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∗Corresponding author, email address: m.anholcer@ue.poznan.pl

Abstract

Motivated by recent results on lexicographic and cyclic preferences, we present new sufficient conditions for the existence
of stable matching in many-sided matching problems. Here, our focus shifted towards integrating the two-sided matching
problem, characterized by reciprocal preferences, with the many-sided matching problem, which involves cyclic preferences.
In particular, we show that one of the configurations presented recently by Zhang and Zhong for three-sided matching problems
can be generalized to more dimensions. In our setting, the preferences are cyclic and, in the case of all but two pairs of
consecutive sets of agents, also reciprocal, which generalizes the three-set setting of Zhang and Zhong. Our approach can be
also applied to generalize the problems with any system of cyclic preferences for which the existence of a stable matching is
guaranteed.

Keywords: many-sided matching problem, stable matching, cyclic preferences, lexicographic preferences, mixed preferences,

deferred acceptance algorithm

1. Introduction

The two-sided stable matching problem (also known as the stable marriage problem), first introduced
and solved by Gale and Shapley [12], has fascinated many researchers ever since. The broader problem
of the existence of stable matchings in many-to-many-sided problems with various kinds of preferences
and restrictions is only partially explored. Knuth [22] showed that the problem changes significantly
when there are more than two parties to match, and Alkan [2] proved that stable matchings in three-
sided systems may not exist, in general. Still, it is possible to find stable matchings when we restrict the
preferences of the parties (of three or more sets) to lexicographic preferences [9], cyclic preferences [4,
6, 10, 24], or some alternations of lexicographic preferences with additional restrictions [23]. The stable
marriage problem also extends by introducing indifference to the preferences of the parties [19, 26]. The
problem has been extensively investigated in terms of its computational complexity or using computer
simulations of matching instances [7, 16, 18, 20, 26].
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This wide approach to the topic of stable matchings benefits many real-life applications, from medical
labour markets [31], through the kidney transplant compatibility problem [5, 15, 21, 30], allocation prob-
lems like students-project assignments [1], to assigning a group of students to dormitories [28] and more
recently optimization in network services [8] and mobile edge computing [29]. Implementations of the
Gale and Shapley algorithm can also be found in online dating [13] or carpooling and ridesharing [11].

Recently, Zhang and Zhong [32] published a paper on two interesting modifications of cyclic pref-
erences, which can give a stable matching for three sets of agents. Soon after that, Arenas and Torres-
-Martinez [3] showed that one of the proposed families of preference systems does not need to lead to a
stable solution (in fact, they indicated a gap in the proof). However, the other proposed system always
possesses a stable solution. Although the proof presented in [32] also seems to have some gaps, it can be
easily fixed. Moreover, as we observed, the proposed system of preferences can be extended in several
ways to an arbitrary number of sets of agents. In this paper, we present a complete proof of the existence
of stability in these generalized systems, which will also cover the results of Zhang and Zhong.

The paper is organized as follows. In the next section, we present basic definitions and facts about
stable matchings in two-sided and multi-sided systems of preferences, in particular the ones that we are
going to use in the remainder of this paper. In Section 3 we present the definitions and basic facts about
mixed preference systems (i.e., the systems where cyclic and lexicographic preferences are combined).
Section 4 consists of the presentation of a matching algorithm and the proof that it produces a stable
matching. Finally, in Section 5, we conclude the paper with some final remarks and a few open problems.

2. Preliminaries

Gale and Shapley [12], probably for an intuitive illustration of the problem, introduced stable matchings
as stable marriages between a set of men and a set of women. In the case of two sets, to honour the
historical idea, we keep the names of the sets and agents to match as M , W , m, and w, respectively. For
the sake of completeness, we will briefly describe the problem.

Assume that two sets M and W are given, where |M | = |W | = n. Each m ∈ M has a strict and
complete preference order ≻m in pairs (m,w) ∈ {m} ×W ⊂ M ×W ((m, w1) ≻m (m, w2) means
that m prefers (m, w1) over (m, w2)), which can be equivalently defined as a preference order on the set
W (now w1 ≻m w2 denotes the fact that m prefers w1 over w2). Similarly, each w ∈ W has a strict and
complete preference order ≻w in all pairs (m,w) ∈ M × {w} ⊂ M ×W , which can be equivalently
defined as a preference order on the set M . Matching is a function µ : M ∪W → M ×W such that for
every m ∈ M , µ(m) = (m, w) for some w ∈ W , for every w ∈ W , µ(w) = (m, w) for some m ∈ M

and µ(w) = (m, w) ⇔ µ(m) = (m, w). Note that from the definition of µ it follows that the resulting
matching µ(M ∪W ) can be denoted by µ(M) or µ(W ), since µ(M ∪W ) = µ(M) = µ(W ). Also, for
simplicity, when the context is evident, one can use the notation µ(w) = m and µ(m) = w instead of
µ(m) = µ(w) = (m, w), however, in such a case one may use only µ(M ∪W ) to denote the assignment.

Given a matching µ, a blocking pair is a pair (m, w) such that (m, w) ≻m µ(m) and (m, w) ≻w µ(w) (in
the reduced form w ≻m µ(m) and m ≻w µ(w)). Obviously, (m, w) ∉ µ(M ∪W ). A matching µ is stable if
there are no blocking pairs. Gale and Shapley proved that, in the presented setting, a stable matching always
exists. Their constructive proof used the so-called deferred acceptance algorithm (Algorithm 1), which we
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present below for the sake of completeness. Here and in the remainder of the paper, µ(x) = null will denote
the fact that agent x is not matched in the current partial matching. Similarly, assignment µ(x)← null means
that agent x becomes unmatched.

Input: Two sets M and W where |M | = |W | = n, and preference lists for all elements from M ∪W on all
ordered pairs (m, w) ∈M ×W that include them.

Output: Stable matching µ : M ∪W →M ×W between elements from M and W .
Initialize: Mark all elements of M ∪W as available for matching, i.e., set µ(x)← null for every x ∈M ∪W ;
while there exists an available element m ∈M do

Choose the most preferred pair (m, w) : w ∈W on m’s preference list and cross it out from this list;
if w is available then

set µ(m)← (m, w), µ(w)← (m, w), mark m and w as unavailable;
end
else if w prefers (m, w) over her current assignment (m′, w) then

set µ(m)← (m, w), µ(w)← (m, w), µ(m′)← null, mark m as unavailable, mark m′ as available;
end

end
return µ

Algorithm 1. Gale–Shapley deferred acceptance algorithm (GS)

As mentioned in the Introduction, generalized versions of the problem, where the number of sets is
greater than two, have been studied. In particular, the three-sided problem (with the widely discussed ap-
plication to the Kidney Exchange Problem) attracted much interest, but also the problem for an arbitrary
number of sets has gained some attention. Let us discuss here this most general version.

This time k sets of agents are given: X1, X2, . . . , Xk. For each xj ∈ Xj a strict and complete
preference order ≻xj

is defined on the set of all k-tuples1 (x1, . . . , xj−1, xj, xj+1, . . . , xk) ∈
⊗
1≤i<j

Xi ×

{xj} ×
⊗
j<i≤k

Xi ⊂
⊗
i

Xi containing xj . Just like in the case of two sets, one can define this relation

on the set of (k − 1)-tuples from
⊗
1≤i<j

Xi ×
⊗
j<i≤k

Xi, but this would make the further considerations

hard to follow, so we will use this form only if it significantly simplifies the notation (in particular in the
three-sided illustrative examples).

Matching is a function µ :
k⋃

i=1

Xi →
k⊗

i=1

Xi such that ∀x ∈
k⋃

i=1

Xi : x ∈ µ(x) (which means that every

x ∈
k⋃

i=1

Xi belongs to the unique tuple µ(x) assigned to it, that is, if x ∈ Xj for some j, then µ(x) =

(x1, . . . , xj−1, x, xj+1, . . . , xk) for some (x1, . . . , xj−1, xj+1, . . . , xk) ∈
⊗
1≤i<j

Xi ×
⊗
j<i≤k

Xi). Also,

here one can skip xj and define the function on (k − 1)-tuples as µ(xj) = (x1, . . . , xj−1, xj+1, . . . , xk),
its restriction to a specific dimension i by µXi

(xj) = xi, its restriction to two dimensions i and h by

1The symbol
⊗

denotes the Cartesian product of a number of sets:
k⊗

i=1

Xi = X1 ×X2 × · · · ×Xk.
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µXiXh
(xj) = (xi, xh) etc. Finally, instead of µ(

k⋃
i=1

Xi) one can use µ(Xj) for any j = 1, . . . , n to denote

the final assignment, that is, a set of ordered k-tuples (this can be in particular µ(X1)).
A (strongly)2 blocking k-tuple is a k-tuple ξ = (x1, . . . , xk) such that ξ ≻xj µ(xj) for all j = 1, . . . , k.

Note that by definition ξ ∉ µ(X1). For a (weakly) stable matching, a blocking k-tuple does not exist. In 1976,
Knuth [22] asked whether a stable matching always exists if k ≥ 3 and the answer turned out to be negative,
as the following example shows. For the sake of clarity, we use the notation commonly used in the literature:
M = {m1,m2} (men) W = {w1, w2} (women) and C = {c1, c2} (children or cats). In fact, consider the
following preferences:

(w1, c1) ≻m1 (w1, c2) ≻m1 (w2, c2) ≻m1 (w2, c1)

(w2, c1) ≻m2 (w1, c1) ≻m2 (w1, c2) ≻m2 (w2, c2)

(m2, c1) ≻w1 (m2, c2) ≻w1 (m1, c1) ≻w1 (m1, c2)

(m2, c1) ≻w2 (m2, c2) ≻w2 (m1, c2) ≻w2 (m1, c1)

(m1, w1) ≻c1 (m1, w2) ≻c1 (m2, w2) ≻c1 (m2, w1)

(m1, w2) ≻c2 (m1, w1) ≻c2 (m2, w1) ≻c2 (m2, w2)

There are four possible matchings. Sample blocking triples for each of them are:

{(m1, w1, c1), (m2, w2, c2)} → (m2, w1, c2)

{(m1, w1, c2), (m2, w2, c1)} → (m1, w1, c1)

{(m1, w2, c1), (m2, w1, c2)} → (m1, w2, c2)

{(m1, w2, c2), (m2, w1, c1)} → (m2, w2, c1)

Note also that the case where k = 1 has been considered in the literature (see, e.g., [16]). It is the
so-called roommate problem, where an even cardinality set X of students is given, and every student
s ∈ X has a strict and complete preference order ≻s in the set {{s, t} : t ∈ X \ {s}}. If it is clear
from the context, for the sake of simplicity one can write x ≻s y instead of {s, x} ≻s {s, y}. The goal
is to pair up the students so that the resulting matching is stable. The notions of blocking pair and stable
matching are defined in an obvious way, analogously to the case of k = 2. To be more specific, the
matching in this case is a function µ : X → {{s, t} : s ∈ X ∧ t ∈ X ∧ s ≠ t} such that for every
s, t ∈ X , µ(s) = {s, t} ⇔ µ(t) = {s, t}. A pair {s, t} blocks µ if {s, t} ≻s µ(s) and {s, t} ≻t µ(t).
Matching µ is stable if there are no blocking pairs.

2One can also consider weakly blocking tuples corresponding with strongly stable matchings. The distinction becomes mean-
ingful if one considers preferences with ties, which we do not consider in the present paper. See, e.g., [17] for more details.
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Also in this case a stable matching does not need to exist, as the following example shows (the set of
students is X = {a, b, c, d}). Assume that the preferences are defined as follows:

b ≻a c ≻a d

c ≻b a ≻b d

a ≻c b ≻c d

a ≻d b ≻d c

Then the blocking pairs for all three possible matchings are:

{{a, b}, {c, d}} → {b, c}

{{a, c}, {b, d}} → {a, b}

{{a, d}, {b, c}} → {a, c}

The case of k ≥ 3 turned out to be problematic even in the case of k = 3 of cyclic preferences,
where the members of X1 have preferences in X2, the members of X2 in X3 and the members of X3 in
X1. To be more specific, for example, for X1 and X2 this means that every x1 ∈ X1 has a strict and
complete preference order ≻⋆

x1
on X2 such that for any triples (x1, x

1
2, x

1
3), (x1, x

2
2, x

2
3) ∈ X1 ×X2 ×X3,

(x1, x
1
2, x

1
3) ≻x1 (x1, x

2
2, x

2
3) ⇔ x1

2 ≻⋆
x1

x2
2. In this case, Boros et al. [6] proved that when the number

of elements in each set is n ≤ k, then there is a stable matching. For k = 3 Eriksson et al. [10] proved
stability assuming that n ≤ 4 and Hofbauer [14] further pushed the result in the case of n ≤ k+1. Later,
Pashkovich and Poirrie [27] proved n ≤ 5 for k = 3. Finally, Lam and Plaxton [24] showed that in
general, stable matching may not exist when k ≥ 3 and the minimum size of a counterexample for k = 3

was recently reduced to n = 20 by Lerner [25].
So far, the only successful approach in terms of stable matchings for k ≥ 3 is when the preferences of

agents are defined lexicographically, in a predefined order of precedence for the remaining sets. Danilov
[9] proved that when that is the case, a stable matching always exists.

Among numerous papers, where sufficient conditions for the existence of a stable matching have
been presented, one can find the one of Zhang and Zhong [32]. The authors consider two systems
of preferences defined on three sets and claim that the presented algorithms produce stable matchings.
Unfortunately soon after, Arenas and Torres-Martinez [3] showed that the second algorithm does not
actually need to result in a stable matching. It cannot, since the system of preferences presented by
Zhang and Zhong is less restrictive than cyclic preferences, for which stable matching does not always
exist, as shown by Lam and Plaxton [24].

On the other hand, the algorithm presented for the other system of preferences always produces a
stable matching. This encouraged us to consider more general systems with k > 3 sets. We show that a
generalization of the method of Zhang and Zhong (using ideas similar to those presented in [9]) can be
applied to solve the instances of these generalized problems.

We briefly summarize the contents of the selected papers in Table 1.
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Table 1. Summary of MSSM variants literature (k sets of n agent)

Matching variant k = 1 k = 2 k = 3 k ≥ 3 Possible applications

k-Sided stable matchings
general considerations

[12, 17]
[19, 26]
[28]

[2, 22]
students admissions [12]
medical labour markets [31]
other [1, 11, 13]

Lexicographic preferences [9] [23] [9]

Cyclic preferences

[4]
[10] (n ≤ 4)
[25]
[27] (n ≤ 5)

[6] (n ≤ k)
[14] (n ≤ k + 1)
[24]

kidney exchange programs
[5, 15, 21, 30]
network services [8, 29]

Mixed preferences [3] [32]

Stable roommates problem [16]
part of many software
packages [16]

Literature concerning computational complexity: [7], [16], [18], [20], [26].

3. Mixed preferences

Let us start with a brief presentation of the model of Zhang and Zhong [32], which we will extend. They
consider 3-sided matching problems with sets of agents U , V and W , and the preferences defined as follows.
Every u ∈ U has preferences first and foremost in V , i.e., for each u ∈ U there exists a strict and complete
preference order ≻V

u on V such that for every v, v′ ∈ V and for every w ∈ W , (u, v,w) ≻u (u, v′, w) ⇔
v ≻V

u v′. This relation is denoted by U −→ V . In analogy, it is assumed that every w ∈W has preferences
first and foremost on U , which is denoted by W −→ U . Moreover, the members of W have preferences on
V and the members of V have preferences on W , which could be written as W −→ V and V −→ W , but
for simplicity the authors use the notation V ←→ W instead 3. The authors use two runs of Algorithm 1 to
construct a stable matching. The first run matches the members of V and W . The second one matches the
resulting pairs x = (v,w) ∈ X ⊆ V ×W with the members of U by defining the preferences as ≻X

u =≻V
u

(which is possible because there is a bijection between V and X) and ≻U
x=≻U

w (which is possible because
there is a bijection between W and X).

We generalize the model for an arbitrary number of sets. Similarly as in [32], we will write Xi −→ Xj

if the members of Xi have preferences first and foremost on Xj , so that for each xi ∈ Xi there is
a relation ≻j

xi
such that for any xj1 , xj2 ∈ Xj and any k-tuples4 ξ1 = (x1, x2, . . . , xi, . . . , xj1 , . . . , xk)

and ξ2 = (x1, x2, . . . , xi, . . . , xj2 , . . . , xk) we have ξ1 ≻xi
ξ2 ⇐⇒ xj1 ≻j

xi
xj2 . In addition, we will

sometimes refer to this setting by stating that the preferences of xi are consistent with the preferences
in the set Xj given by xj1 ≻j

xi
xj2 . If both Xi −→ Xj and Xj −→ Xi occur, we write Xi ←→ Xj .

Furthermore, for any index i, the case of Xi −→ Xj can be defined for more than one j.
Assume that we construct the matching step by step, by adding the members of the next set Xj to

the existing tuples. For any sequence of consecutive (modulo k) indices i1, i1 + 1, . . . , i2, the members

3Actually, Zhang and Zhong use the notation U ⇒ V and V ⇔ W . We use single arrows to avoid confusion, since in our
paper the symbols⇒ and⇔ are used to denote the implication and equivalence

4Without loss of generality, we assume i < j. In the opposite case, the tuples are ξ1 = (x1, x2, . . . , xj1 , . . . , xi, . . . , xk)
and ξ2 = (x1, x2, . . . , xj2 , . . . , xi, . . . , xk)
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ξ ∈ µ(

i2⋃
i=i1

Xi) of a partial matching will also be included in the above notation, where for each tuple ξ

we can define its preferences as follows:

• µ(

i2⋃
i=i1

Xi) −→ Xj means that we use the relation ≻j
xi2

, i.e., the relation of the tuple is the relation

of xi2 on Xj ,

• Xj −→ µ(

i2⋃
i=i1

Xi) means that we use the relation ≻i1
xj

, i.e., the relation of xj on Xi1 is extended to

the set of complete tuples in the natural way,

• µ(

i2⋃
i=i1

Xi)←→ Xj means that we use the relations ≻j
xi2

and ≻i2
xj

similarly as in the first two cases,

• Xj ←→ µ(

i2⋃
i=i1

Xi) means that we use the relations ≻i1
xj

and ≻j
xi1

similarly as in the first two cases.

Using the above notation, the two systems of preferences proposed by Zhang and Zhong [32] can be
written as

1 X1 ←→ X2 −→ X3 −→ X1.
2 X1 −→ X2 −→ X3 −→ X1 ×X2.

As already mentioned above, the second system does not guarantee the existence of a stable match-
ing [3]. We focus on the idea given by the first system of preferences and extend it to k sets Xi

(i ∈ {1, 2, . . . , k}) such that

X1 ←→ X2 ←→ · · · ←→ Xj −→ Xj+1 ←→ · · · ←→ Xk −→ X1

Now any blocking k-tuple ξ = (x1, x2, . . . , xk) existing in this system for a matching µ must have all
the following properties:

• xi+1 ≻i+1
xi

µXi+1
(xi) where i ∈ {1, . . . , k − 1},

• xi−1 ≻i−1
xi

µXi−1
(xi) where i ∈ {2, . . . , j} ∪ {j + 2, . . . , k},

• x1 ≻1
xk

µX1(xk).

For a better contrast between the mixed, lexicographic and cyclic preferences, let us consider two
examples.

Example 1. Consider the following 5-sided matching problem. Let Xi = {x(1)
i , x

(2)
i }, where i ∈

{0, 1, 2, 3, 4}. The preferences of x(q)
i , q = 1, 2, given by the relation ≻

x
(q)
i

, for i ∈ {1, 2, 3} are as
follows (all sums and differences in the indices are considered modulo 5):

(x
(1)
i−1, x

(q)
i , x

(1)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(1)
i−1, x

(q)
i , x

(1)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(1)
i−1, x

(q)
i , x

(1)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(1)
i−1, x

(q)
i , x

(1)
i+1, x

(1)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(1)
i−1, x

(q)
i , x

(2)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(1)
i−1, x

(q)
i , x

(2)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(1)
i−1, x

(q)
i , x

(2)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(1)
i−1, x

(q)
i , x

(2)
i+1, x

(1)
i+2, x

(2)
i+3) ≻x

(q)
i
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≻
x
(q)
i

(x
(2)
i−1, x

(q)
i , x

(1)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(2)
i−1, x

(q)
i , x

(1)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(2)
i−1, x

(q)
i , x

(1)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(2)
i−1, x

(q)
i , x

(1)
i+1, x

(1)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(2)
i−1, x

(q)
i , x

(2)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(2)
i−1, x

(q)
i , x

(2)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(2)
i−1, x

(q)
i , x

(2)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(2)
i−1, x

(q)
i , x

(2)
i+1, x

(1)
i+2, x

(2)
i+3)

For i ∈ {0, 4} in turn, let the preferences be

(x
(1)
i−1, x

(q)
i , x

(1)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(2)
i−1, x

(q)
i , x

(1)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(2)
i−1, x

(q)
i , x

(1)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(1)
i−1, x

(q)
i , x

(1)
i+1, x

(1)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(2)
i−1, x

(q)
i , x

(1)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(1)
i−1, x

(q)
i , x

(1)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(1)
i−1, x

(q)
i , x

(1)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(2)
i−1, x

(q)
i , x

(1)
i+1, x

(1)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(1)
i−1, x

(q)
i , x

(2)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(2)
i−1, x

(q)
i , x

(2)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(1)
i−1, x

(q)
i , x

(2)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(2)
i−1, x

(q)
i , x

(2)
i+1, x

(1)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(2)
i−1, x

(q)
i , x

(2)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(1)
i−1, x

(q)
i , x

(2)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(2)
i−1, x

(q)
i , x

(2)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(1)
i−1, x

(q)
i , x

(2)
i+1, x

(1)
i+2, x

(2)
i+3).

One can easily see that for i ∈ {0, 1, 2, 3, 4}, the preferences of x(q)
i , q = 1, 2, are consistent with

the preferences on the set Xi+1 given by x
(1)
i+1 ≻i+1

x
(q)
i

x
(2)
i+1 and for i ∈ {1, 2, 3} – with the preferences on

the set Xi−1 given by x
(1)
i−1 ≻i−1

x
(q)
i

x
(2)
i−1. However, they are not consistent with any preference order in

any other set. This implies that the preferences are not in accordance with the definition of lexicographic
order by Danilov [9] but would be in accordance with the mixed preferences system X0 ←→ X1 ←→
X2 ←→ X3 −→ X4 −→ X0.

Example 2. Consider the following 4-sided matching problem. Let Xi = {x(1)
i , x

(2)
i }, where i ∈

{0, 1, 2, 3}. The preferences of x(q)
i , q = 1, 2, given by the relation ≻

x
(q)
i

, for i ∈ {0, 1, 2, 3} are as
follows (all sums and differences in the indices are considered modulo 4):

(x
(q)
i , x

(1)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(q)
i , x

(1)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(q)
i , x

(1)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(q)
i , x

(1)
i+1, x

(1)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(q)
i , x

(2)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(q)
i , x

(2)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(q)
i , x

(2)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(q)
i , x

(2)
i+1, x

(1)
i+2, x

(2)
i+3).

An analysis similar to the one in Example 1 shows that the system is consistent with the cyclic pref-
erences defined, e.g., by Boros et al. [6], which can be written in the form X0 −→ X1 −→ X2 −→



On a many-sided matching problem. . . 9

X3 −→ X0. However, reciprocal relations between sets do not occur, so the presented system is not in
accordance with our definition of mixed preference system.

4. Stable matching algorithm

Now we are going to present an algorithm (Algorithm 3) that produces stable matching in an arbitrary
k-set system with mixed preferences defined as above. It uses as a subroutine the deferred acceptance
algorithm (Algorithm 1). We start by rephrasing the latter one (Algorithm 2), so that it is consistent
with our notation and the fact that sometimes the members of the matched pairs are the tuples belonging
to a partial matching. In the following, given two tuples x and y, (x, y) denotes their concatenation.
A singleton is treated as a one-element tuple.

The input of Algorithm 2 is defined according to the notation introduced in Section 3 as follows. Two sets
of tuples are given, X = {ξ = (x1, . . . , xj) : xi ∈ Xi, i = 1, . . . , j} and Y = {ξ
= (xj+1, . . . , xj+k) : xi ∈ Xi, i = j + 1, . . . , j + k} where |X| = |Y | = n, and Xi, i = 1, . . . , j + k

are disjoint sets of agents with preferences satisfying X1 ←→ X2 ←→ · · · ←→ Xj+k. Each of X and
Y are either a set of singletons or the image of a partial stable matching of the members of X1, . . . , Xj

or Xj+1, . . . , Xj+k, respectively. Every tuple ξ from X has preferences defined on Y consistent with the
preferences of xj on Y , which are in turn consistent with the preferences of xj on Xj+1. Similarly, every
tuple ξ from Y has preferences defined on X consistent with the preferences of xj+1 on X, which are in turn
consistent with the preferences of xj+1 on Xj. Such a system of two sets of tuples with appropriately defined
preferences will be denoted by X ←→ Y .

Input: System X ←→ Y of two sets of tuples with preferences defined as above.
Output: Stable matching µX∪Y of the members of X and Y , being also a stable matching of the members of

X1, X2, . . . , Xj+k.
Initialize: Mark all elements of X ∪ Y as available for matching, i.e., set µ(x)← null for every x ∈ X ∪ Y ;
while there exists available element x ∈ X do

Choose the most preferred tuple (x, y) : y ∈ Y on y’s preference list and cross it out from this list;
if y is available then

set µX∪Y (x)← (x, y), µX∪Y (y)← (x, y), mark x and y as unavailable;
end
else if y prefers (x, y) over its current assignment (x′, y) then

set µ(x)← (x, y), µ(y)← (x, y), µ(x′)← null, mark x as unavailable, mark x′ as available;
end

end
return µX∪Y

Algorithm 2. Rephrased Gale-Shapley Deferred Acceptance Algorithm

As one can easily see, Algorithm 2 is indeed a generalization of Algorithm 1, since the latter one
is actually a simplified form of Algorithm 2, where both input sets of tuples are sets of singletons and
the notation has been adjusted accordingly. In particular, in the case where both X and Y consist of
singletons, X ←→ Y denotes the system of two sets X and Y of agents with mutual strict and complete
preferences.
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Input: k sets Xi where i ∈ {1, 2, . . . , k}, |Xi| = n. Preference lists according to the scheme:
X1 ←→ X2 ←→ · · · ←→ Xj −→ Xj+1 ←→ · · · ←→ Xk −→ X1

Output: Stable matching µ of the members of
k⋃

i=1

Xi

Initialize: Mark all elements of
k⋃

i=1

Xi as available for matching, i.e., set µ(x)← null for every x ∈
k⋃

i=1

Xi;

µ1 ← Algorithm 2 (X1 ←→ X2); // Run GSX algorithm on X1 and X2

for i = 2 to j − 1 do
µi ← Algorithm 2 (µi−1(X1)←→ Xi+1); // Run GSX algorithm on µi−1(X1) and Xi+1

end
µj+1 ← Algorithm 2 (Xj+1 ←→ Xj+2); // Run GSX algorithm on Xj+1 and Xj+2

for i = j + 2 to k − 1 do
µi ← Algorithm 2 (µi−1(Xj+1)←→ Xi+1); // Run GSX algorithm on µi−1(Xj+1) and Xi+1

end
µ← Algorithm 2 (µj−1(X1)←→ µk−1(Xj+1)); // Run GSX algorithm on µk−1(Xj+1) and µj−1(X1)

return µ; // Return the matching µ

Algorithm 3. Mixed preferences matching algorithm

Theorem 3. Matching µ generated by the Algorithm 3 is stable.

Proof. The truth of this statement is based primarily on the stability of the two-sided matchings ob-
tained by the rephrased Gale-Shapley algorithm (Algorithm 2).

First, we will go through the steps of Algorithm 3 and prove that each partial matching is stable.
The first step of either of the two parts of the algorithm employs the GS algorithm to form a stable

matching between the sets X1 and X2 (Xj+1 and Xj+2, respectively).
Now, assume that a partial matching µj−1 is combined with the set Xj+1. Assume that a tuple

ξ = (m,x) is blocking, where m = (x1, . . . , xj) ∈ X1×· · ·×Xj and x ∈ Xj+1. By the conditions listed
in the end of Section 3 this would mean in particular that xj+1 ≻j+1

xj
µXj+1

(xj) and xj ≻j
xj+1

µXj
(xj+1),

but this is impossible because it would mean the existence of a blocking pair in the partial matching µi,
resulting in a set of pairs (m,x). And this is impossible, since the two-sided matching produced by Al-
gorithm 2 is always stable. Thus, the stability of two-sided matching implies the stability of the resulting
partial matching of tuples. Finally, the fact that every partial matching obtained by Algorithm 2 is stable
follows by induction.

Let us switch to the last part of the algorithm, where the (stable) partial matchings µj−1 and µk−1

are combined. A reasoning similar to that above shows that the existence of a blocking tuple would be
equivalent to the existence of a blocking pair (mj−1,mk−1) in the resulting two-sided matching, where
mj−1 ∈ µj−1(X1) and mk−1 ∈ µk−1(Xj+1). This is obviously impossible and we are done. □

We end this section with a brief discussion of the complexity of the presented algorithm. Already
Gale and Shapley ([12]) showed that Algorithm 1 (and thus Algorithm 2) needs (n − 1)2 + 1 iterations
in the worst case. Since Algorithm 3 runs Algorithm 2 as a subroutine exactly k times, we can conclude
this section with the following observation.

Fact 4. The complexity of Algorithm 3 is O(n2k).
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5. Conclusions

Many authors investigating the topic of stable assignments endeavor to find necessary and sufficient
conditions for the existence of stable matching. So far, such conditions have not been found in the
general case of k ≥ 3. In this paper, we managed to prove that stable matching always exists for quite
restrictive, mixed preferences settings.

It may be noticed here that for any system X1 → X2 → · · · → Xs → X1 of cyclic preferences which
admits stable matching (like those of [6] or [14], see discussion in the Introduction), it is possible to
extend our results in an easy way: one can substitute any set Xi in this system with an X1

k ←→ X2
k ←→

· · · ←→ Xj
k −→ Xj+1

k ←→ · · · ←→ Xk
k −→ X1

k batch and the obvious modification of Algorithm 3
will still result with a stable matching. Let us present this idea in the following example.

Example 5. Consider the following 4-sided matching problem. Let Xi = {x(1)
i , x

(2)
i }, where i ∈

{0, 1, 2, 3}. The preferences of x(q)
i , q = 1, 2, given by the relation ≻

x
(q)
i

, for i ∈ {0, 1, 2, 3} are as
follows (all the sums and differences in the indices are considered modulo 4). For i = 1, let:

(x
(1)
0 , x

(q)
1 , x

(1)
2 , x

(1)
3 ) ≻

x
(q)
1

(x
(1)
0 , x

(q)
1 , x

(1)
2 , x

(2)
3 ) ≻

x
(q)
i

≻
x
(q)
1

(x
(1)
0 , x

(q)
1 , x

(2)
2 , x

(1)
3 ) ≻

x
(q)
1

(x
(1)
0 , x

(q)
1 , x

(2)
2 , x

(2)
3 ) ≻

x
(q)
i

≻
x
(q)
1

(x
(2)
0 , x

(q)
1 , x

(1)
2 , x

(1)
3 ) ≻

x
(q)
1

(x
(2)
0 , x

(q)
1 , x

(1)
2 , x

(2)
3 ) ≻

x
(q)
i

≻
x
(q)
1

(x
(2)
0 , x

(q)
1 , x

(2)
2 , x

(1)
3 ) ≻

x
(q)
1

(x
(2)
0 , x

(q)
1 , x

(2)
2 , x

(2)
3 ),

and for i ̸= 1 let:

(x
(q)
i , x

(1)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(q)
i , x

(1)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(q)
i , x

(1)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(q)
i , x

(1)
i+1, x

(1)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(q)
i , x

(2)
i+1, x

(1)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(q)
i , x

(2)
i+1, x

(2)
i+2, x

(2)
i+3) ≻x

(q)
i

≻
x
(q)
i

(x
(q)
i , x

(2)
i+1, x

(2)
i+2, x

(1)
i+3) ≻x

(q)
i

(x
(q)
i , x

(2)
i+1, x

(1)
i+2, x

(2)
i+3)

A brief analysis shows that the system is of the form X0 ←→ X1 −→ X2 −→ X3 −→ X0. Like in
the original version of Algorithm 3, we start by matching the elements of the sets that are in reciprocal
relations, that is, the elements of X0 ∪ X1 using Algorithm 2. After partial matching µX0∪X1 , we can
consider the preferences of the members of µX0∪X1(X0 ∪X1) = {y(q) = (x

(q)
0 , x

(q)
1 ) : q = 1, 2} given by

≻′
y(q) based on the preferences of x(q)

1 on members of X2 ∪X3 as follows (q = 1, 2):

(y(q), x
(1)
2 , x

(1)
3 ) ≻′

y(q) (y
(q), x

(1)
2 , x

(2)
3 ) ≻′

y(q) (y
(q), x

(2)
2 , x

(1)
3 ) ≻′

y(q) (y
(q), x

(2)
2 , x

(2)
3 )

The preferences of members of X3 in µ(X0 ∪X1) are based on the preferences of x(q)
3 on X0, so the

preferences on the tuples are natural restrictions of the original preferences, as listed:

(y(1), x
(1)
2 , x

(q)
3 ) ≻

x
(q)
3

(y(1), x
(2)
2 , x

(q)
3 ) ≻

x
(q)
3

(y(2), x
(2)
2 , x

(q)
3 ) ≻

x
(q)
3

(y(2), x
(1)
2 , x

(q)
3 )
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Similarly for the members of X2:

(y(1), x
(q)
2 , x

(1)
3 ) ≻

x
(q)
2

(y(2), x
(q)
2 , x

(1)
3 ) ≻

x
(q)
2

(y(2), x
(q)
2 , x

(2)
3 ) ≻

x
(q)
2

(y(1), x
(q)
2 , x

(2)
3 )

Thus, the system can be described as µX0∪X1(X0 ∪ X1) −→ X2 −→ X3 −→ µX0∪X1(X0 ∪ X1).
Moreover, there are exactly two agents in each set. We know from literature (see, e.g. [6], [14], [10],
[27]) that stable matching exists in such a system. In the current example, this can be the matching that
results with the two triples (y(1), x(1)

2 , x
(1)
3 ) and (y(2), x

(2)
2 , x

(2)
3 ). Recalling the fact that y(q) = (x

(q)
0 , x

(q)
1 ) :

q = 1, 2, we obtain the corresponding stable match in the original system, represented by the quadruples
(x

(1)
0 , x

(1)
1 , x

(1)
2 , x

(1)
3 ) and (x

(2)
0 , x

(2)
1 , x

(2)
2 , x

(2)
3 ).

Note that the method described here, similarly as in the case of most of known positive results, uses
iteratively the deferred acceptance algorithm. We are convinced that much more can not be proved using
this approach, and therefore some new ideas will be necessary to significantly strengthen the existing
positive results. On the other hand, there are only a few counterexamples that show that in some circum-
stances the stable matchings do not need to exist. However, this is far from formulating any reasonable
necessary conditions of their existence. Needless to say that the existing sufficient and necessary condi-
tions are far from each other. This motivates us to rewrite the well-known open problem once again.

Problem 6. Find a sufficient and necessary condition for the existence of stable matchings in the setting
with k ̸= 2 sets.

Another interesting question is what happens when the preferences are not strict or even incomplete.
The problems of these kinds were analyzed from several perspectives, and we are curious what happens
when one considers the mixed preference systems.

Problem 7. Does stable matching always exist in the mixed preference systems analogous to the one
described in Section 3 if the preference relations do not need to be antisymmetric or total? If not, then
what additional assumptions must be imposed?
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