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Abstract

This paper is concerned with the optimal control of a Markovian queueing system subjected to multiple adaptive vacation
and working vacation policies. This system is applicable in diverse modern technologies, in particular in call centers. We
establish the steady-state solution as well as important system characteristics by means of probability generating functions
technique. We also construct the expected total cost for this model and develop a procedure to determine the optimal service
rate that yields the minimum cost. Further, we carried out a comparative analysis to obtain the minimum cost using the
Newton–Raphson method and particle swarm optimization (PSO) algorithm.
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1. Introduction

In recent years, vacation queues have been largely analyzed by diverse researchers due to their won-
derful applications in the problem of congestion in signal transmission, telecommunication, production,
network transportation, computer science and signal system, quality control, manufacturing and telecom-
munication system design and control. The readers can refer to [6, 27, 29] for excellent surveys on the
earlier works on the subject.

As to vacation queues, majority of the works were focused on models with multiple vacations policy
and single vacation policy [2–4, 12–15, 17, 22, 28, 30, 31, 37]. Nevertheless, multiple adaptive vacation
is more general than most classical vacation ones in the way that both multiple and single vacation
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policies represent the extreme cases of this policy. The concept was first introduced by Zhang and
Tian [36] where they dealt with discrete time geometric/G/1 queueing system with multiple adaptive
vacations. Then, a Geo/G/1 queueing system with batch arrival and multiple adaptive vacations has been
treated by Sun et al. [26]. After that, Ma and Xu [18] discussed a M/G/1 queue with multiple adaptive
vacations. An M/G/1 reparable queue with multiple adaptive vacations and p-entering discipline has
been treated by Cheng and Tang [5]. Later, Ma et al. [19] considered a general limited service Geom/G/1

queue with multiple adaptive vacations. Jeyakumar and Rameshkumar [10] dealt with a MX/G(a, b)/1

queueing model with server breakdown without interruption and controllable arrivals during multiple
adaptive vacations. Recent results on different queueing models with adaptive vacation have presented
by Jeyakumar and Rameshkumar [7–9].

The basis of the research, in classical vacation queueing models, is the assumption that during the idle
period of the server, the system completely shuts down a service. Whereas, in order to manage the service
systems efficiently and economically, it may not be from system economics perspective to maintain idle
servers in the system. It is from this point that working vacation policy has been borne in mind. This
idea was first initiated by Servi and Finn [24], where an M/M/1 queue with multiple working vacation
policy has been dealt with. Since then, vast research papers has been given on working vacation queueing
systems. For recent devolvements on the subject, the reader may refer to [4, 11, 16, 20, 23, 25, 32–35]
and the references therein. This paper treats a Markovian time queueing system with multiple adaptive
hiatuses and working hiatus policy. The considerable advantages of the current research works in this
article are along these lines:

• The proposed queueing system with adaptive hiatus policy appears in varied practical areas where
through this model, we can analyse diverse hiatus policies between these two extremes in order
to better allocate server time to perform primary works (serving queue) and do secondary works
(vacations).

• The model suggested is subjected to working hiatus and multiple adaptive hiatus policy, this is more
realistic in diverse modern technologies, in particular in call centers, at which when the busy period
is ended, if no calls are received, the agents may do some other tasks as sending emails (working
hiatus). When this period is over, he comes back to the system to see if there are new requests. If
not, he returns to the hiatus at which he can take a rest. At the hiatus completion instant, if there
exist new arrivals, he switches to the busy period, otherwise, he is permitted to take random number
of hiatuses. When the hiatuses are complete, the agents return to the normal working period and
stay there waiting for new calls.

• By taking into consideration multiple adaptive hiatus policy and working hiatus simultaneously,
the queueing model becomes complex. This complexity, makes difficult to model the system and
therefore to derive its steady-state probabilities. Accordingly, the current analysis has not been
considered in the literature as yet.

• A cost function is developed, to optimize, via the Newton–Raphson and PSO techniques, the service
rate during busy period, at the optimal cost. This grants decision-makers substantial management
info for designing management policy.

The paper is organised as follows. Section 2 is devoted to the description of the model. A practical
motivation of the model discussed in section 3. In Section 4, the balance equations are given, while
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the system analysis is provided in Section 5. Then, some particular cases of the suggested model are
presented in Section 6. Useful performance measures are derived in Section 7. After that, a cost model
is developed in Section 8. Numerical discussions are done in Section 9. Later, some detailed managerial
insights and conclusions are given in Section 10.

2. The model formulation

We consider an M/M/1 queueing system with the following assumptions:

• Customers entered into the waiting line according to a Poisson process with rate λ.
• After entering the system, waiting customers, during normal mode, get service in a FCFS order

following exponential distribution with rate µb.

• At the end of the busy period, the service provider immediately goes for a single hiatus following an
exponential distribution with rate γ. During this mode, the server offers a service to the customers
with a lower rate µwv; µwv < µb.

• The server takes a random maximum number, denoted by H, of hiatuses after emptying the system.
The probability mass function (pmf) of H is P(H = j) = hj, j = 1, 2, . . . , m−1. At each vacation
completion instant, the server checks the system to see if there is any customer waiting and decides
the action to take according to the state of the system. The following situations are considered:

– If at the end of working hiatus completion instant, some customers are waiting in the line,
the system returns to a regular busy period. Otherwise, the server takes a hiatus which is
exponentially distributed with rate γ1. During this period, new customers could not be served.

– At the end of the first hiatus, if there are any beneficiaries waiting for service, the service
provider suddenly starts their service. Otherwise, the server goes to the second type of hiatus
with rate γ2. Note that γ1 ≤ γ2.

– If the server finds a customer at the jth (1 ≤ j ≤ m− 1) hiatus completion instant, the server
immediately switches to regular busy mode; otherwise, he takes another hiatus of type (j+1)th
which is exponentially distributed with rate γj+1 and continues to have m hiatuses sequentially.

– As soon as the mth hiatus is completed, the server immediately switches to the regular busy
mode and stay there waiting for new arrivals.

This type of limited number of hiatuses policy reflects the compromise between the benefit of work-
ing on the queue and the benefit of performing other tasks represented by the hiatuses.

Remark 1. All random variables involving in the model are assumed to be i.i.d.

Using the matrix analysis method, we can prove that the condition for ergodicity for our vacation system

is the same as the condition for the system without vacation, that is
λ

µb

< 1.

3. Practical application

Consider a situation in which a server provides network services, such as web service, file transfer ser-
vice, mail service, etc. Apart from the above main tasks, the server has many secondary jobs like virus
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scanning, assessing hard disk space, checking server log files, installing security software patches, updat-
ing antivirus software and so on, as parts of server maintenance. When there are no jobs, a virus scanning
is performed to enhance the server performance. During the server performance time, if new job arrives,
the server immediately offers them a service in a slow manner. If there are some jobs waiting after the
scanning process is complete, the server starts processing them. Otherwise, the server proceeds with
another secondary task, namely checking server log files. After the server log files check is complete, if
any job is waiting, the server starts working on it, otherwise another secondary task, namely assessing
hard disk space, begins. The server continues this processus up to completing all kinds of secondary jobs.
Then, he starts a normal busy mode if there are some jobs waiting, or simply waits for new arrivals.

4. The balance equations

The bivariate process {(l(t), s(t)), t ≥ 0} confines a continuous-time Markov process (CTMP) with state
space

△ = {(l, i) : i = B,wv, h1, h2, . . . , hm, l ≥ 0}

where l(t) is the number of beneficiaries in the system and s(t) is the position of the server at time t with

s(t) =


hj, the server is in jth hiatus j = 1, . . . , m

wv, the server is on working hiatus

B the server is busy or available

The state transition diagram of our model is given in Figure 1.

Figure 1. State transition diagram
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Let
pl, i = lim

t→∞
pl, i(t)

denote the system state probabilities of the process {(l(t), s(t)), t ≥ 0}. By the Markov theory, the
steady-state balance equations of the proposed model are as follows:

λp0,B = γmp0,m (1)

(λ+ µb)pn,B = λpn−1,B + µbpn+1,B + γpn,wv +
m∑

n=1

γjpn,hj
, 1 ≤ j ≤ m, n ≥ 1

(λ+ γ) p0, wv = µbp1,B + µwvp1, wv (2)

(λ+ γ + µwv)pn,wv = λpn−1,wv + µwvpn+1,wv, n ≥ 1 (3)

(λ+ γ1)p0, h1 = γp0, wv (4)

(λ+ γ1)pn,h1 = λpn−1,h1 , n ≥ 1 (5)

(λ+ γj)p0, hj
= γj−1p0, hj−1

(6)

(λ+ γj)pn,hj
= λpn−1,hj

, 2 ≤ j ≤ m, n ≥ 1 (7)

5. The steady state solution

Let

Pi(z) =
∞∑
n=1

pn,iz
n, i = B,wv, h1, h2, h3, . . . , hm

be the partial probability generating functions. Multiplying equations (1)–(4) by zn and summing all
possible values of n, then re-arranging all the terms, we have

PB(z) =

µbzp1,B − λz2p0,B − γzPwv(z)−
m∑
j=1

γjzPhj
(z)

λz2 − (λ+ µb)z + µb

(8)

In the same way, using (2)–(3) and (4)–(7), we respectively find

Pwv(z) =
z(µwvp1, wv − λzp0, wv)

λz2 − (λ+ γ + µwv)z + µwv

(9)

and

Phj
(z) =

zλp0, hj

λ(1− z) + γj
, 1 ≤ j ≤ m (10)

Let

α =
(λ+ γ + µwv)−

√
(λ+ γ + µwv)2 − 4λµwv

2λ
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be the of denominator root of Pwv(z). This is also the root of numerator of (9). From this, we get

p1, wv =
λα

µwv

p0, wv (11)

Using equations (11) and (2), we obtain

p0, wv =
µbp1,B

λ(1− α) + γ
(12)

Then, by making use of equations (1)–(2), (4), and (6) and after some transformations we obtain

p0,B =
γγm

λ(λ+ γ1)

µbp1,B
λ(1− z1) + γ

m∏
j=2

(
γj−1

λ+ γj

)
(13)

p0, wv =
µbp1,B

λ(1− α) + γ
(14)

p0, h1 =
γ

λ+ γ1

µbp1,B
λ(1− α) + γ

(15)

p0, hj
=

γ

λ+ γ1

µbp1,B
λ(1− α) + γ

m∏
j=2

(
γj−1

(λ+ γj)

)
, 2 ≤ j ≤ m (16)

Taking the derivative of equations (9)–(10) and letting z → 1, we have

P ′
wv(1) =

λ(λ+ γ − µwv)p0, wv − µwv(λ− µwv)p1, wv

γ2
(17)

P ′
hj
(1) =

λ(λ+ γj)

γ2
j

p0, hj
, 1 ≤ j ≤ m (18)

From equations (8)–(10), making use of l’Hospital rule, by letting z → 1, we respectively obtain:
The probability that the server is on busy state:

PB =

µbp1,B − (2λp0,B + γ(P ′
wv(1) + Pwv(1)) +

m∑
j=1

γj(P
′
hj
(1) + Phj

(1))

λ− µb

.

The probability that the server is on working hiatus state:

Pwv =
λ(1− α)

γ
p0, wv

The probability that the server is on the ith hiatus:

Phj
=

λ

γj
p0, hj

, 1 ≤ j ≤ m

From the total probability, we have
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p1,B =
1
µb

λ(1− α) + γ

× A (19)

where

A =

((
γ + λ(1− α)

γ
+

γ

λ+ γ1

(
1 +

γ1
γ2

m∑
j=2

(γj−1

γj

m−1∏
t=2

γt−1

λ+ γt

)
+

λ

γ1
+

γm
λ

m∏
t=2

γt−1

λ+ γt

))
+ ϕ

)−1

and

ϕ =

µb −
γµb

(λ(1− α) + γ)(λ+ γ1)

(
2γm

m∏
j=2

γj−1

λ+ γj
−

m∑
j=1

(
λ2 + 2λγj

γj

m∏
j=2

γj−1

λ+ γj

))
λ− µb

−

µb

λ(1− α) + γ

(λ2 − λµwv)(1− α) + λγ

γ

λ− µb

.

6. Particular cases

In this section, we present some special models that have been derived by assuming specific values for
some parameters involved in the model.

1. (γ → ∞ and γj → ∞, j = 1, 2, . . . , m). The model is reduced into the classical M/M/1 queueing
model. Here, we have

p1,B =
λ(µb − λ)

µb
2

= ρ(1− ρ)

where ρ =
λ

µb

. This result coincides with that given in equation (3.2.3) by Medhi in [21].

2. (γj → ∞, j = 2, . . . , m). The model changes into an M/M/1 queueing model with a single vacation
followed by a working vacation (M/M/1 + SWV + SV ). In this case, p1,B becomes:

p1,B =
1

µb

λ(1− α) + γ

(
1 +

λ(1− α)

γ
+

γ

λ+ γ1

(
1 +

γ1
λ

+
λ

γ1

))
+ ϕ

,

where

ϕ =

µb

(
1− 1

λ(1− α) + γ

(
λγ

λ+ γ1

(2γ1
λ

+
λ+ 2γ1
λ+ γ1

))
+

λ(2γ + λ− µwv)(1− α)

γ

)
λ− µb
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3. (γ → ∞). The model changes into an M/M/1 queueing model with multiple adaptive vacations

Ph1(z) =
µb

λ(1− z) + γ1
p1,B

Phj
(z) =

γj−1

λ+ γj − λz
p0, hj−1

, 2 ≤ j ≤ m

PB(z) =

µbzp1,B − λz2p0,B −
m∑
j=1

γjzPhj
(z)

λz2 − (λ+ µb)z + µb

after transformation we get

p1,B =

(
µb

λ+ γ1

(
1 +

λ

γ1
+ λ

m∑
j=2

(
1

γj

m∏
j=2

γt−1

λ+ γt

)
+

m∑
j=2

m∏
t=2

γt−1

λ+ γt
+

γm
λ

m∏
j=2

γj−1

λ+ γj

)
+ ϕ

)−1

where

ϕ =

µb −
µb

λ+ γ1

(
2γm

m∏
j=2

γj−1

λ+ γj
− λ2 + 2λγ1

γ1
−

m∑
j=2

(
λ2 + 2λγj

γj

m∏
j=2

γj−1

λ+ γj

))
λ− µb

Further, important performance measures are derived. Expected number of beneficiaries in the
system when the service provider is busy

E(LB) =

(µb − λ)

(
2λp0,B +

2λµbp1,B(λ+γ1)

γ2
1

+
m∑
i=2

2λ(λ+ γi)γi−1p0, hi−1

γ2
i

)
2(µb − λ)2

+

(
2λp0,B − µbp1,B +

µb(λ+γ1)p1,B
γ1

+
m∑
i=2

γi−1(λ+ γi)p0, hi−1

γi
−

m∑
i=1

γip0, hi

)
(2λ)

2(µb − λ)2

Expected number of beneficiaries in the system when the service provider is on jth vacation
(1 ≤ j ≤ m):

E(Lh1) =
λµbp1,B

γ2
1

, E(Lhj
) =

λγj−1p0, hj−1

γ2
j

, 2 ≤ j ≤ m.

7. Performance measures

In this section, we give some performance measures of the model that will be useful for the numerical
part. Expected number of beneficiaries in the system when the service provider is on working vacation is
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E(Lwv) =
λ(γ + λ− µwv)p0, wv − µwv(λ− µwv)p1, wv

γ2
.

Expected number of beneficiaries in the system when the service provider is on jth vacation:

E(Lhj
) =

(λ+ γj)λp0, hj

γ2
j

, 1 ≤ j ≤ m.

Expected number of beneficiaries in the system when the service provider is on is on busy period:

E(LB) =

(µb − λ)

(
2λp0,B +

2λµbp1,B(λ+γ1)

γ2
1

+
m∑
i=2

2λ(λ+ γi)γi−1p0, hi−1

γ2
i

)
2(µb − λ)2

+

(
2λp0,B − µbp1,B +

µb(λ+γ1)p1,B
γ1

+
m∑
i=2

γi−1(λ+ γi)p0, hi−1

γi
−

m∑
i=1

γip0, hi

)
(2λ)

2(µb − λ)2

where

S =
4λ2γ + 2λ2γα− 2γλµwv − (1− α)(4λ2 − 2λ3 − 2λγµwv − 2λµ2

wv + 3λ2γ − λγµwv + λγ2)

γ3

Expected number of beneficiaries in the system E(L):

E(L) = E(LB) + E(Lwv) +
m∑
j=1

E(Lhj
)

Expected waiting time: E(W )

E(W ) = E(L)/λ

8. Cost model

In this section, we develop a cost model by defining the total expected function, in which the service rate
is the dominating variable. Our goal is to control these variables in order to minimize the total expected
cost function per unit time. We define the following cost elements (per unit time) as follows:

CN– holding cost for each beneficiary seen in the system,
CW– waiting cost if one beneficiary is to receive the service,
CB– cost for the period the server handling service process,
Cwv– cost for the period the server handling working hiatus process,
Cj – cost when the server is on the jth hiatus, (1 ≤ j ≤ m)

Cµb
– cost for service



214 R. Remya et al.

The cost function TC is defined as:

TC = CNE(L) + CWE(W ) + CBPB + CwvPwv +
m∑
j=1

CjPhj
+ Cµb

µb (20)

Our aim can be expressed mathematically as:

Minimize TC(µb)

9. Numerical discussions

The problem considered in Section 3 can be modeled as an M/M/1/WV&MAV queueing system. In
this section, we present numerically the performance indices and the optimality of the cost model for the
considered system. Throughout this section, we assume that the maximum number of hiatuses taking by
the service provider is two, that is m = 2.

9.1. Analysis on performance indices

Service rate µb. The impact of service rate µb on the performance indices PB, E[L], and E[W ] are
displayed in Figures 2–4, respectively. Obtained results are clearly admitted with our intuition. The
increase in the service rate leads to a significant decrease in the considered performance indices.

Arrival rate λ. The effect of an increase in the arrival rate on the performance indices PB, E[L],
and E[W ] are presented in Figures 5–7, respectively. It is well observed that a surge in the arrival
rate implies a significant decrease in the above three performance indices. Obviously, high number of
customers joining the system implies a high probability of busy period. This results in an increase in the
average system length and average waiting time of customers.

Working vacation service rate µwv. The effect of an increase in the arrival rate on the performance
indices PWV , E[L], and E[W ] are presented in Figures 8–10, respectively. We noticed a considerable
decrease in the above three performance indices with µwv. It is obvious that if the service provider
increases the service rate while is on working vacation mode, all customers being in queue will be served.
Therefore, Ph1 increases accordingly. This leads to unavailability of service to the customers. Hence, a
decrease in the average system length and average waiting time of customers is quite reasonable.

Hiatus rates γ1 and γ2. The effect of hiatus rate, γ1 (γ2) on the performance indices Ph1( resp. Ph2),
E[L], and E[W ] are studied in Figures 11–13, (Figures 14–16). By increasing the first hiatus rate (γ1),
a considerable decrease in the above three performance indices occurs. It is vivid that by augmenting
the first hiatus rate, the probability that the server stays on type-I hiatus becomes small, this implies an
increase in Ph2 . Further, an increase in the hiatus type 2 rate, results in a considerable decrease in Ph2 ,
E[L], and E[W ].

9.2. The cost optimization

The total cost function TC given in section 8 is nonlinear; it is too complex to solve analytically. Then,
the optimal value of the service rate can be easily determined by using numerical optimization techniques.
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9.2.1. The optimal service rate

We apply the PSO algorithm to optimize the expected cost function. For this purpose, we employ CN =

10, CW = 15, CB = 20, Cwv = 20, Ch1 = 25, Ch2 = 30, Cµb
= 40. For three different values of the

arrival rate, obtained results are displayed in Figure 17. It is seen that the curves are convex and hence
assure the existence of optimal values. In addition, it is observed that with λ the concerned optimal
service and the expected cost increase accordingly, as intuitively expected.
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Figure 8. Pwv against µwv Figure 9. E(L) against µwv
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Figure 12. E(L) against γ1 Figure 13. E(W) against γ1

9.2.2. Comparison of total cost obtained from PSO algorithm and NR method

The Newton–Raphson algorithm and PSO algorithm are applied and the results are computed using an
Intel-Pentium 2.4 GHz PC with 1.97 GB RAM. From Table 1, we observe the compliance in the optimal
service rate obtained by applying the NR and PSO algorithms from a few experiments. Also, we can
see that NR method is better for obtaining the optimal service rate of our model as the running time (in
seconds) of the algorithm is less compared with the running time of the PSO algorithm.
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Figure 14. Ph2
against γ2 Figure 15. E(L) against γ2

Figure 16. E(W ) against γ2 Figure 17. TC against µb
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9.3. Comparative numerical study on the total cost

In this numerical discussion, we give a comparative study on the optimal service rate and the rela-
tive total expected costs of M/M/1/MAV queue, discussed as a third special case and our model
M/M/1/WV&MAV queue. Note that for the M/M/1/MAV queue the cost function is defined as:

TC = CNE(L) + CWE(W ) + CBPB +
m∑
j=1

CjPhj
+ Cµb

µb (21)
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Here, we take two set of values as
CN = 10;CW = 20;CWV = 25;CB = 20;C1 = 30;C2 = 35; Cµb

= 40 and CN = 10;CW = 15;CWV =

25;CB = 20;C1 = 25;C2 = 30;Cµb
= 35 in (20) and (21). The resulting curves to the above two

set of values are plotted in figure 18 which shows that the optimal service rate of M/M/1/WV&MAV

queue is less than the optimal service rate of M/M/1/MAV queue. Also, the curve of TC for our model
against the service rate is under the curve of TC for the M/M/1/MAV queue. It reveals that our model
is better compared with the model M/M/1/MAV queue.

Table 1. Effect of µb
∗ on TC∗, E(L), E(W ) for γ = 0.1, γ1 = 0.2, γ2 = 0.3, and different values of λ

λ
Newton–Raphson optimization PSO

µ∗
b E(L) E(W ) TC∗ Elapsed

time [s] µ∗
b E(L) E(W ) TC∗ Elapsed

time [s]
0.1 0.6749 0.2350 2.3501 62.8923 0.023001 0.6749 0.2350 2.3501 62.8923 180.6771
0.2 0.7706 0.4818 2.4091 72.3742 0.015456 0.7706 0.4818 2.4091 72.3742 151.9986
0.3 0.8862 0.7321 2.4402 80.8567 0.01125 0.8862 0.7321 2.4402 80.8567 158.7501
0.4 1.005 1,0024 2.5061 89.6534 0.013178 1.005 1,0024 2.5061 89.6534 114.0655
0.5 1.1246 1.3064 2.6128 99.199 0.14212 1.1246 1.3064 2.6128 99.199 359.2317
0.6 1.2452 1.6579 2.7632 109.7866 0.012472 1.2452 1.6579 2.7632 109.7866 460.2642
0.7 1.3676 2.0717 2.9595 121.6516 0.024794 1.3676 2.0717 2.9595 121.6516 753.9248
0.8 1.4924 2.5611 3.2013 134.93 0.022484 1.4924 2.5611 3.2013 134.93 386.0446

10. Managerial insights and conclusions

This study focuses on optimizing the cost of a Markovian queueing system subjected to multiple adaptive
vacation and working vacation policies using both the Newton–Raphson and particle swarm optimization
techniques. This system is employed to model a wide variety of real-world situations, including customer
service centers, transportation systems, production and manufacturing systems, etc. The multiple adap-
tive vacation and working vacation policies are a fundamental aspect of this optimization process that can
have a strongly positive impact on the system’s performance. After presenting the theoretical analysis of
the queueing model, the relationship between different system parameters and performance measures, as
well as the cost model of the queueing system have been examined. The current study provides valuable
insights for managers looking to optimize their queueing systems and reduce costs. These insights can
be used by managers to make informed decisions and improve the efficiency of their operations.

The use of the Newton–Raphson and PSO techniques to study the cost optimization of the suggested
queueing model is a complex problem that requires careful consideration of multiple factors:

• The impact of vacation policies on system performance should be examined.
• It is important to define the cost function to reflect the objectives of the organization, such as maxi-

mizing profit or minimizing cost.
• The optimization problem must be defined. This involves finding the optimal configuration of the

system that minimizes the cost function while satisfying performance constraints.
• After implementing the optimization techniques, the results should be evaluated while monitoring

the system performance to ensure that the system is operating optimally and considering the impact
of variability.
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A continuous-time queueing model with working vacation and adaptive vacation policy permits the
server to take a random maximum number of vacations as long as the system is empty. With this policy,
the queue manager can better load the server than multiple or a single vacation policies. The steady-state
solution of the proposed system has been established. Moreover, on the basis of the steady-state proba-
bilities of the system, its performance measures have been derived. Even if the convexity (unimodality)
of the expected cost function can not be demonstrated theoretically in this study, we present a finite and
quick search for the optimal thresholds using the PSO algorithm and Newton–Raphson method. We also
perform a sensitivity analysis among the optimal value of the service rate and cost components. The two
method applied were numerically compared. The proposed model is very useful in general situations
arising in practical applications.

Acknowledgement
The authors thank the referees for the helpful suggestions and comments to improve the quality of the manuscript.

References

[1] Bouchentouf, A. A., Boualem, M., Yahiaoui, L., and Ahmad, H. A multi–station unreliable machine model with
working vacation policy and customers impatience. Quality Technology and Quantitative Management 19, 6 (2022), 766–796.

[2] Bouchentouf, A. A., Cherfaoui, M., and Boualem, M. Performance and economic analysis of a single server feedback
queueing model with vacation and impatient customers. Opsearch 56, 1 (2019), 300–323.

[3] Bouchentouf, A. A., and Guendouzi, A. Sensitivity analysis of multiple vacation feedback queueing system with differ-
entiated vacations, vacation interruptions and impatient customers. International Journal of Applied Mathematics and Statistics 57, 6
(2018), 104–121.

[4] Bouchentouf, A. A., Medjehri, L., Boualem, M., and Kumar, A. Mathematical analysis of a Markovian multi-
server feedback queue with a variant of multiple vacations, balking and reneging. Discrete and Continuous Models and Applied
Computational Science 30, 1 (2022), 21–38.

[5] Cheng, J., and Tang, Y. Reliability analysis of M/G/1 repairable queueing system with multiple adaptive vacations and
p-entering disciplin. Mathematical and Computational Applications 19, 2 (2014), 105–114.

[6] Doshi, B. T. Queueing systems with vacation-a survey. Queueing Systems 1, 1 (1986) 29–66.
[7] Jeyakumar, S., and Rameshkumar, E. Analysis of MX/G(a, b)/1 queue with closedown time with controllable arrivals

during multiple adaptive vacations. International Journal of Pure And Applied Mathematics 106, 5 (2016), 79–87.
[8] Jeyakumar, S., and Rameshkumar, E. Performance analysis and cost optimization of nonMarkovian bulk queue with ’p’–

entering discipline during multiple adaptive vacations international. Journal of Information and Management Sciences 28, (2017),
99–111.

[9] Jeyakumar, S., and Rameshkumar, E. Binomial service and multiple adaptive vacation schedules for MX/G/1 queue with
control policy on demand for re-service. Nonlinear Studies 24, 2 (2017), 417–428.

[10] Jeyakumar, S., and Rameshkumar, E. A study on MX/G(a, b)/1 queue with server breakdown without interruption and
controllable arrivals during multiple adaptive vacations International Journal of Mathematics in Operational Research 15, 2 (2019),
137–155.

[11] Kalidass, K., and Kasturi, R. A queue with working breakdowns. Computers and Industrial Engineering 63, 4 (2012),
779–783.

[12] Kalidass, K., Gnanaraj, J., Gopinath, S., and Kasturi, R. Transient analysis of an M/M/1 queue with a repairable
server and multiple vacations. International Journal of Mathematics in Operational Research 6, 2 (2014), 193–216.

[13] Ke, J.-C, Chang, F.-M., and Liu, T.-H. M/M/c balking retrial queue with vacation. Quality Technology and Quantitative
Management 16, 1 (2019), 54–66.

[14] Kempa, W. M., and Marjasz, R. Distribution of the time to buffer overflow in the M/G/1/N -type queueing model with batch
arrivals and multiple vacation policy. Journal of the Operational Research Society 71, 3 (2020), 447–455.

[15] Kempa, W. M., Książek, K., and Marjasz, R. On time-dependent queue-size distribution in a model with finite buffer
capacity and deterministic multiple vacations with applications to LTE DRX mechanism modeling. IEEE Access 9, (2021), 148374–
148383.

[16] Kobielnik, M., and Kempa, W. M. On the time to buffer overflow in a queueing model with a general independent input stream
and power-saving mechanism based on working vacations Sensors 21, 16 (2021), 5507.

[17] Levy, Y., and Yechiali, U. Utilization of idle time in an M/G/1 queueing system. Management Science 22, 2 (1975), 202–211.
[18] Ma, Z., and Xu , Q. General decrementing service M/G/1 queue with multiple adaptive vacations. Applied Mathematics and

Computation 204, 1 (2008), 478–484.



220 R. Remya et al.

[19] Ma, Z., Yue, W., and Chen, L. Analysis and performance optimization of a Geom/G/1 queue with general limited service
and multiple adaptive vacations. Pacific Journal of Optimization 11, 1 (2015), 57–78.

[20] Majid, S., Bouchentouf, A. A., and Guendouzi, A. Analysis and optimisation of a M/M/1/WV queue with Bernoulli
schedule vacation interruption and customer’s impatience. Acta Universitatis Sapientiae, Mathematica 13, 2 (2021), 367–395.

[21] Medhi, J. Stochastic Models in Queueing Theory. Academic Press, 2003.
[22] Saffer, Z., and Yue, W. M/G/1 multiple vacation model with balking for a class of disciplines. Quality Technology and

Quantitative Management 12, 3 (2015), 383–407.
[23] Seenivasan, M., and Abinaya, R. Markovian queueing model with single working vacation and catastrophic Materials Today

Proceedings 51, 8 (2022), 2348–2354.
[24] Servi, L. D., and Finn, S. G. M/M/1 queue with working vacations (M/M/1/WV ). Performance Evaluation 50, 1 (2002),

41–52.
[25] Sudhesh, R., Azhagappan, A., and Dharmaraja, S. Transient analysis of M/M/1 queue with working vacation, hetero-

geneous service and customers’ impatience, RAIRO - Operations Research 51, 3 (2017) 591–606.
[26] Sun, W., Tian, N., and Li, S. Steady state analysis of the batch arrival Geo/G/1 queue with multiple adaptive vacations

International Journal of Management Science and Engineering Management 2, 2 (2007), 83–97.
[27] Takagi, H. Queueing Analysis: A Foundation of Performance Analysis, Vol.1. Vacation and Priority Systems, Part I, Elsevier, 1991.
[28] Tian, N., Li, Q.-L ., and Gao, J. Conditional stochastic decompositions in the M/M/c queue with server vacation. Stochastic

Models 15, 2 (1999), 367–377.
[29] Tian, N., and Zhang, Z. G. Vacation Queueing Models: Theory and Applications, Springer, New York, 2006.
[30] Vadivukarasi, M., Kalidass, K., and Jayaraman, R. Discussion on the Optimization of Finite Buffer Markovian Queue

with Differentiated Vacations In Soft Computing: Theories and Applications (Singapure, 2022), T. K. Sharma, C. W. Ahn, O. P. Verma
and B. K. Panigrahi, Eds., Springer, pp. 523–534.

[31] Vadivukarasi, M., and Kalidass, K. A. Discussion on the optimality of bulk entry queue with differentiated hiatuses.
Operations Research and Decisions 32, 2 (2022) 137–150.

[32] Wang, F., Wang, J., and Zhang, F. Equilibrium customer strategies in the Geo/Geo/1 queue with single working vacations.
Discrete Dynamics in Nature and Society 2014, 1 (2014), 309489.

[33] Yang, D. Y., Wang, K. H., and Wu, C. H. Optimization and sensitivity analysis of controlling arrivals in the queueing
system with single working vacation. Journal of Computational and Applied Mathematics 234, 2 (2010), 545–556.

[34] Yang, D. Y., and Wu, C. H. Performance analysis and optimization of a retrial queue with working vacations and starting
failure. Mathematical and Computer Modelling of Dynamical Systems 25, 5 (2019), 463–481.

[35] Ye, Q., and Liu, L. Performance Analysis of the GI/M/1 Queue with Single Working Vacation and Vacations. Methodology
and Computing in Applied Probability 19 (2016), 685–714.

[36] Zhang, Z. G., and Tian, N. Discrete Time Geo/G/1 Queue with Multiple Adaptive Vacations. Queueing Systems 38, 4 (2001),
419–429.

[37] Zhang, Z. G., and Tian, N. Analysis on queueing systems with synchronous vacations of partial servers Performance Evaluation
52, 4 (2003), 269–282.


	Introduction
	The model formulation
	Practical application
	The balance equations
	The steady state solution
	Particular cases
	Performance measures
	Cost model
	Numerical discussions
	Analysis on performance indices
	The cost optimization
	The optimal service rate
	Comparison of total cost obtained from PSO algorithm and NR method

	Comparative numerical study on the total cost

	Managerial insights and conclusions

