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Abstract

We formulate and study a two-player – duel – game as a nonzero-sum discounted stochastic game. Players P1, andP2 are
standing in place and, in each turn, one or both may shoot at the other player. If Pn shoots at Pm (m ̸= n), either he hits and
kills him (with probability pn) or he misses him and Pm is unaffected (with probability 1− pn). The process continues until
at least one player dies; if nobody ever dies, the game lasts an infinite number of turns. Each player receives a unit payoff for
each turn in which he remains alive; no payoff is assigned to killing the opponent. We show that the always-shooting strategy
is a NE but, in addition, the game also possesses so-called cooperative (i.e., non-shooting) Nash equilibria in both stationary
and nonstationary strategies. A certain similarity to the repeated Prisoner’s Dilemma is also noted and discussed.

Keywords: game theory, Nash equilibrium, duel

1. Introduction

In this paper, we study a two-player, duel game played in turns. Players P1, andP2 are standing in place,
and, in each turn, one or both may shoot at the other player. If Pn shoots at Pm (m ̸= n), either he hits
and kills him or he misses him and Pm is unaffected; the respective probabilities are pn and 1− pn. The
process continues until at least one player dies; it is possible that nobody ever dies and the game lasts
an infinite number of turns. We formulate the above as a nonzero-sum discounted stochastic game. The
game rules and the player’s payoff function will be presented in the next section.

Little work has been done on the duel. As far as we know, it has only been studied as a preliminary
step in the study of the truel, in which three stationary players shoot at each other. In early works on
the truel [17, 22, 24, 25, 27], the postulated game rules guarantee the existence of exactly one survivor
(winner). A more general analysis appears in [23] which considers the possibility of cooperation
between the players. This idea is further studied in [19–21, 33]. Recent papers on the truel include
[3, 4, 7, 9–11, 13, 30–32] 1.

1Let us also note the existence of extensive literature on a quite different type of duel games, which essentially are
games of timing [6, 14, 18]. However, this literature is not relevant to the game studied in this paper.
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Many applications of both the duel and the truel have been proposed. A truel model of behavior in a
confrontation situation appears in [12] and in politics in [8]. Opinion dissemination has been modeled
as a truel in [4]. In [15] business applications have been considered and it is shown that the nuel (an
N -person generalization of the duel and truel) the model explains, under appropriate conditions, why
weaker companies may strengthen, and why the strongest companies weaken until all companies con-
verge to a common level. The truel has been used in legal studies, as a model of equality issues. Most
importantly, the truel has been used to explain the maintenance of biological variation in an ecosystem
[5], to model reproduction mechanisms [1] and to explain the existence of “suicidal strategies” used by
cells and bacteria [2, 26],

All the above-mentioned works are limited to the analysis of stationary strategies. As shown in the
sequel, the duel also possesses Nash equilibria in nonstationary strategy; it is reasonable to assume that
this also holds for the truel and the nuel.

While the above papers focus on various forms of the truel and/or nuel, we believe that the duel is
interesting in its own right and has not received the attention it deserves. In particular, we will show that,
under our formulation, the duel has a certain similarity to the repeated Prisoner’s dilemma and possesses
left cooperative Nash equilibria in nonstationary strategies.

This paper is structured as follows. In Section 2, we define the game rigorously. In Section 3, we
introduce several stationary and nonstationary strategies and compute their expected payoffs. In Section
4, we prove that certain pairs of the previously defined strategies are Nash equilibria. In Section 5, we
discuss the obtained results and the connection of the duel to the repeated Prisoner’s Dilemma. Finally,
in Section 6, we summarize our results and propose some future research directions.

2. The game

In this section, we present a rigorous game theoretic formulation of the duel following [16, 28]. The
game involves players P1, P2 and proceeds at discrete time steps (rounds) t ∈ {1, 2, . . . }. The state at
time t is denoted by s (t) and summarizes all relevant information at this time [16]. In the duel game, the
state is

s (t) = (s1 (t) , s2 (t)) ∈ S = {(1, 1) , (1, 0) , (0, 1) , (0, 0) , (τ, τ)}

In more detail, for n ∈ {1, 2}, sn (t) is Pn’s state at t ∈ {0, 1, 2, . . . } and can be

1 : when Pn is alive,
0 : when Pn dies in the current round,
τ : when one or both players have died in a previous round

In a stochastic game, each player performs an action at each round [16]. In the duel game, Pn’s action
at t ∈ {1, 2, . . . } is fn (t), which can be 1 (Pn is shooting) or 0 (Pn is not shooting). If sn (t− 1) ̸= 1,
Pn cannot shoot at t and fn (t) must equal 0; if sn (t− 1) = 1 then fn (t) can be either 0 or 1. When
fn (t) = 1, s−n (t) = 0 (i.e., P−n dies2) with probability pn ∈ (0, 1) and s−n (t) = 1 with probability

2In the sequel, we use the standard game theoretic notation [28] by which s−1 = s2, s−2 = s1. The same notation is used
for players, actions, etc.
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1 − pn. We set f (t) = (f1 (t) , f2 (t)) and p = (p1, p2). Note that we have assumed that p1, p2 are
different from both zero and one.

The game starts at an initial state s (0); obviously, the main case of interest is s (0) = (1, 1). At times
t ∈ {1, 2, . . . } the players choose simultaneously the actions f1 (t), f2 (t) and the game moves to state
s (t) according to the conditional state transition probability Pr (s (t) |s (t− 1) , f (t)) [16].

1,1

1,0

0,0

0,1

τ, τ

f = (0, 0) : 1
f = (0, 1) : 1 − p2

f = (1, 0) : 1 − p1

f = (1, 1) : (1 − p1)(1 − p2)

f = (1, 0) : p1

f = (1, 1) : p1(1 − p2)

f = (1, 1) : p1p2

f = (0, 1) : p2

f = (1, 1) : (1 − p1)p2

f = (0, 0) : 1

f = (0, 0) : 1

f = (0, 0) : 1

a = (0, 0) : 1

1

Figure 1. State transition diagram of the duel game.

In Figure 1, we present the state transition diagram, in which the action-dependent transition probabil-
ities are written next to the edges; it is easily verified that these probabilities conform to the game rules.
The figure shows that the game starting at (1, 1), lasts an infinite number of rounds and two possibilities
exist.

1. The game always stays in (1, 1) (no player is ever killed).
2. At some t′ the game moves to a state s ∈ {(1, 0) , (0, 1) , (0, 0)} (one or both players are killed)

and at t′ + 1 the game moves to the terminal state (τ, τ), where it stays for ever after.
We use the concept of history presented in [16]. A finite history is a sequence

h = s (0) f (1) s (1) · · · f (T ) s (T )

an infinite history is an h = s (0) f (1) s (1) · · · . An admissible history conforms to the game rules; the
set of all admissible finite (infinite) histories is denoted by H (H∞).

We define round and total payoffs as in [16]. Namely, for every history h and for n ∈ {1, 2}, we
define Pn’s total payoff function to be3

Qn (h) =
∞∑
t=0

γtqn (s (t))

where γ ∈ (0, 1) is the discounting factor and qn : S → R is Pn’s round payoff function:

3Note that in accordance to [16], we use the unscaled total payoff; but we will also use the “scaled” version (popular with
many authors) as explained in Sections 3 and 4.
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q1 (τ, τ) = 0, q2 (τ, τ) = 0

q1 (1, 1) = 1, q2 (1, 1) = 1

q1 (1, 0) =
1

1− γ
, q2 (1, 0) = 0

q1 (0, 1) = 0, q2 (0, 1) =
1

1− γ

q1 (0, 0) = 0, q2 (0, 0) = 0

The above values indicate that each player receives one payoff unit for every turn in which he stays

alive; the payoff q1 (1, 0) =
1

1− γ
incorporates the infinite payoff sequence

∞∑
t=0

γt1 =
1

1− γ
(this will

result when P1 kills P2 and stays alive for an infinite number of subsequent turns). Note that a player
receives no direct payoff from killing his opponent, but he has the indirect benefit of removing the possi-
bility of being killed himself.

We use the concept of strategy presented in [16]. A strategy for Pn is a function σn : H → [0, 1]

which corresponds to every finite history h the probability

xn = σn (h) = Pr (Pn shoots at P−n)

A stationary strategy (called a Markov strategy in [16]) is a σn depending only on the current state s,
hence we simply write xn = σn (s). A strateg profile is a vector σ = (σ1, σ2). We denote the set of all
admissible strategies (those which are compatible with the game rules) by Σ and the set of all admissible
stationary strategies by Σ.

Given the initial state s (0) and the strategies σ1 and σ2, used by P1 and P2, respectively, a probability
measure is defined on the set of all infinite histories. Since γ ∈ (0, 1), the total expected payoffs

∀n ∈ {1, 2} : Qn (s (0) , σ1, σ2) = E (Qn (h) |s (0) , σ1, σ2)

are well defined [16]. In what follows we will more often use the normalized total expected payoffs,
which are defined by

∀n : Q̂n (s (0) , σ1, σ2) = (1− γ)Qn (s (0) , σ1, σ2)

We have thus formulated the simultaneous duel as a discounted stochastic game, which we will denote
by Γ (s (0) , γ,p) or simply Γ (s (0) , γ), when (p1, p2) is fixed. Our main interest is in the nonzero-sum
game Γ ((1, 1) , γ). We assume that P1 and P2 attempt to reach a Nash equilibrium (NE) as defined in
[16, 28], i.e., it is a strategy profile (σ̂1, σ̂2) such that

∀n ∈ {1, 2} : ∀σn ∈ Σ : Qn ((1, 1) , σ̂n, σ̂−n) ≥ Qn ((1, 1) , σn, σ̂−n)

A refinement of the Nash equilibrium is the subgame perfect equilibrium (SPE). A pair (σ̂1, σ̂2) is said
to be a SPE iff it is a NE in both the full game and in every subgame [28].
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3. Some basic strategies and their payoffs

In this section, we introduce several strategies which will be used in our later exploration of Nash equi-
libria.

3.1. The stationary strategy σS

When Pn (n ∈ {1, 2}) uses a stationary admissible strategy σn, we have

∀s ∈ {(1, 0) , (0, 1) , (0, 0) , (τ, τ)} : σn (s) = 0

because Pn does not have the option to shoot when either himself or his opponent is dead. It follows that
σn is fully specified by the value σn (1, 1) = xn. Hence we will sometimes write Qn ((1, 1) , x1, x2) in
place of Qn ((1, 1) , σ1, σ2).

Let V S
1 (x1, x2) = Q1 ((1, 1) , x1, x2); for brevity we will also write simply V S

1 . Then V S
1 satisfies

the equation

V S
1 = 1 + γp1x1 (x2 (1− p2) + (1− x2))

1

1− γ
(1)

+ γ (x1 (1− p1) + (1− x1)) (x2 (1− p2) + (1− x2))V
S
1 ,

obtained by the following reasoning. When the game is in state s = (1, 1), P1’s expected payoff is one
unit for the current state plus the discounted expected payoff from the subsequent state s′, for which we
have the following possibilities:

1. s′ = (1, 0) when P1 shoots and hits P2 and P2 either shoots and misses or does not shoot; the
respective probability is p1x1 (x2 (1− p2) + (1− x2)). The total expected payoff of this case is

Q1 ((1, 0) , x1, x2) =
1

1− γ
.

2. s′ = (1, 1) when each of P1 and P2 either shoots and misses or does not shoot; the respective
probability is (x1 (1− p1) + (1− x1)) (x2 (1− p2) + (1− x2)). In this case we returned to the
starting state (1, 1) and the additional total expected payoff is again Q1 ((1, 1) , x1, x2).

3. We also have the possibilities of moving into (0, 1) and (0, 0), but these yield zero payoff to P1, so
they are not included in (1).

Solving (1), we get, after some algebraic calculations4, that

V S
1 (x1, x2) =

1− γ (1− p1x1 (1− p2x2))

(1− γ) (1− γ (1− p1x1) (1− p2x2))
(2)

4The calculations required to obtain the solution have been performed by the computer algebra system Maple and then
verified by hand. This is also true of additional (sometimes quite complicated) calculations required in the rest of the paper.
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The corresponding normalized total expected payoff is

vS1 (x1, x2) = (1− γ)Q1 ((1, 1) , x1, x2) =
1− γ (1− p1x1 (1− p2x2))

1− γ (1− p1x1) (1− p2x2)
(3)

Formulas for V S
2 (x1, x2) = Q2 ((1, 1) , x1, x2) and vS2 (x1, x2) = (1− γ)Q2 ((1, 1) , x1, x2) can be

obtained by interchanging the indices 1 and 2 in equations (2), (3).

3.2. The cooperating strategy σC

The stationary cooperating (the name will be justified in Section 5) strategy σC is defined by

σC (1, 1) = 0

which means the player never shoots.
Obviously, σC is σS with xn = 0 and Qn

(
(1, 1) , σC , σC

)
= Qn ((1, 1) , 0, 0). Hence we obtain

V C
1 = Q1

(
(1, 1) , σC , σC

)
= Q1 ((1, 1) , 0, 0) by setting x1 = x2 = 0 in (2). Consequently, the

normalized expected total payoff is

vC1 = (1− γ)Qn ((1, 1) , 0, 0) = 1

By exchanging the indices 1 and 2 in the above formulas we also get vc2 = 1.

3.3. The defecting strategy σD

The stationary defecting (the name will be justified in Section 5) strategy σD is defined by

σD (1, 1) = 1

which means the player always shoots with probability one.
Obviously, σD is σS with xn = 1 and Qn

(
(1, 1) , σD, σD

)
= Qn ((1, 1) , 1, 1). Hence we obtain

V D
1 = Q1

(
(1, 1) , σD, σD

)
= Q1 ((1, 1) , 1, 1) by setting x1 = x2 = 1 in (2). We then get the

normalized expected total payoff to be

vD1 = (1− γ)Qn ((1, 1) , 1, 1) =
1− γ (1− p1 (1− p2))

1− γ (1− p1) (1− p2)

and a similar formula for vD2 .

3.4. The early-shooting strategy σDC(K)

The nonstationary early-shooting strategy σDC(K) is to shoot (with probability one) only at times 1, 2, . . . , K,
where K is a parameter of the strategy. Then we have
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Q1

(
(1, 1) , σDC(K), σDC(K)

)
= 1

+ γ

(
p1 (1− p2)

1

1− γ
+ (1− p1) (1− p2)

)
+ γ2

(
(1− p1) p1 (1− p2)

2 1

1− γ
+ (1− p1)

2 (1− p2)
2

)
...

+ γK−1

(
(1− p1)

K−2 p1 (1− p2)
K−1 1

1− γ
+ (1− p1)

K−1 (1− p2)
K−1

)
+ γK

(
(1− p1)

K−1 p1 (1− p2)
K 1

1− γ
+ (1− p1)

K (1− p2)
K Q1

(
(1, 1) , σC , σC

))
This equation is justified as follows.

1. At time t = 0, P1 receives a payoff of one unit.

2. At times t = 1, . . . , K − 1, the expected payoffs are the following:

a) with probability (1− p1)
t−1 p1 (1− p2)

t, P1 misses at times t′ = 1, . . . , t − 1 and succeeds at

time t′, while P2 misses as times t′ = 1, . . . , t. In this case P1 receives payoff
1

1− γ
;

b) with probability (1− p1)
t (1− p2)

t, both P1 and P2 miss at times t′ = 1, . . . , t. In this case P1

receives payoff 1;

c) all other possibilities yield zero payoff, so they are not included in the equation.

3. At time t = K, the expected payoffs are the following:

With probability (1− p1)
K−1 p1 (1− p2)

K , P1 misses at times t′ = 1, . . . , K − 1 and succeeds at

time t′ = K, while P2 misses as times t′ = 1, . . . , K. In this case P1 receives payoff
1

1− γ
.

4. With probability (1− p1)
K (1− p2)

K , both P1 and P2 miss at times t′ = 1, . . . , K. In this case both
players will never shoot at subsequent times, so we have returned to the starting state (1, 1) and the
additional total expected payoff is Q1

(
(1, 1) , σC , σC

)
.

5. All other possibilities yield zero payoff, so they are not included in the equation.

Substituting the expression for Q1

(
(1, 1) , σC , σC

)
and after some algebra, we obtain

v
DC(K)
1 =(1− γ)Q1

(
(1, 1) , σDC(K), σDC(K)

)
=

1 + γK+1(1− p1)
K(1− p2)

Kp2 − γ(1− p1 + p1p2)

1− γ (1− p1) (1− p2)

and a similar formula for vDC(K)
2 .
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3.5. The late-shooting strategy σCD(K)

The nonstationary late-shooting strategy σCD(K) is to shoot (with probability one) only at times
K, K + 1, . . . , where K is a parameter of the strategy. Then

Q1

(
(1, 1) , σCD(K), σCD(K)

)
= 1 + γ + · · ·+ γK−1+

γK

(
p1 (1− p2)

1

1− γ
+ (1− p1) (1− p2)Q1

(
(1, 1) , σD, σD

))
This equation is justified as follows.

1. At times t = 0, 1, . . . , K − 1, P1 receives discounted payoff of one unit.
2. At the time t = K we have the following possibilities:

a) with probability p1 (1− p2), P1 hits P2, while P2 misses. In this case P1 receives payoff
1

1− γ
,

b) with probability (1− p1) (1− p2), both P1 and P2 miss. In this case both P1 and P2 revert to strategy
σD and P1 receives total expected payoff Q1

(
(1, 1) , σD, σD

)
,

c) all other possibilities yield zero payoffs, so they are not included in the equation.

Substituting in the previously obtained expression for Q1

(
(1, 1) , σD, σD

)
we get the following ex-

pressions for the normalized expected total payoff:

v
CD(K)
1 = (1− γ)Q1

(
(1, 1) , σCD(K), σCD(K)

)
=

1− γKp2 − γ(1− p1) (1− p2)

1− γ (1− p1) (1− p2)

and a similar formula for vCD(K)
2 .

3.6. The periodic-shooting strategy σP (M)

The nonstationary periodic-shooting strategy σP (M) is to shoot only at times M + 1, 2M + 2, . . . , where
M is a strategy parameter. By reasoning similar to that of the previous cases, we see that

Q1

(
(1, 1) , σP (M), σP (M)

)
= 1 + γ + · · ·+ γM

+ γM+1

(
p1 (1− p2)

1

1− γ
+ (1− p1) (1− p2)Q1

(
(1, 1) , σP (M), σP (M)

))
Solving the above we get the following expression for the normalized expected total payoff:

v
P (M)
1 = (1− γ)Q1

(
(1, 1) , σP (M), σP (M)

)
=

1− γM+1 (1− p1 (1− p2))

1− γM+1 (1− p1) (1− p2)

and a similar formula for vP (M)
2 .

3.7. Grim strategies

We now define grim versions of the previously defined strategies. The first strategy we introduce is the
grim-cooperation strategy σ̃C , defined as follows:
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σ̃C : as long as neither player has shot, Pn uses σC ; if at some turn a player shoots, in all subsequent
turns Pn uses σD.

Note that while σC is stationary, σ̃C is, obviously, nonstationary.

We now define grim versions of σDC(K), σCD(K) and σP (M). For these strategies, the condition for
reverting to σD is slightly (but significantly) different from the one used for σ̃C . Namely, while in σ̃C the
condition is that any player shoots, in σ̃DC(K) the condition is that the other player deviates from σ̃DC(K)

(and similarly for σ̃P (M) σCD(K) and σP (M)).

1. The grim-early-shooting strategy σ̃DC(K) is defined as follows:

σ̃DC(K) : as long as P−n uses σDC(K), Pn also uses σDC(K);
if at the t-th turn P−n deviates from σDC(K), Pn uses σD in all subsequent turns.

2. The grim-late-shooting strategy σ̃CD(K) is defined as follows:

σ̃CD(K) : as long as P−n uses σCD(K), Pn also uses σCD(K);
if at the t-th turn P−n deviates from σCD(K), Pn uses σD in all subsequent turns.

3. The grim-periodic-shooting strategy σ̃P (M) is defined as follows:

σ̃P (M) : as long as P−n uses σP (M), Pn also uses σP (M);
if at the t-th turn P−n deviates from σP (M), Pn uses σD in all subsequent turns.

Again, while the original strategies are stationary, their grim versions are nonstationary.

4. Nash equilibria

We will now present a sequence of propositions; each one indicates that a certain strategy pair is a (sta-
tionary or nonstationary) NE and also a SPE; sometimes this will only hold for a certain range of γ and
possibly p1, p2 values.

Proposition 1. For every γ ∈ (0, 1), the only stationary NE of Γ ((1, 1) , γ) are
(
σC , σC

)
and(

σD, σD
)
. These are also SPE.

Proof. Suppose that P1 (respectively P2) uses the stationary strategy σS with σS (1, 1) = x1 (respec-
tively σS with σS (1, 1) = x2 ). Then P1’s normalized payoff is

vS1 (x1, x2) =
1− γ (1− p1x1 (1− p2x2))

1− γ (1− p1x1) (1− p2x2)

Now suppose P1 switches to some other strategy. Note that we only need to consider stationary
strategies. This is a consequence of the following fact, which we will often use in the remainder of
the paper. If Pn starts using a stationary strategy σn at some time t, then P−n’s best response is also
a stationary strategy; because, for a fixed stationary σn, P−n has to solve Markov decision process, for
which (as is well known) the optimal strategy is stationary [29].
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Hence, suppose that P1 switches to some stationary strategy σS , which is fully specified by its value
σS (1, 1) = y1. Then P1’s normalized payoff becomes

vS1 (y1, x2) =
1− γ (1− p1y1 (1− p2x2))

1− γ (1− p1y1) (1− p2x2)

The difference in normalized payoffs is

δv1 =
1− γ (1− p1x1 (1− p2x2))

1− γ (1− p1x1) (1− p2x2)
− 1− γ (1− p1y1 (1− p2x2))

1− γ (1− p1y1) (1− p2x2)

=
γ2p1p2x2(x1 − y1)(1− p2x2)

((1− γ(1− p2x2)(1− p1y1))(1− γ(1− p2x2)(1− p1x1)))

Now, P1 has no incentive to switch from x1 to y1 iff δv1 ≥ 0 which is equivalent to

γ2p1p2x2(x1 − y1)(1− p2x2) ≥ 0

Similarly, P2 has no incentive to switch from x2 to y2 iff

γ2p1p2x1(x2 − y2)(1− p1x1) ≥ 0

Hence, the following hold for n ∈ {1, 2}.

1. If (x1, x2) = (0, 0), then Pn has no incentive to change xn; hence (x1, x2) = (0, 0) , i.e.,
(
σC , σC

)
is a NE.

2. If (x1, x2) = (1, 1), then Pn has no incentive to change xn; hence (x1, x2) = (1, 1) , i.e.,
(
σD, σD

)
is a NE.

3. If (x1, x2) ∈ (0, 1) (0, 1), then Pn has incentive to unilaterally change from xn to 1; hence (x1, x2)

is not a NE.

Suppose that the players use the strategy profile
(
σC , σC

)
and played t rounds of the duel, reaching

state s (t). Now consider any subgame which starts at s (t); in this subgame, because of stationarity of
σC , the previous history is immaterial and, by the same reasoning as above,

(
σC , σC

)
is a NE. Hence(

σC , σC
)

is a SPE for the full game. By the same reasoning,
(
σD, σD

)
is also a SPE. This completes the

proof. □

Now we will start looking at NE obtained from combinations of grim strategies.

Proposition 2. For every γ ∈ (0, 1),
(
σ̃C , σ̃C

)
is a NE and a SPE of Γ ((1, 1) , γ).

Proof. Suppose that both P1 and P2 use σ̃C . Then P1’s payoff is

Q1

(
(1, 1) , σ̃C , σ̃C

)
= Q1

(
(1, 1)σC , σC

)
=

1

1− γ

Now suppose P1 deviates from σ̃C . It suffices to examine the case in which P1 deviates at t = 1;
furthermore, after P1 deviates (i.e., starting at t = 2) P2 will switch to σD and P1 has no incentive to
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not shoot at any t ≥ 2 (because, by the same reasoning as in Proposition 1, P1’s best response can be
a stationary strategy and then it must be to always shoot with probability one). Hence P1 is essentially
using the strategy σ1 = σD and his total expected payoff will then be

Q1,
(
(1, 1) σD, σ̃C

)
= 1 + γ

(
p1

1

1− γ
+ (1− p1)

(
1 + γQ1

(
σD, σD

)))

= 1 + γ

(
p1

1

1− γ
+ (1− p1)

(
1 + γ

1− γ (1− p1 (1− p2))

(1− γ) (1− γ (1− p1) (1− p2))

))

=
1− p2(1− p1)γ

3 − (1− p2)(1− p1)γ

(1− γ) (1− γ (1− p1) (1− p2))

It follows that the difference in normalized total expected payoffs will be

(1− γ)
(
Q1

(
(1, 1) , σ̃C , σ̃C

)
−Q1

(
(1, 1)σD, σ̃C

))
= 1− 1− p2(1− p1)γ

3 − (1− p2)(1− p1)γ

1− γ (1− p1) (1− p2)

=
γ3p2 (1− p1)

1− γ (1− p1) (1− p2)
> 0

Hence P1 has no incentive to deviate from σ̃C . The same can be proved for P2. Consequently(
σ̃C , σ̃C

)
is a NE.

To prove that
(
σ̃C , σ̃C

)
is a SPE, we separate all possible subgames into two classes, according to the

pre-history (i.e., the history preceding each subgame).

1. Subgames with a pre-history in which neither player has shot. In such subgames, σ̃C specifies that
each player should not shoot until a shot has been fired in the subgame. In other words, in the
subgame the players will use the pair

(
σ̃C , σ̃C

)
which, as we have seen is a NE.

2. Subgames with a pre-history in which at least one player has shot. In such subgames, both players
should shoot in every riund of the subgame, i.e.,

(
σ̃C , σ̃C

)
will reduce to

(
σD, σD

)
which, as we

have seen, is also a NE.

Hence
(
σ̃C , σ̃C

)
is a SPE. □

In the next proposition, the strategy profile is an NE only for “large enough” γ.

Proposition 3. There exist some γ0 ∈ (0, 1) such that for all γ ∈ (γ0, 1), and for all K ∈ N,(
σ̃DC(K), σ̃DC(K)

)
is a NE of Γ ((1, 1) , γ).

Proof. Recall that, when both players use σ̃DC(K), P1 receives payoff

Q1

(
(1, 1) , σ̃DC(K), σ̃DC(K)

)
=

1 + γK+1(1− p1)
K(1− p2)

Kp2 − γ(1− p1 + p1p2)

(1− γ) (1− γ (1− p1) (1− p2))
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□

Let us show that P1 has no incentive to use a deviating strategy σ1.
Case 1. Let us first consider strategies which deviate at times t ∈ {K + 1, K + 2, . . . }, i.e., they

shoot after the game has entered the no-shooting phase. For the usual reasons, we only need to consider
σ1 which will shoot at t = K + 1 and with probability one. In this case

Q1

(
(1, 1) , σ̃DC(K), σ̃DC(K)

)
= A+ γK+1Q1

(
(1, 1) , σ̃DC(K), σ̃DC(K)

)
= A+ γK+1Q1

(
(1, 1) , σC , σC

)
= A+ γK+1Q1

(
(1, 1) , σC , σC

)
Q1

(
(1, 1) , σ1, σ̃DC(K)

)
= A+ γK+1Q1

(
(1, 1) , σ1, σ̃DC(K)

)
= A+ γK+1Q1

(
(1, 1) , σ1, σ̃DC(K)

)
where A is the expected payoff summed over times t ∈ {0, . . . , K} and is the same for both strategies
used by P1. Now, for the usual reasons, P1 will keep shooting at t ∈ {K + 2, K + 3, . . . } and we will
have

Q1

(
(1, 1) , σ1, σ̃DC(K)

)
= p1

1

1− γ
+ (1− p1)

(
1 + γQ1

(
(1, 1) , σD, σD

))
= p1

1

1− γ
+ (1− p1)

(
1 + γ

1− γ (1− p1 (1− p2))

(1− γ) (1− γ (1− p1) (1− p2))

)

=
1− p2(1− p1)γ

2 − (1− p2)(1− p1)γ

(1− γ) (1− γ (1− p1) (1− p2))

Then the difference between normalized total expected payoffs is

(1− γ)
(
Q1

(
(1, 1) , σ̃C , σ̃C

)
−Q1

(
(1, 1) , σD, σ̃C

))
= 1− 1− p2(1− p1)γ

2 − (1− p2)(1− p1)γ

1− γ (1− p1) (1− p2)

=
p2(1− p1)γ

2

1− γ (1− p1) (1− p2)
> 0

Hence P1 has no incentive to shoot at t > K.
Case 2. Let us consider strategies which deviate at times t ∈ {1, 2, . . . , K}, i.e., they do not shoot

during the shooting phase. Again, after the first deviation P1 has no incentive not to shoot. So we only
need to consider strategies σ1 which (a) do not shoot at some t = L ∈ {1, 2, . . . , K} and (b) shoot at all
t ∈ {1, 2, . . . , L− 1, L+ 1, . . . }. Then, by the usual arguments
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Q1

(
(1, 1) , σ1, σ̃

DC(K)
)
= 1

+ γ

(
p1 (1− p2)

1

1− γ
+ (1− p1) (1− p2)

)

+ γ2

(
(1− p1) p1 (1− p2)

2 1

1− γ
+ (1− p1)

2 (1− p2)
2

)
...

+ γL−1

(
(1− p1)

L−2 p1 (1− p2)
L−1 1

1− γ
+ (1− p1)

L−1 (1− p2)
L−1

)

+ γL

(
(1− p1)

L−1 p1 (1− p2)
L 1

1− γ
+ (1− p1)

L (1− p2)
L (1 + γV D

1

))

= 1 +
L−1∑
k=1

γk

(
(1− p1)

k−1 p1 (1− p2)
k 1

1− γ
+ (1− p1)

k (1− p2)
k

)

+ γL (1− p1)
L−1 (1− p2)

L p1
1

1− γ

+ γL (1− p1)
L (1− p2)

L

(
1 + γ

1− γ (1− p1 (1− p2))

(1− γ) (1− γ (1− p1) (1− p2))

)
The difference of normalized total expected payoffs is

δv1 (γ) = (1− γ)
(
Q1

(
(1, 1) , σ̃DC(K), σ̃DC(K)

)
−Q1

(
(1, 1) , σ1, σ̃

DC(K)
))

Note that δv1 (γ) is well defined and continuous for all γ ∈ [0, 1], because the factor (1− γ) cancels
the (1− γ) factor in the denominator of

Q1

(
(1, 1) , σ̃DC(K), σ̃DC(K)

)
−Q1

(
(1, 1) , σ1, σ̃

DC(K)
)

After a considerable amount of algebra5 we find that

δv1 (1) =
(1− p1)

K (1− p2)
K p2

p1 + (1− p1) p2
> 0

Since δv1 (γ) is continuous, there will exist some γ0 ∈ (0, 1) such that δv1 (γ) will be positive for
every γ ∈ (γ0, 1) and for every K ∈ N. Hence, for such values, P1 has no incentive to deviate during the
shooting phase.

5Using Maple once again.
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Putting together Cases 1 and 2 we see that P1 has no incentive to deviate from σ̃DC(K). The same is
proved, similarly, for P2. Hence

(
σ̃DC(K), σ̃DC(K)

)
is a NE.

Next, we present a negative result: mutual late shooting is not a NE.

Proposition 4. For every γ ∈ (0, 1) and every K ∈ N,
(
σ̃CD(K), σ̃CD(K)

)
is not a NE of Γ ((1, 1) , γ).

Proof. Recall that

Q1

(
(1, 1) , σ̃CD(K), σ̃CD(K)

)
=

1− γKp2 − γ(1− p1) (1− p2)

(1− γ) (1− γ (1− p1) (1− p2))

We just need to show that P1 has one profitable deviating strategy σ1. Let

σ1 = do not shoot at t ∈ {1, 2, . . . , K − 2} , shoot at t ∈ {K − 1, K, . . . }

in other words, start shooting one turn before the shooting phase starts. Then, by the usual arguments,
P1’s payoff is

Q1

(
(1, 1) , σ1, σ̃

CD(K)
)
=

K−2∑
k=0

γk + γK−1

(
p1

1

1− γ
+ (1− p1) (1 + γVD)

)

=

(
−γK+1p2(1− p1) + 1− γ(1− p2)(1− p1)

)
(1− γ) (1− γ(1− p2)(1− p1))

By appropriate substitutions and algebraic calculations, we get

δv1 = (1− γ)
(
Q1

(
(1, 1) , σ̃CD(K), σ̃CD(K)

)
−Q1

(
(1, 1) , σ1, σ̃

CD(K)
))

= − p2γ
K (1− γ (1− p1))

(1− γ(1− p2)(1− p1))
< 0

Hence P1 has incentive to switch to σ1 and
(
σ̃CD(K), σ̃CD(K)

)
is not an NE. □

The next proposition tells us that there exists a set of (γ, p1, p2) combinations for which
(
σ̃P (M), σ̃P (M)

)
is a NE. More specifically, the set of “acceptable” (γ, p1, p2) values is the cube IM defined below in terms
of the parameters γM and pM ; the significance of these parameters will be discussed after the proposition is
proved.

Proposition 5. For every M ∈ N, there exists a δM > 0 such that if

γM =
9

10

pM =
1− e−M

10

IM = (γM − δM , γM + δM) (pM − δM , pM + δM) (pM − δM , pM + δM) ,

then
(
σ̃P (M), σ̃P (M)

)
is a NE of Γ ((1, 1) , γ,p) for every (γ, p1, p2) ∈ IM .
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Proof. Recall that

Q1

(
(1, 1) , σ̃P (M), σ̃P (M)

)
=

1− γM+1 (1− p1 (1− p2)))

(1− γ) (1− γM+1 (1− p1) (1− p2))

We will prove that, for every (γ, p1, p2) ∈ IM , P1 has no incentive to deviate from σ̃P (M) (the proof
forP2 is identical).

Suppose that P1 uses some strategy σ1 by which he shoots at P2 at some t ̸= i (M + 1). For the usual
reasons, it suffices to consider strategies by which P1 shoots in the first period and with probability one.
So suppose that P1 abstains for all t ∈ (1, . . . , K) and then shoots at P2 at some t′ = K + 1 ≤ M . Then
the following two possibilities exist.

1. With probability p1: P2 is killed and P1 receives payoff
1

1− γ
.

2. With probability 1− p1: P2 is missed, P1 receives payoff one and for all subsequent rounds P2 will
always shoot at P1 with probability one. In this case, P1’s best response at time t′′ > t′ is to always
shoot at P2 with probability one; hence, starting at the (t′ + 1)-th round, both players use the σD

strategy. The total expected payoff received by P1 in this case is Q1

(
σD, σD

)
.

Hence, assuming P1 will first shoot at t = K+1 ∈ {1, . . . ,M}, by the above reasoning P1’s expected
total payoff will be

Q1

(
(1, 1) , σ1, σ̃

P (M)
)

=
K∑
k=0

γk + γK+1

(
p1

1

1− γ
+ (1− p1)Q1

(
(1, 1) , σD, σD

))

Substituting the Q1

(
σ̃P (M), σ̃P (M)

)
and Q1

(
σD, σD

)
values and performing a considerable amount

of algebra we get

δv1 (γ, p1, p2) = (1− γ)
(
Q1

(
(1, 1) , σ̃P (M), σ̃P (M)

)
−Q1

(
(1, 1) , σ1, σ̃

P (M)
) )

=
p2γ

K+2
(
− (1− p1)

2 (1− p2) γ
M+1 + (1− p1) (1− p2) γ

M−K − γM−K−1 + 1− p1
)

(1− γM+1 (1− p1) (1− p2)) (1− γ (1− p1) (1− p2))

Setting p1 = p2 = p we get

δv1 (γ, p, p) =
pγK+2

(
− (1− p)3 γM+1 + (1− p)2 γM−K − γM−K−1 + 1− p

)(
1− γM+1 (1− p)2

) (
1− γ (1− p)2

)
The sign of δv1 (γ, p, p) is the same as that of

fM,K (γ, p) = − (1− p)3 γM+K+3 + (1− p)2 γM+2 − γM+1 + (1− p) γK+2

= f1,M,K (γ, p) + f2,M,K (γ, p)

with
fM,K,1 (γ, p) = (1− p)2 γ
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M+2 − (1− p)3 γM+K+3fM,K,2 (γ, p) = −γM+1 + (1− p) γK+2

Now we consider the following cases.
Case 1. K ≤ M − 2. Then M −K − 1 ≥ 1. For all M and K ∈ {1, . . . ,M − 2} we have

(1− p)2 > (1− p)3 and γM+2 > γM+K+3

hence we will always have f1,M,K (γ, p) > 0. To also have fM,K,2 (γ, p) > 0 for a specific K, it suffices
that

γM−K−1 < 1− p ⇔ γ < (1− p)
1

M−K−1

To have fM,K,2 (γ, p) > 0 for all K ∈ {1, . . . ,M − 2}, it suffices that

γ < (1− p)
1

M−2 (4)

In other words, for all M we have:

γ ∈
(
0, (1− p)

1
M−2

)
⇒ (∀K ∈ {1, . . . ,M − 2} : fM,K (γ, p) > 0)

γ ∈
(
0, (1− p)

1
M−2

)
⇒ (∀K ∈ {1, . . . ,M − 2} : δv1 (γ, p, p) > 0)

Case 2. K = M − 1. In this case

− (1− p)3 γM+K+3 + (1− p)2 γM+2 − γM+1 + (1− p) γK+2 > 0

⇔ − (1− p)3 γM+M−1+3 + (1− p)2 γM+2 − γM+1 + (1− p) γM−1+2 > 0

⇔ − (1− p)3 γ2M+2 + (1− p)2 γM+2 − γM+1 + (1− p) γM+1 > 0

⇔ − (1− p)3 γM+1 + (1− p)2 γ − 1 + (1− p) > 0

⇔ − (1− p)3 γM+1 + (1− p)2 γ − p > 0

⇔ − (1− p)3 γM+1 + γp2 − (2γ + 1) p+ γ > 0

Let us define the function

fM (γ, p) = − (1− p)3 γM+1 + γp2 − (2γ + 1) p+ γ

By continuity, in a sufficiently small neighborhood of (γM , pM) =

(
9

10
,
1− e−M

10

)
, the sign of

fM (γ, p) will be the same as that of

h1 (M) = fM (γM , pM) = −
(
9 + e−M

)3
1000

(
9

10

)M+1

+
9
(
1− e−M

)2
1000

+
31

50
+

7e−M

25

and it suffices to show that h1 (M) > 0 for all M . To this end we first note that

h1 (1) = −(9 + e−1)
3

1000

(
9

10

)2

+
9 (1− e−1)

2

1000
+

31

50
+

7e−1

25
= 0.60703 · · · > 0
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Also, letting

h2 (M) = −

(
9 + e−M

)3( 9

10

)M+1

1000
+

31

50

we have
∀M : h1 (M) > h2 (M)

Now, h2 (M) is strictly increasing in M and h2 (2) = 0.06422 2 . . . . Consequently

∀M ≥ 2 : h1 (M) > h2 (M) > h2 (2) > 0

Hence, finally we have
∀M ≥ 1 : fM (γM , pM) = h1 (M) > 0.

Now, to have
∀M,∀K ∈ {1, . . . ,M − 1} : fM,K (γM , pM) > 0

we must ensure that (4) holds for (γ, p) = (γM , pM). In other words, we want γM < (1− pM)
1

M−2 or,
equivalently,

9

10
<

(
1− 1− e−M

10

) 1
M−2

=

(
9

10
+

e−M

10

) 1
M−2

.

This holds: since for all M ∈ N we have
9

10
+

e−M

10
< 1, we also have

9

10
<

(
9

10
+

e−M

10

)
<

(
9

10
+

e−M

10

) 1
M−2

.

In short we have shown that

∀M,∀K ∈ {1, . . . ,M − 1} : fM,K (γM , pM) > 0

∀M,∀K ∈ {1, . . . ,M − 1} : δv1 (γM , pM , pM) > 0

For all M and K, δv1 (γ, p1, p2) is a continuous function. Hence, for all M , there exists some δM > 0

such that
∀K ∈ {1, . . . ,M − 1} , ∀ (γ, p1, p2) ∈ IM : δv1 (γ, p1, p2) > 0

which shows that P1 has no incentive to deviate from σ̃P (M). The same argument can be applied to P2.
Hence, for every (γ, p1, p2) ∈ IM ,

(
σ̃P (M), σ̃P (M)

)
is a NE of Γ ((1, 1) , γ,p). □

Remark 1. The fact that
(
σ̃P (M), σ̃P (M)

)
is a NE of Γ ((1, 1) , γ,p) for every

(γ, p1, p2) ∈ (γM − δM , γM + δM) (pM − δM , pM + δM) (pM − δM , pM + δM) IM

follows from the continuity of δv1 (γ, p1, p2) and the fact that δv1 (γM , pM , pM) > 0 or, more explicitly

δv1

(
9

10
,
1− e−M

10
,
1− e−M

10

)
> 0
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To better understand the significance of the specific values γM =
9

10
and pM =

1− e−M

10
, the follow-

ing points should be kept in mind.

1. It is easy to check that δv1 (0, p1, p2) = 0 and δv1 (1, p1, p2) < 0. In other words, to attain a NE

some intermediate γ values is required. We used γM =
9

10
but (as we have observed by numerical

experimentation) there is actually an interval JM of admissible γ values, with JM ⊂ [0, 1]. The

important thing is that, as proved above, γM =
9

10
∈ JM for all M .

2. Once γM =
9

10
is fixed, we must determine p1 and p2 values which yield a NE. First, we conjectured

(after numerical experimentation) that p1 = p2 = pM =
1− e−M

10
works; and then we proved that

it yields a NE. Roughly, the requirement is that the players’ marksmanships must be tending to one
as M increases to infinity.

5. Some additional remarks

Let us now justify our terms of cooperating and defecting strategy. From the results of Section 3, for
n ∈ {1, 2}, we have

Qn

(
(1, 1) , σC , σC

)
=

1

1− γ

Qn

(
(1, 1) , σD, σD

)
=

1− γ (1− pn (1− p−n))

(1− γ) (1− γ (1− p1) (1− p2))

It follows that

Qn

(
(1, 1) , σC , σC

)
−Qn

(
(1, 1) , σD, σD

)
=

γp−n

(1− γ) (1− γ (1− p1) (1− p2))
> 0

In short, just like in PD, it is more profitable for both players not to shoot rather than shoot. Because
in our formulation there is no direct profit from killing the opponent, both

(
σC , σC

)
and

(
σD, σD

)
are

NE; however, for both players,
(
σC , σC

)
is more profitable NE than

(
σD, σD

)
. This is the reason for

calling
(
σC , σC

)
a cooperating, and

(
σD, σD

)
a defecting strategy.

All this may be surprising since one would expect that, in a duel, each player’s goal will be to eliminate
his opponent. It may be supposed that the higher profitability of

(
σC , σC

)
follows from our choice of not

assigning any direct payoff to killing one’s opponent. But this is not true. Even with a positive “killing
payoff”, Qn

(
(1, 1) , σC , σC

)
can still be greater than Qn

(
(1, 1) , σD, σD

)
, provided γ is sufficiently

close to one6. The reason for the superiority of
(
σC , σC

)
is this: if a positive payoff is assigned to

survival, this, compounded over an infinite number of turns, can always outweigh the killing payoff.
Hence our model can be understood as a more “pacifist” version than the usual duel model7.

Let us now compare our duel to the PD. In both the PD and the duel, cooperation is more profitable
than defection. While

(
σC , σC

)
is not a NE in PD,

(
σD, σD

)
is an NE in both of them. However, both the

6This, as well as additional results regarding the positive killing payoff case will be reported in a future publication.
7This point has also been raised by Knuth in the context of the truel [23]. For example, he remarks that a player who

passes is guaranteeing that his opponent has no reason to shoot back, as far as the opponent’s survival is concerned.
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duel and the repeated version of PD, possess several NE in grim strategies; the common characteristic
of all such equilibria is that they promote cooperation or, in other words, punish defection (shooting).
Similarly to the case of repeated PD, it might be possible to prove a “Folk Theorem” for the duel as well;
namely that every feasible and individually rational payoff is a NE for γ sufficiently close to one. We
intend to study this question in the future.

6. Conclusion

We have formulated the simultaneous shooting duel as a discounted stochastic game and shown that it
has two Nash equilibria in stationary strategies, namely the “always-shooting” and the never-shooting
strategies; in addition, several nonstationary, cooperation-promoting Nash equilibria also exist. The
significance of these results is twofold.

1. In a duel, which at first sight appears to be a purely antagonistic situation, there is scope for the
emergence of cooperation; in this connection, the discussed similarity to the repeated PD appears
quite relevant.

2. It seems reasonable that, applying similar analysis, we can establish the exi2.stence of nonstationary
NE for truels and nuels.

In the future we intend to extend our work in several directions.
First, we want to extend our study and obtain similar results for two variants: (a) the case of non-zero

killing payoff and (b) the case of terminal-only payoffs. In addition, we want to formulate and study a
version of the duel in which each player wants to kill his opponent in the shortest possible time.

Secondly, we hope to prove a form of Folk theorem, namely that every feasible and individually
rational payoff is a NE for γ sufficiently close to one.

Finally, as mentioned above, we want to formulate the nuel as a discounted stochastic game and prove
that it possesses NE in nonstationary strategies.
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