wj w̃j Smin
j Smax

j S̃min
j S̃max

j Type

C1 0.25 [0.2, 0.3] 50 3700 [50.0, 58.69] [3629.54, 3700.0] cost
C2 0.25 [0.2, 0.3] 100000 3200000 [100000.0, 119948.0] [3126798.0, 3200000.0] profit
C3 0.25 [0.2, 0.3] 400 55000 [400.0, 492.0] [50308.0, 55000.0] profit
C4 0.25 [0.2, 0.3] 50 7000 [50.0, 58.89] [6957.33, 7000.0] profit

Using equations described in Section 4 and the Wasserstein distance equation, we build four different
rankings from these data using the following definitions:
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• P1, R1. The decision matrix is interval-valued (Table 14). Other values are real, e.g., we use weight
vector wj and criteria bounds Smin

j and Smax
j .

• P2, R2. Interval decision matrix (Table 14) and interval ISP which is defined based on interval
bounds S̃min

j and S̃max
j . However, weights and bounds remain real valued.

• P3, R3. As for P2 and R2, but the interval criteria bounds S̃min
j and S̃max

j are used.

• P4, R4. Each part of the decision problem defined as interval values, e.g. P3 and R3 but with interval
weights w̃j .

After applying the interval SPOTIS procedure (Section 4), we obtain four preference values and four
rankings corresponding to different combinations of the real and interval-valued parts of the decision
problem. Table 17 shows the resulting preference vectors and rankings. The interval ranking R4 was
made from the preferences P4 by methods presented in Section 3.4. The obtained rankings R1–R4 are
the same. Small changes in the definition of the decision problem likely will not introduce any change in
the rankings obtained previously, despite the change in the preference vectors P1–P4.

Table 17. Preference values and rankings for four interval SPOTIS variations.

Ai P1 P2 P3 P4 R1 R2 R3 R4

A1 0.3037 0.2876 0.2932 [0.2346, 0.3518] 1 1 1 1
A2 0.5588 0.5424 0.5524 [0.4419, 0.6629] 6 6 6 6
A3 0.5466 0.5317 0.5409 [0.4327, 0.6491] 5 5 5 5
A4 0.8108 0.7961 0.8121 [0.6497, 0.9746] 14 14 14 14
A5 0.6596 0.6449 0.6568 [0.5254, 0.7881] 9 9 9 9
A6 0.3835 0.3677 0.3735 [0.2988, 0.4482] 2 2 2 2
A7 0.5129 0.4972 0.5043 [0.4034, 0.6051] 4 4 4 4
A8 0.8777 0.8630 0.8796 [0.7037, 1.0555] 15 15 15 15
A9 0.5898 0.5745 0.5858 [0.4687, 0.7030] 8 8 8 8
A10 0.7656 0.7509 0.7662 [0.6130, 0.9195] 13 13 13 13
A11 0.7266 0.7119 0.7271 [0.5817, 0.8726] 10 10 10 10
A12 0.5751 0.5598 0.5708 [0.4566, 0.6850] 7 7 7 7
A13 0.7570 0.7422 0.7568 [0.6054, 0.9081] 12 12 12 12
A14 0.4676 0.4517 0.4599 [0.3679, 0.5519] 3 3 3 3
A15 0.7429 0.7282 0.7436 [0.5949, 0.8923] 11 11 11 11

Figure 4. Preference values (left) and ranking positions changing (right) for the chosen alternatives

We also create a small visualization for the chosen alternatives, namely A1, A4, A5, A8, and A15 to
demonstrate how exactly preference values generate a change from the vector P1 to the vector P4. We decided
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to show only those alternatives because the difference between them was sufficient to make the visualization
readable. This visualization is presented in Figure 4. The left side of this figure shows how the preference
values of those alternatives change and the right side shows how the rankings change. As shown in Table 17,
the rankings are the same, which means that the relative order of the alternatives does not change.

6. Discussion

The results shown at the beginning of Section 5 show that the proposed interval SPOTIS approach is
a useful tool for solving decision problems with interval values involved. We demonstrated how the
proposed approach performs compared to the interval TOPSIS method on the data presented in [15]. We
also demonstrate that the interval SPOTIS method could use different distance functions with very similar
final results. The heatmaps shown in Figures 1a) and 1b) demonstrate how similar rankings are obtained
using the interval SPOTIS procedure with different distance metrics and how they are similar to the
ranking obtained using the interval TOPSIS approach. The ranking obtained using Wasserstein’s distance
and Euclidean distances are more similar to the interval TOPSIS ranking because these three rankings
were obtained using L2 distance metrics. The ranking built using the Hausdorff distance function is
less similar because we use the L1 Hausdorff distance function. This result shows the advantage of the
proposed approach over the interval TOPSIS. interval SPOTIS is much simpler but performs similarly
to the interval TOPSIS method. It also allows for the use of different distance functions to better fit the
decision problem, which is not possible in the interval TOPSIS method.

Section 5.1 introduces the experiment, which allows one to study rank reversal phenomena by the
MCDA methods. The flow of the experiment was explained with pseudo-code in Algorithm 1. The visu-
alization presented in Figure 2 shows how the relative positions of the decision alternatives change when
the set of alternatives changes. The comparison of 2 with 3 shows the changes in the same ranking for
the interval SPOTIS method, and one can easily see how many times the decision alternatives change
their positions when interval TOPSIS is used. Every change in the set of alternatives is a possible change
in the domain of the decision problem when the alternatives are evaluated using the interval TOPSIS
method. It implies that the ranking built using the interval TOPSIS method could not be used when the
stability of the ranking is essential. The interval SPOTIS method allows for building a stable ranking,
and the relative order of the alternatives will not change when a new one is added or when an old one
is removed. This method builds a complete model of the decision problem, which makes the interval
SPOTIS resistant to RR phenomena. The only important thing that the decision maker should remember
is that the SPOTIS method, as well as its generalization, guarantees a stable ranking only if the criteria
bounds remain unchanged. In this situation, when we need to change the problem domain, some alterna-
tives can change their positions in the ranking. However, it only underlines the importance of the criteria
bounds and the fact that they should be chosen very carefully.

In Section 5.2, we demonstrate how the interval SPOTIS method will perform on the example from [15]
when intervals are used in every part of the decision problem. For this, we define interval weights and interval
criteria bounds for these data. These values are presented in Table 16. We applied the interval SPOTIS to
the four variations of this decision problem and got an identical ranking for every case. Data from Table 17
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show that the proposed approach is stable and robust, in addition to the different parts of the decision problem
becoming intervals. We could observe small changes in the preference values, but the ranking remains the
same, and the relative positions of the alternatives do not change. This underlines the subsequent superiority
of the interval SPOTIS method, namely its ability to use interval values in the decision matrix, weights, and
criteria bounds, which is not possible when the interval TOPSIS method is used.

However, there is no ideal approach that will fit every MCDA problem. In addition to the advantages
such as simplicity, resistance to the rank reversal phenomena, and the ability to use interval values in every
part of the decision problem, the proposed approach also has some limitations. The interval SPOTIS
approach requires criteria bounds to be defined before alternatives can be evaluated. In some cases, it
could be difficult or impossible to determine or obtain the criteria bounds. In this case, the criteria bounds
could be approximated in order to apply the interval SPOTIS method. Another limitation is the need to
use an interval preference ordering method when interval criteria weights are used. One of the possible
approaches is presented in this paper. However, the different ordering methods could introduce some
complications and allow rank reversing in the case of broad intervals. The interval SPOTIS method uses
one of the simplest approaches to handle uncertain data: the interval of the real values. There are also
other approaches to handling uncertainty, which implies that methods that use them are more accurate.

7. Conclusion

In this paper, we present a simple way to evaluate decision alternatives in the interval domain. The
proposed approach allows the use of IR intervals in a decision matrix, criteria bounds, weights, and ideal
solution point. As shown in Section 5 and discussed in Section 6, the proposed approach builds the
complete model of the decision problem, which implies that it resisted the rank reversal phenomenon.
The proposed method is a simple and robust solution for evaluating decision alternatives with interval
values. The example shown in Section 5 proves that the interval SPOTIS method performs similarly to
the interval TOPSIS method but is much simpler. However, the proposed approach also has some small
limitations: the decision maker should define the decision criteria bounds to use the proposed method.
However, if there is a problem with criteria bounds determining, one could have an a priori idea of what
these bounds should be and then make a sensitivity analysis on it. It is also required to use the interval
preference ordering method to order the preferences in case of using interval weights. One of the interval
ordering methods is presented in Section 3.4.

The proposed approach and the experiments presented create several interesting future research di-
rections. The proposed interval SPOTIS could be a base for research on the following extensions of the
SPOTIS method. The equations presented in this paper could be accommodated for other approaches
that handle uncertain data, such as fuzzy sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets, and so on.
The proposed approach could also be used in different practical decision problems requiring interval data
to evaluate alternatives simply and stably. Another interesting research direction is to check the relative
accuracy of the interval SPOTIS approach and other methods that perform on interval values. We will
evaluate how the geometric method for interval preference ordering presented in [6] could be applied and
evaluated in our future research works on SPOTIS.
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