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Abstract

Uncertainty, imprecise, incomplete, and inconsistent information can be found in many real-life systems and may cause more
complex problems. A neutrosophic set is an effective and useful tool to describe problems with Uncertainty, imprecise,
incomplete, and inconsistent information. The neutrosophic set is characterized by three independent degrees namely the
truth-membership degree (T ), indeterminacy-membership degree (I), and falsity-membership degree (F ). In this paper, we
present an extension of the VIKOR method for the solution of multi-criteria decision-making problems, namely neutrosophic
set-VIKOR (NS-VIKOR) in a refined neutrosophic environment. The weight of each decision-maker is considered a single-
valued neutrosophic number. The criteria for the weight of every decision-maker are also considered neutrosophic numbers.
An aggregation operator is used to combine all decision-makers’ opinions into a single opinion for a rating between criteria and
alternatives. Euclidean distances from the positive and negative ideal solutions are calculated to construct relative closeness
coefficients. Lastly, an illustrative example of tablet selection is provided to show the applicability of the proposed VIKOR
approach.
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1. Introduction

Many problems in engineering, medical science, economics, and the social sciences involve uncertainty.
Researchers proposed some theories such as the theory of fuzzy set [57], the theory of intuitionistic fuzzy
set [8], the theory of rough set [35], and the theory of vague set [19], to resolve these problems.

In many cases, it is difficult for decision-makers to precisely express a preference when solving mul-
tiple criteria decision-making (MCDM) problems with inaccurate, uncertain, or incomplete information.
Under these circumstances, Zadeh’s fuzzy sets (FSs) [57], where the membership degree is represented
by a real number between zero and one, is regarded as an important tool for solving MCDM problems
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[12, 51], fuzzy logic and approximate reasoning [58], and pattern recognition [36]. However, FSs cannot
handle those cases in which it is hard to define the membership degree using one specific value [10, 18].
To overcome the lack of knowledge of non-membership degrees, Atanassov [8] introduced intuitionistic
fuzzy sets (IFSs) – an extension of Zadeh’s FSs. Furthermore, Gau and Buehrer [19] defined vague sets.
Subsequently, Bustince [14] pointed out that vague sets and IFSs are mathematically equivalent objects.
To date, IFSs have been widely applied in solving MCDM problems [29, 50], neural networks [25, 45],
medical diagnosis [42], colour region extraction [15, 16], and market prediction [22]. IFSs simultane-
ously consider the membership degree, non-membership degree, and hesitation degree. Therefore, they
are more flexible and practical when addressing fuzziness and uncertainty compared to traditional FSs.
Moreover, in some actual cases, the membership degree, non-membership degree, and hesitation degree
of an element in IFSs may not be a specific number; hence, they were extended to interval-valued intu-
itionistic fuzzy sets (IVIFSs) [7].

IFSs and IVIFSs can handle only incomplete information but not indeterminate or inconsistent in-
formation which commonly exists in real situations. For example, if we ask the opinion of an expert
about a certain statement, he or she may state that the probability that the statement is true is be-
tween 0/5 and 0/7. The probability that the statement is false is between 0/2 and 0/4. The degree to
which he or she is not sure is between 0/1 and 0/3. For neutrosophic notation, it can be expressed as
x ([0/5, 0/7], [0/1, 0/3], [0/2, 0/4]). In another example, suppose there are 10 voters in a voting pro-
cess. In time t1, four vote yes, three vote no, and three are undecided. In neutrosophic notation, it can
be expressed as x (0/4, 0/3, 0/3). If in time t2, two vote yes, three vote no, two give up, and three are
undecided, it can be expressed as x (0/2, 0/3, 0/3). The given information is beyond the scope of the
IFS. Thus, the notion of a neutrosophic set is more general and can overcome the aforementioned issues.

The neutrosophic set generalizes the aforementioned sets from a philosophical point of view. From
a scientific or engineering point of view, the neutrosophic set and set-theoretic operators need to be
specified. Otherwise, it will be difficult to apply what is in real applications.

Generally, in the description of the shortcomings of uncertainty approaches, it can be said that ran-
dom numbers are used to explain the uncertainty of variable occurrence, but they lack the objectivity to
explain the uncertainty of variable value; gray numbers are unable to explain the degree of correctness or
incorrectness; Fuzzy logic is unable to deal with situations about which there is no knowledge so that the
decision-maker is faced with a third state called uncertainty or doubt. Intuitionistic fuzzy logic can only
deal with incomplete information. It does not provide a solution for dealing with uncertain and incon-
sistent information. This is even though in neutrosophic logic, the sum of the components, like classical
and classical fuzzy logic, is not necessarily one, and every number is between 0− and 3+, and this feature
allows neutrosophic logic to be able to deal with contradictions; That is, it can check propositions that
are true at the same time and false at the same time. Fuzzy logic cannot do this because there the sum of
components must be one [31].

Decision-making in today’s complex world has become a challenge for managers and organizations in
such a way that the multiplicity of decision-making indicators, the variety of quantitative and qualitative
criteria, and the need to consider them at the same time, the importance of the effects and consequences
of decisions and factors like that add to the complexity of decisions. Decision-making is not a linear
and one-dimensional process, and therefore a successful decision-maker is someone who examines the
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issue of the decision from different aspects and uses several criteria jointly and simultaneously in order
to choose the best option based on different criteria. In other words, multi-criteria decision-making is
a promising framework for evaluating multi-dimensional, contradictory and inconsistent issues in a way
that includes the range of personal and individual issues to large and macro issues, and the decision-maker
tries to choose the best option based on various criteria among several choose the available option; In
this regard, it can be concluded that the growing trend of using neutrosophic logic in the field of decision-
making topics, including the use of multi-criteria decision-making techniques, shows its effectiveness in
explaining uncertainty [31].

Therefore, Wang et al. [49] proposed a single-valued neutrosophic set (SVNS) and provided the
set-theoretic operators and various properties of SVNSs. Recently, Ye [54] proposed similar measures
among interval neutrosophic sets and applied them to multi-criteria decision-making problems under an
interval neutrosophic environment. Also, Abdel-Baset and his colleagues have done many studies in
the neutrosophic environment, including supplier selection with group TOPSIS technique under type-2
neutrosophic number [6], project selection with a hybrid neutrosophic multiple criteria group decision-
-making [2], evaluation hospital medical care systems based on plithogenic sets [3], selecting supply
chain with a hybrid plithogenic decision-making approach [4], solve transition difficulties with Utilising
neutrosophic theory [5], Evaluation of the green supply chain management practices [1].

An SVNS is an instance of a neutrosophic set, which give the additional possibility to represent
uncertain, imprecise, incomplete, or inconsistent information existing in the real world. It would be more
suitable to apply indeterminate and inconsistent information measures in decision-making. However, the
connector in the fuzzy set is defined concerning T, i.e., membership only. Hence, the information on
indeterminacy and non-membership is lost. The connectors in the IFS are defined concerning T and
F, i.e., membership and non-membership only. Hence, the indeterminacy is what is left from 1. On
the other hand, in the SVNS, they can be defined with respect to any of them (no restriction). So, the
notion of SVNSs is more general and overcomes the aforementioned issues. On the other hand, SVNSs
can be used for scientific and engineering applications, because SVNS theory is valuable for modeling
uncertain, imprecise, and inconsistent information. Due to its ability to easily reflect the ambiguous
nature of subjective judgments, the SVNS is suitable for capturing imprecise, uncertain, and inconsistent
information in multi-criteria decision-making analysis [53].

The VIKOR (Vlse Kriterijumsk Optimizacija Kompromisno Resenje in Serbian) method was intro-
duced as an applicable technique to be implemented within an MCDM problem. It was developed
as a multi-attribute decision-making method to solve a discrete decision-making problem with non-
commensurable (different units) and conflicting criteria [33, 34]. This method focuses on ranking and
selecting from a set of alternatives and determining the compromise solution for a problem with conflict-
ing criteria, which can help decision-makers reach a final solution.

The VIKOR method was developed to solve MCDM problems that had non-commensurable and
conflicting criteria. Many researchers have extended this method to a variety of fuzzy environments.
Opricovic [32, 34] proposed a fuzzy VIKOR method in which both the attribute values and weights could
be triangular fuzzy numbers. Sayadi et al. [40] extended the VIKOR method to a decision-making problem
with interval numbers. Ju and Wang [23] presented an extension of the VIKOR method for a multiple-
criteria group decision-making problem based on the two-tuple linguistic model. Wan et al. [48] developed
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an extended VIKOR method for multi-attribute group decision-making using triangular intuitionistic fuzzy
numbers. Jiang and Shang [21] extended the VIKOR method to group decision-making by employing an
optimization-based method to integrate the decision-makers’ judgments. Liao et al. developed a hesitant
fuzzy linguistic VIKOR (HFL-VIKOR) method. Qin et al. [38] presented a novel extension of the VIKOR
method under an interval type-2 fuzzy environment.

Over the last decade, the VIKOR method has been extensively researched and applied to a variety
of problems. Bazzazi et al. [11] proposed a VIKOR method to derive a preference order for open-pit
mining equipment. Jahan et al. [20] presented a comprehensive VIKOR method for material selection.
Shemshadi et al. [41] developed a fuzzy VIKOR method with entropy measures for objective weighting
in a best-supplier selection problem. Liou et al. [26] utilized a modified VIKOR method to improve do-
mestic airline service quality. Yuenur and Demirel [56] proposed an extended VIKOR method to solve an
insurance company problem under a fuzzy environment. Chang [17] developed a fuzzy VIKOR method
to evaluate hospital service quality in Taiwan. Kim and Chung [24] proposed a fuzzy VIKOR model to
assess the vulnerability of water supply to climate change and variability in South Korea. Safari et al. [39]
identified and evaluated enterprise architecture risks using a failure mode and effects analysis (FMEA)
and a fuzzy VIKOR method. Liu et al. [27] used the VIKOR method to solve a site selection problem in
waste management. Liu et al. [28] further proposed an approach for FMEA based on the combination of
weighting and a fuzzy VIKOR method. Those studies demonstrate the rapid development of the VIKOR
method and its successful application to diverse MCDM problems. However, although defuzzification
is important in the fuzzy VIKOR method, it has seldom been employed in previous research. For this
reason, the defuzzification step should be explicitly considered in the fuzzy VIKOR method framework.
The VIKOR method can efficiently determine compromise solutions to problems with conflicting cri-
teria; hence, it is suitable for machine tool selection problems. Therefore, in this paper, we develop a
new multi-criteria group decision-making (MCGDM) framework for machine tool selection, based on
the fuzzy VIKOR method.

In the VIKOR method, the numerical measures of the relative importance of criteria and the perfor-
mance of each alternative in terms of these criteria are crucial. It is difficult to precisely determine the
exact data, as human judgment is often vague under certain situations and conditions. Fuzzy sets and
other nonstandard fuzzy sets [52] are efficient in tackling such uncertainties present in the provided data.
Therefore, the extension of the VIKOR method to the non-standard fuzzy environment is natural. Out of
these non-standard fuzzy sets, IFSs are more efficient in dealing with uncertainty. In many situations, the
available information is not sufficient for the exact definition of the degree of membership for a certain
element. There may be some degree of hesitation between membership and non-membership. Thus, in
many real-life problems, due to the insufficiency in information availability, IFSs with little-known mem-
bership grades are appropriate. IFSs are particularly useful in dealing with uncertainty. In this paper,
criteria values, and criteria weights are considered linguistic variables.

The present paper is devoted to the extension of the VIKOR approach for multi-attribute group
decision-making (MAGDM) in a refined neutrosophic environment.
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2. Neutrosophic sets

Neutrosophic set is a part of neutrosophy that studies the origin, nature, and scope of neutralities, as well
as their interactions with different ideational spectra [43]. It is a powerful general formal framework that
generalizes the sets of fuzzy and intuitionistic fuzzy from the philosophical point of view. We present a
brief review of the general concepts of neutrosophic set [9, 43]:

Definition 1. Let X be the space of the objects and x ∈ X . A neutrosophic set A in X is defined
by three functions: truth-membership function TA(x), an indeterminacy membership function IA(x),
and falsity-membership function FA(x) . These functions TA(x), IA(x) and FA(x) are defined on real
standard or real non-standard subsets of ]0−, 1+ [. In other words, TA(x) : X →]0−, 1+ [, IA(x) : X →
]0−, 1 + [ and FA(x) : X →]0−, 1 + [. We have no restriction on the sum of TA(x), IA(x) and FA(x);
thus, 0− ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+ [46, 47].

Definition 2. The complement of a neutrosophic set A is denoted by Ac and is defined as T c
A(x)

= {1+} − TA(x), IcA(x) = {1+} − IA(x), and F c
A(x) = {1+} − FA(x) for every x in X [43].

Definition 3. A neutrosophic set A is contained in the other neutrosophic set B, A ⊆ B, if and only
if inf TA(x) ≤ inf TB(x), supTA(x) ≤ supTB(x), inf IA(x) ≥ inf IB(x), sup IA(x) ≥ sup IB(x),
inf FA(x) ≥ inf FB(x) and supFA(x) ≥ supFB(x) for every x in X .

2.1. Single-valued neutrosophic sets

An SVNS is an instance of a neutrosophic set that can be used in real scientific and engineering applica-
tions. In the following section, we introduce the definition of an SVNS [49].

Definition 4. Let X be a space of points (objects) with generic elements in X denoted by x. An SVNS
A in X is characterized by the truth-membership function TA(x), indeterminacy-membership function
IA(x), and falsity-membership function FA(x). For each point x in X , TA(x), IA(x), FA(x) ∈ [0, 1]

Therefore, an SVNS A can be written as:

A = {⟨x, TA(x), IA(x), FA(x)⟩|x ∈ X} (1)

The following expressions are defined in [22] for SVNSs A, B:

1. A ⊆ B If and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x) for any x in X .

2. A = B if and only if A ⊆ B, B ⊆ A.

3. Ac = {⟨x, FA(x), 1− IA(x), TA(x)⟩|x ∈ X}.

For convenience, an SVNS A is denoted by the simplified symbol A = {TA(x), IA(x), FA(x)} for any
x in X . For two SVNSs A and B, the operational relations are defined by [49].

1. A ∪B = ⟨max(TA(x), TB(x)), min(IA(x), IB(x)), V min(FA(x), FB(x))⟩ for any x in X .

2. A ∩B = ⟨min(TA(x), TB(x)), max(IA(x), IB(x)), max(FA(x), FB(x))⟩ for any x in X .
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3. A⊕B = ⟨TA(x) + TB(x)− TA(x) · TB(x), IA(x) · IB(x), FA(x) · FB(x)⟩ for any x in X .

4. A⊗B = ⟨TA(x) ·TB(x), IA(x)+ IB(x)− IA(x) · IB(x),FA(x)+FB(x)−FA(x) ·FB(x)⟩ for any x in X.

Wang et al. [49] defined the two operators – truth-favourite (△) and falsity-favourite (▽) to remove
the indeterminacy in the SVNSs and transform them into IFSs or paraconsistent sets. These two operators
are unique on SVNSs, which are given as [49].

1. △A = ⟨min(TA(x) + IA(x), 1), 0, FA(x)⟩ for any x in X .

2. ▽A = ⟨TA(x), 0,min(FA(x) + IA(x), 1)⟩ for any x in X .

2.2. Neutrosophic refined set

Let A be a neutrosophic refined set.

A = {⟨x, (T 1
A(xi), T

2
A(xi), . . . , T

m
A (xi)), (I

1
A(xi), I

2
A(xi),

. . . , ImA (xi)), (F
1
A(xi), F

2
A(xi), . . . , F

m
A (xi))⟩ : x ∈ X}

(2)

where T j
A(xi) : X ∈ [0, 1], IjA(xi) : X ∈ [0, 1], F j

A(xi) : X ∈ [0, 1], j = 1, 2, . . . , m such that
0 ≤ supT j

A(xi) + sup IjA(xi) + supF j
A(xi) ≤ 3, j = 1, 2, . . . , m for any x ∈ X . Now, (T j

A(xi), I
j
A(xi),

F j
A(xi)) are the truth-membership, indeterminacy membership, and falsity-membership sequences of the

element x, respectively. Also, m is called the dimension of neutrosophic refined sets A [44].

2.3. Euclidean distance between two SVNSs

Let A = {⟨xi : TA(xi), IA(xi), FA(xi)⟩, i = 1, 2, . . . , n} and B = {⟨xi : TB(xi), IB(xi), FB(xi)⟩,
i = 1, 2, . . . , n} be SVNSs. Then the Euclidean distance between two SVNSs A and B can be defined
as follows [30]:

E(A,B) =

(
n∑

i=1

((TA(xi)− TB(xi))
2) + ((IA(xi)− IB(xi))

2 + (FA(xi)− FB(xi))
2)

)1/2

(3)

The normalized Euclidean distance between two SVNSs A and B can be defined as follows:

EN(A,B) =

(
1

3n

n∑
i=1

((TA(xi)− TB(xi))
2) + ((IA(xi)− IB(xi))

2 + (FA(xi)− FB(xi))
2)

)1/2

(4)

2.4. Crispfication of A neutrosophic set

Let A = {⟨xi : TAj
, IAj

(xi), FAj
(xi)⟩, j = 1, 2, . . . , n} be n SVNSs . The equivalent crisp number of

each Wj can be defined as [13]:

W c
j =

1−
(
1

3

(
(1− TAj

(xi))
2 + (IAj

(xi))
2 + (FAj

(xi))
2
))1/2

n∑
i=1

(
1−

(
1

3

(
(1− TAj

(xi))2 + (IAj
(xi))2 + (FAj

(xi))2
))1/2

) W c
j ≥ 0 ,

p∑
k=1

W c
j = 1 (5)



Neutrosophic VIKOR approach. . . 127

2.5. Aggregation operator

In the present problem, there are p alternatives. The aggregation operator [15] applied to neutrosophic
refined set is defined as follows [55]:

F (D1, D2, . . . , Dr) =

〈
r∏

i=1

(T k
ij)

wi ,

r∏
i=1

(Ikij)
wi ,

r∏
i=1

(F k
ij)

wi

〉

d̃kj =

〈
r∏

i=1

(T k
ij)

wi ,
r∏

i=1

(Ikij)
wi ,

r∏
i=1

(F k
ij)

wi⟩ or d̃kj = ⟨T̃kj, Ĩkj, F̃kj

〉 (6)

where i = 1, 2, . . . , r; j = 1, 2, . . . , q; k = 1, 2, . . . , p.

2.6. VIKOR approach

The VIKOR approach is employed to identify the best alternative based on the concept of the com-
promise solution. The best compromise solution reflects the shortest Euclidean distance from the pos-
itive ideal solution and the largest Euclidean distance from the negative ideal solution. The VIKOR
approach can be presented as follows: Assume that A = {A1, A2, . . . , Am} is the set of alternatives
with the set C of n criteria, C = {C1, C2, . . . , Cn}, D = (dij)m×n is the decision matrix (Table 1), and
W = {W1,W2, . . . , Wn} is the weight vector of criteria. Here, dij, i = 1, 2, . . . , m, are all single-
valued neutrosophic numbers. Here, λ is the vector of experts’ weight, based on which the opinion of
experts is aggregated.

Table 1. Single-valued neutrosophic set decision matrix
D = (dij)m×n

Alternatives
Criteria

C1 C2 . . . Cn

A1 ⟨d11⟩ ⟨d12⟩ . . . ⟨d1n⟩
A2 ⟨d21⟩ ⟨d22⟩ . . . ⟨d2n⟩
...

...
...

...
Am ⟨dm1⟩ ⟨dm2⟩ . . . ⟨dmn⟩

Wj w1 w2 . . . wn

Here, dij, i = 1, 2, . . . , m and j = 1, 2, . . . , n are all single-valued neutrosophic numbers. Here,
λ is the vector of experts’ weight, based on which the opinion of experts is aggregated.

Step 1. Aggregate the decision-makers (DMs’) opinions to construct a neutrosophic
decision matrix. Let rkij = (T k

ij, Ikij, Ikij) be the neutrosophic number provided by DMk on the
assessment of Ai with respect to Cj . The aggregated neutrosophic rating of alternatives concerning each
criterion is calculated based on the neutrosophic weighted averaging (NWA) operator as:

rkij = NWA
(
r
(1)
ij , r

(2)
ij , . . . , r

(l)
ij

)
=

〈
1−

l∏
k=1

(
1− T

(k)
ij

)λk

,
l∏

k=1

(
I
(k)
ij

)λk

,
l∏

k=1

(
F

(k)
ij

)λk

〉
(7)
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Step 2. Determine the weights of the criteria. There are various ways to determine the weights

of the criteria. Let wk
j = (T k

j , I
k
j , F

k
j ) be the weight of criterion Cj given by Kth decision-maker DM .

The aggregated neutrosophic weights (wj) of criteria are calculated by

wj = λ1w
(1)
j ∪ λ2w

(2)
j ∪ · · · ∪ λkw

(k)
j =

〈
1−

l∏
k=1

(
1− T

(k)
ij

)λk

,

l∏
k=1

(
I
(k)
ij

)λk

,

l∏
k=1

(
F

(k)
ij

)λk

〉
(8)

where wj = (Tj, Ij, Fj), j = 1, 2, . . . , n

Step 3. Determine the neutrosophic positive ideal solutions (NPIS ). A∗
j = (T ∗

j , I
∗
j , F

∗
j )

and the neutrosophic negative ideal solutions (NNIS)

A∗
j =

 max
i

rij for benefit criteria

min
i

rij for cost criteria
i = 1, 2, . . . , m (9)

A−
j =

 min
i

rij for benefit criteria

max
i

rij for cost criteria
i = 1, 2, . . . , m (10)

Step 4. Compute the normalized neutrosophic difference (d̄ij) using Euclidean distance.

d̄ij =
d
(
A∗

j , rij
)

d
(
A∗

j , A
−
j

) (11)

d
(
A∗

j , rij
)
=

(
1

2

((
T ∗
j − Tij

)2
+
(
I∗j − Iij

)2
+
(
F ∗
j − Fij

)2))1/2

(12)

d
(
A∗

j , A
−
j

)
=

(
1

2

((
T ∗
j − T−

j

)2
+
(
I∗j − I−j

)2
+
(
F ∗
j − F−

j

)2))1/2

(13)

According to the calculated distance of each Aj , the normalized distance matrix is determined as
follows:

C1 C2 · · · Cm

D̄ =

A1

A2

...
An

∣∣∣∣∣∣∣∣∣∣
d̄11 d̄12 · · · d̄1m

d̄21 d̄22 · · · d̄2m
...

...
...

...
d̄n1 d̄n2 · · · d̄nm

∣∣∣∣∣∣∣∣∣∣
Step 5. Compute the values Si, Ri, and Qi, i = 1, 2, . . . , m. According to matrix D̄, values of
Si, Ri, Qi for each alternative are determined using the following equations:

Sj =
n∑

j=1

w̄j d̄ij, Rj = max
j

(w̄j d̄ij)

Qj =
v(Sj − S∗)

(S− − S∗)
+

(1− v)(Rj −R∗)

(R− −R∗)
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S∗ = min
j

Sj, S− = max
j

Sj, R∗ = min
j

Rj, R
− = max

j
Rj

where wi is the weight of criteria, v are the weights of maximum group utility.
Step 6. Rank the alternatives. Sorting by the values S, R, and Q in increasing order. The three

ranking lists represent the final result.

Step 7. Propose a compromise solution of the alternative (a
′
). It is ranked the best by

measure Q (minimum) if the two following conditions are satisfied [34]:

1. Acceptable advantage. Q(a
′′
)−Q(a

′
) ≥ DQ, where (a

′′
) is the alternative with second position in

the ranking list by Q; DQ =
1

(M − 1)
; M is the number of alternatives.

2. Acceptable stability in decision-making: Alternative (a
′
) must also be ranked best by S and/or R.

The best alternative ranked by Q is the one with the minimum value of Q. The main ranking result
is the compromise ranking list of alternatives.,

3. Numerical example

In this section, we present a numerical example from the paper by Pramanik et al. [37] to illustrate
how the proposed method can be used. Suppose that the owner of a small shop wants to buy a tab.
After initial screening, three tabs from three different companies (A1, A2, A3) are selected for further
evaluation. A committee of four decision-makers, namely D1, D2, D3, D4, has been formed to choose
the most suitable tablet concerning five main criteria C1 − C5. The criteria are as follows:

1) technical specifications (C1), 2) quality (C2), 3) supply chain reliability (C3), 4) finances (C3), 5)
ecology (C5). In the present problem, r = 4, j = 1, 2, 3, 4, 5, i = 1, 2, 3.

Step 1. Constructing the decision matrix. The results of the evaluation of alternatives by four
experts, based on the criteria, are shown in Table 2.

Table 2. Single-valued neutrosophic set decision matrix

D1 C1 C2 C3 C4 C5

A1 (0.7, 0.2, 0.1) (0.8, 0.3, 0.3) (0.4, 0.1, 0.2) (0.5, 0.1, 0.1) (0.6, 0.4, 0.1)
A2 (0.6, 0.2, 0.1) (0.7, 0.4, 0.2) (0.3, 0.2, 0.1) (0.3, 0.1, 0.2) (0.8, 0.2, 0.2)
A3 (0.7, 0.1, 0.2) (0.6, 0.2, 0.2) (0.4, 0.4, 0.4) (0.6, 0.1, 0.1) (0.7, 0.1, 0.1)
D2 C1 C2 C3 C4 C5

A1 (0.8, 0.2, 0.1) (0.7, 0.1, 0.2) (0.5, 0.1, 0.1) (0.6, 0.2, 0.3) (0.5, 0.6, 0.1)
A2 (0.7, 0.3, 0.2) (0.6, 0.1, 0.1) (0.6, 0.2, 0.3) (0.5, 0.1, 0.2) (0.4, 0.5, 0.2)
A3 (0.6, 0.2, 0.2) (0.8, 0.2, 0.1) (0.6, 0.1, 0.2) (0.7, 0.1, 0.1) (0.5, 0.5, 0.1)
D3 C1 C2 C3 C4 C5

A1 (0.9, 0.1, 0.1) (0.5, 0.3, 0.2) (0.6, 0.4, 0.1) (0.2, 0.5, 0.3) (0.4, 0.4, 0.4)
A2 (0.8, 0.2, 0.1) (0.6, 0.3, 0.1) (0.5, 0.4, 0.1) (0.4, 0.2, 0.1) (0.5, 0.3, 0.2)
A3 (0.8, 0.1, 0.2) (0.7, 0.1, 0.1) (0.6, 0.3, 0.2) (0.4, 0.1, 0.1) (0.6, 0.1, 0.2)
D4 C1 C2 C3 C4 C5

A1 (0.6, 0.1, 0.1) (0.8, 0.2, 0.1) (0.9, 0.2, 0.3) (0.7, 0.4, 0.3) (0.7, 0.3, 0.4)
A2 (0.7, 0.2, 0.01) (0.7, 0.1, 0.3) (0.7, 0.3, 0.1) (0.6, 0.5, 0.1) (0.6, 0.2, 0.4)
A3 (0.7, 0.1, 0.2) (0.6, 0.1, 0.2) (0.6, 0.2, 0.1) (0.7, 0.1, 0.3) (0.7, 0.3, 0.2)



130 H. Sayyadi Tooranloo et al.

Step 2. The neutrosophic weights of decision-makers are considered

K1 K2 K3 K4

W (0.8, 0.1, 0.1) (0.9, 0.2, 0.1) (0.5, 0.4, 0.1) (0.8, 0.2, 0.2)

Using Equation (5), the equivalent crisp weights are:

K1 K2 K3 K4

W 0.261996 0.261996 0.22366 0.2523

Step 3. The aggregated decision matrix can be determined by applying the aggregated operator (6)
and calculated as in Table 3:

Table 3. The aggregated neutrosophic decision matrix

C1 C2 C3 C4 C5

A1 (0.738, 0.144, 0.1) (0.695, 0.203, 0.187) (0.57, 0.162, 0.158) (0.465, 0.244, 0.225) (0.543, 0.414, 0.193)
A2 (0.693, 0.222, 0.067) (0.65, 0.184, 0.158) (0.499, 0.259, 0.133) (0.436, 0.175, 0.144) (0.559, 0.278, 0.238)
A3 (0.693, 0.12, 0.2) (0.67, 0.144, 0.143) (0.54, 0.219, 0.201) (0.593, 0.1, 0.132) (0.619, 0.201, 0.139)

Step 4. Determining the weights of the criteria. The weight matrix (Table 3) of the criteria described
in this problem can be displayed as follows (Table 4).

Table 4. Weight matrix of criteria

C1 C2 C3 C4 C5

D1 (0.9, 0.1,0.2) (0.8,0. 2,0.3) (0.5,0.4,0.3) (0.5,0.2,0.15) (0.5,0.4,0.4)
D2 (0.8,0.2,0.1) (0.7,0.1,0.3) (0.6,0.3,0.3) (0.8,0.25,0.1) (0.6,0.3,0.4)
D3 (0.6,0.3,0.2) (0.5,0.3,0.2) (0.8,0.2,0.1) (0.7,0.2,0.1) (0.4,0.4,0.4)
D4 (0.6,0.1,0.2) (0.6,0.1,0.2) (0.6,0.2,0.3) (0.5,0.1,0.2) (0.3,0.2,0.1)

The aggregated weights for all criteria are presented below:

C1 C2 C3 C4 C5

(0.725, 0.15, 0.166) (0.653, 0.15, 0.25) (0.604, 0.27, 0.241) (0.608, 0.178, 0.133) (0.444, 0.31, 0.281)

Step 5. The aggregated weighted neutrosophic (wj) of criteria. Based on the obtained weights
for the criteria and the aggregated evaluation of the matrix of alternatives (above table), the aggregated
weighted neutrosophic matrix is as follows (Table 5):

Table 5. The aggregated weighted neutrosophic decision matrix

C1 C2 C3 C4 C5

A1 (0.535, 0.272, 0.249) (0.454, 0.323, 0.39) (0.344, 0.389, 0.361) (0.283, 0.378, 0.328) (0.241, 0.595, 0.42)
A2 (0.502, 0.339, 0.222) (0.424, 0.306, 0.369) (0.302, 0.459, 0.342) (0.265, 0.322, 0.258) (0.248, 0.502, 0.452)
A3 (0.502, 0.252, 0.333) (0.437, 0.272, 0.357) (0.326, 0.43, 0.394) (0.361, 0.26, 0.247) (0.275, 0.449, 0.381)
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Step 6. Since the present problem pertains to the decision to buy a tablet, the decision matrix is a
profit-type matrix. Using (5) and (6), the NPIS and NNIS are presented below:

C1 C2 C3 C4 C5

A+ (0.535, 0.252, 0.222) (0.454, 0.272, 0.357) (0.344, 0.389, 0.342) (0.361, 0.26, 0.247) (0.275, 0.449, 0.381)
A− (0.502, 0.339, 0.333) (0.424, 0.323, 0.39) (0.302, 0.459, 0.394) (0.265, 0.378, 0.328) (0.241, 0.595, 0.452)

Step 7. The distance between the weighted matrix and the positive ideal. The results are given in
Table 6.

Table 6. The distance between the weighted matrix
and the positive ideal

dij C1 C2 C3 C4 C5

A1 0.0341 0.060 0.019 0.163 0.155
A2 0.093 0.047 0.082 0.114 0.093
A3 0.115 0.017 0.068 0 0

Also, the d̄ij matrix is as follows (Table 7).

Table 7. The normalized neutrosophic distance

dij C1 C2 C3 C4 C5

A1 0.053 0.093 0.029 0.251 0.240
A2 0.144 0.072 0.127 0.177 0.143
A3 0.178 0.026 0.106 0 0

Step 8. The results of applying the extended VIKOR method of neutrosophic numbers to solve this
problem for the final argument are presented in Table 8.

Table 8. Ranking of alternatives
by S, R, and Q in ascending order

A1 A2 A3 Ranking order
Sj 0.129 0.132 0.066 A3 > A1 > A2

Rj 0.05 0.04 0.04 A2 > A3 > A1

Qj 0.178 0.026 0.106 A3 > A1 > A2

The utility threshold value is Q(a
′′
)−Q(a

′
) ≥ 1

M − 1
. Following the judgment standards and rules,

it is found that A3 is weakly superior to A1, A2. In other words, the final order relation is A3 > A1 > A2,
with A3 the best supplier.

4. Conclusions

The information on rating values considered in multi-attribute decision-making (MADM) problems is
imprecise, indeterminate, incomplete, and inconsistent. NS is a useful tool that can capture all these types
of information in the MADM process. In this paper, we have investigated the MADM problem in which



132 H. Sayyadi Tooranloo et al.

rating values are considered with NSs. To extend the VIKOR method for MADM, we first define the
normalized Hamming distance of NS. Having defined the positive ideal solution (PIS) and the negative
ideal solution (NIS), we calculate the distance between each alternative and the ideal alternatives (PIS and
NIS). Then, we determine S, R, and Q values to obtain the ranking order of all the alternatives. Finally,
we provide an illustrative example to show the validity and effectiveness of the proposed approach. This
paper presents the VIKOR approach for MAGDM for a refined neutrosophic environment. In the future,
we will extend the proposed approach to MADM under an SVNHFS environment with unknown weight
information and MADM with the interval-valued neutrosophic hesitant fuzzy environment.
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