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Abstract

The paper presents an analysis of the impact of normalization techniques on the ranking of alternatives obtained using the
combined compromise solution (CoCoSo) method. Similarity measures known from the literature and a new measure called
the TOPSIS similarity measure (TOPSIS-SM) are used to assess the resulting rankings. This new measure is based on the
TOPSIS algorithm, where the arithmetic mean of the considered rankings is taken as the ideal solution. In contrast, the anti-
ideal solution is divided into a minimum and a maximum solution, which exhibit maximum separation from the ideal solution.
The results obtained by this new method are different from those obtained using other similarity measures known from the
literature.
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1. Introduction

The widespread use of multiple-criteria decision-making (MCDM) methods to solve everyday problems
has resulted in their rapid development in recent decades. The MCDM methods are used in many areas,
such as supply chain management [14], logistics [33], engineering [21], solar energy [8], flow control in
a manufacturing system [19], gerontechnology selection [9], and many others. For more applications of
MCDM methods see, e.g., [1, 2, 18].

One common application of MCDM methods is in the selection of the best alternative (decision) from
a finite set under consideration. At the outset, the alternatives considered are evaluated against a finite
set of criteria that often conflict with each other. Since criteria usually come from different scales or are
expressed in different units, an initial and key element of MCDM methods is the normalization of ratings
of alternatives against criteria. The normalization technique used in the MCDM method significantly
impacts the final ranking of alternatives and the choice of the best one, as Chatterjee and Chakraborty
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have written [6]: while the normalization process scales the criteria values to be approximately of the
same magnitude, different normalization techniques may yield different solutions and, therefore, may
cause deviation from the originally recommended solutions.

In the literature, we can find several normalization techniques. MCDM methods have dedicated
normalization techniques, e.g., in the combined compromise solution (CoCoSo) method [28] we have
the zero unitarization method, in the analytical hierarchy process (AHP) method [20] we have the sum
method, in the simple additive weighting (SAW) method [7] we have the maximum method, while in the
technique for order of preference by similarity to the ideal solution (TOPSIS) method [10] we have the
vector method (these normalization techniques are often used in best-case identification analyses and are
presented in Section 2.2). In this situation, the question is: which normalization technique is the most
appropriate for the problem under consideration and the chosen MCDM method?

In published studies, we can mostly find analyses investigating the impact of the normalization tech-
niques on the ranking of alternatives using classic and very popular MCDM methods, such as AHP
[22, 24], SAW [5, 25] or TOPSIS [3–5, 23]. The authors use various similarity measures to select the
most appropriate normalization technique, including Pearson’s correlation coefficient (PCC), Spearman’s
rank correlation coefficient (SRCC), rank similarity index (RSI) or rank consistency index (RCI) (these
measures are described in detail in Section 2.3). According to Chakraborty and Yeh [4], these measures
indicate how well a particular normalization procedure produces rankings similar to other procedures.
Vafaei et al. [22] examining the effect of the normalization technique on the ranking of alternatives in
the AHP method, conclude that the most appropriate technique is the maximum method while in the next
study [24], they indicate the zero unitarization method. For the SAW method, Chakraborty and Yeh [5]
state that the maximum method is the most appropriate normalization technique, while Vafaei et al. [25]
point to the zero unitarization method. In the TOPSIS method, Chakraborty and Yeh [4] and Celen [3]
and Vafaei et al. [23] show that the vector method is the most appropriate normalization technique, while
in the next study, Chakraborty and Yeh [5] demonstrate that the maximum method is the most suitable.

As the above studies have shown, various similarity measures can lead to different results of the
normalization techniques in a given MCDM problem. Taking this into account, this paper proposes
a new similarity measure for the rankings obtained, which can also be successfully used to select the best
MCDM method, for the MCDM problem under consideration. This new similarity measure, TOPSIS-
SM, is based on the algorithm of the TOPSIS method. It assumes that the most appropriate normalization
technique is the one that gives the ranking closest to the mean ranking determined as the arithmetic mean
of the rankings obtained for the normalization techniques considered. This means that the positive ideal
solution is the average of the rankings analyzed. This is based on the following observations [29]:

• the mean value is treated as the most compromised among all values (the average method is often
used in group decision-making, where the average is the final group decision),

• the mean value is the middle of the set of values and the most distant from the extreme values,
• the mean value is used in practice, e.g., in sports such as snowboard slope-style or half-pipe, where

the final rating of a contender is the average of the ratings of a group of referees.

Ranking of normalization methods based on similarity to the mean ranking is more natural and intu-
itive than methods based on PCC or SRCC and RSI. In the latter, the rankings are compared in pairs and
then the results are averaged across the rankings. In such a situation the ranking most similar to all others
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is indicated. Moreover, a single lower value of the similarity measure of the two rankings results in lower
values for their average rating and lower positions in the evaluation of normalization methods.

In TOPSIS-SM as reference points, there is the positive ideal ranking (PIR), which is the average
of the analyzed rankings obtained using different normalization techniques. On the other hand, there is
the negative ideal ranking (NIR), which is divided into two components: the left negative ranking (LNR),
composed of minimum rankings, and the right negative ranking (RNR), composed of maximum rankings.
The determined coefficients of relative closeness (RCC) to PIR allow us to rank the normalization tech-
niques and indicate the most appropriate technique for the problem under consideration and the chosen
MCDM method (this method is described in detail in Section 3).

In this paper, the CoCoSo method and five normalization techniques are used to demonstrate the
performance of the proposed similarity measure. We have chosen CoCoSo because it is a relatively
new method and to the author’s best knowledge has not yet been studied in terms of the impact of the
normalization techniques on the ranking of alternatives. On the other hand, the selected normalization
techniques (i.e., the zero unitarization method, the maximum method, the sum method, the vector nor-
malization technique and the logarithmic normalization technique) are commonly used in the MCDM
method and frequently used in analyses [3, 4, 18, 22–25].

The proposed method is based on a numerical example from the paper by Yazdani et al. [28], which
presents the CoCoSo method. This numerical example is also analyzed with the other similarity measures
used in the analyses and mentioned earlier to compare the results obtained with the proposed measure.

The rest of the paper is organized as follows. Section 2 presents the CoCoSo method, selected nor-
malization techniques, and selected similarity measures. Next, the new similarity measure, as well as
a numerical example, are introduced. Section 5 compares the proposed method with other methods
known from the literature. The last section contains conclusions.

2. Preliminaries

In this Section, some concepts and methods used in the paper are briefly presented such as the algorithm
of the CoCoSo method, selected normalization techniques and a similarity measures.

2.1. The CoCoSo method

The CoCoSo method was proposed by Yazdani et al. [28] as a new method for solving MCDM prob-
lems. These problems are characterized by a set of alternatives {A1, A2, ..., Am} and a set of criteria
{C1, C2, ..., Cn}. The set of criteria is additionally divided into benefit criteria denoted by B (the higher
the value, the better) and cost criteria denoted by C (the lower the value, the better). Then an MCDM
problem is presented as a matrix X

X = (xij)m×n =

C1 C2 . . . Cn

A1

A2

...
Am


x11 x12 . . . x1n

x21 x22 . . . x1n

...
... . . . ...

xm1 xm2 . . . xmn

 ,
(1)
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where xij denotes the evaluation of alternative i with regard to criterion j. In addition, the relevance of
the criteria is described by a vector of criteria weights

w = (w1, w2, ..., wn) (2)

where wj ∈ R+ and
n∑

j=1

wj = 1. Then the algorithm of the CoCoSo method is as follows.

Step 1. The normalized decision matrix Y

Y = (yij)m×n =

C1 C2 . . . Cn

A1

A2

...
Am


y11 y12 . . . y1n

y21 y22 . . . y1n
...

... . . . ...
ym1 ym2 . . . ymn

 (3)

is determined using the zero unitarization method [15, 16] where

yij =


xij −mini xij

maxi xij −mini xij

if j ∈ B

maxi xij − xij

maxi xij −mini xij

if j ∈ C

(4)

Step 2. Two characteristics are determined for each alternative: a weighted sum of normalized evalua-
tion values is calculated, as in the SAW method

Si =
n∑

j=1

yijwj (5)

and an exponentially weighted product, as in the weighted product model (WPM)

Pi =
n∑

j=1

(yij)
wj (6)

Step 3. Based on the characteristics (5) and (6) determined in Step 2, three assessments are calculated

kia =
Si + Pi

m∑
i=1

(Si + Pi)

(7)

kib =
Si

mini Si

+
Pi

mini Pi

(8)

kic =
λSi + (1− λ)Pi

λmaxi Si + (1− λ)maxi Pi

(9)

where 0 ≤ λ ≤ 1 is the parameter determined by the decision maker (often selected as λ = 0.5).
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Step 4. The ranking of the alternatives is determined based on the index

ki = (kiakibkic)
1
3 +

1

3
(kia + kib + kic) (10)

A higher ki value indicates a higher position in the final ranking of alternative Ai.

2.2. Selected normalization techniques

To solve an MCDM problem, normalization of the decision matrix is needed. It results in data from
different scales or with different units being transformed into dimensionless data allowing them to be
compared and aggregated to create a ranking of alternatives. Many methods of normalization have been
developed. It is difficult to assess which one is best for the problem under consideration or the MCDM
method used. In this paper five commonly used normalization techniques Ni are analyzed:

• N1. Linear scale transformation – the zero unitarization method [15, 16]

yij =


xij −mini xij

maxi xij −mini xij

if j ∈ B

maxi xij − xij

maxi xij −mini xij

if j ∈ C

(11)

• N2. Linear scale transformation – the maximum method [11]

yij =


xij

maxi xij

if j ∈ B

1− xij

maxi xij

if j ∈ C

(12)

• N3. Linear scale transformation – the sum method [3, 30]

yij =



xij
m∑
i=1

xij

if j ∈ B

x−1
ij

m∑
i=1

x−1
ij

if j ∈ C

(13)

• N4. Vector normalization [17]

yij =



xij√
m∑
i=1

x2
ij

if j ∈ B

1− xij√
m∑
i=1

x2
ij

if j ∈ C

(14)
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• N5. Logarithmic normalization [31]

yij =



lnxij

ln
m∏
i=1

xij

if j ∈ B

1

m− 1

(
1− lnxij

ln
m∏
i=1

xij

)
if j ∈ C

(15)

Other well-known normalization techniques include [12, 26, 27, 30, 32]:

• standardization
yij =

xij − x̄j

σj

(16)

• unitization
yij =

xij − x̄j

rj
(17)

• quotient transformations
yij =

xij

x̄j

(18)

yij =
xij

rj
(19)

yij =
xij

σj

(20)

where x̄j = (1/m)
m∑
i=1

xij is mean for jth criterion, σj =

√√√√(1/m)
m∑
i=1

(xij − x̄j)
2 standard deviation for

jth criterion, rj = max
i

xij −min
i

xij is the range for jth criterion.

2.3. Selected similarity measures of the obtained final values
of alternatives and their rankings

In this section, selected measures of similarity well-known from the literature are presented. They are
used to compare the final evaluations of the alternatives obtained using the CoCoSo method and the
rankings they generate for the different techniques of decision matrix normalization (equations (11)–(15))
with the results obtained using the TOPSIS-SM method. Let R = (r1, r2, ..., rm) and T = (t1, t2, ..., tm)

be two sequences. Their elements, depending on the measure used, are indexes ki (10) (when using PCC
or CSM) or rankings of alternatives (when using SRCC or the RCI).
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2.3.1. Pearson’s correlation coefficient (PCC )

PCC is used to analyze the level of the linear relationship between two sequences R and T

PCC(R, T ) =

m∑
i=1

(ri − r)(ti − t)√
m∑
i=1

(ri − r)2

√
m∑
i=1

(ti − t)2

(21)

where m denotes the length of the sequence, ri and ti elements of the sequences at position ith, r and

t are average values of the elements of the sequences calculated from the formulas r =
1

m

m∑
i=1

ri and

t =
1

m

m∑
i=1

ti, respectively. A PCC value close to 1 or −1 indicates a strong linear relationship between

R and T . In the particular case when PCC = 1 or PCC = −1, all observations lie in a straight line. If
PCC = 1, an increase in R means an increase in T , and when PCC = −1, an increase in a R means
a decrease in T . When PCC = 0, there is no linear relationship between R and T . The PCC can be used
to compare final evaluations of alternatives obtained using different techniques of normalization.

2.3.2. The cosine similarity measure (CSM )

CSM determines the similarity of two sequences R and T and is based on the Euclidean dot product. It
is defined as follows

CSM(R, T ) =

m∑
i=1

riti√
m∑
i=1

r2i

√
m∑
i=1

t2i

(22)

The closer the CSM is to 1, the more similar the sequences are. In particular, when CSM = 1, sequences
are equal.

2.3.3. Spearman’s rank correlation coefficient (SRCC )

SRCC is a frequently used measure of the relationship between two rank sequences. SRCC is defined as

SRCC(R, T ) = 1−
6

m∑
i=1

d2i

m3 −m
(23)

where di = ri − ti is the difference in rankings at position i for i = 1, ...,m. The closer the SRCC is to 1,
the more similar the considered rankings are. When SRCC = 1, the rankings are identical.

2.3.4. The rank similarity index (RSI )

SRCC describes the relationship between two rank sequences. Given K different sequences, we can
construct an K × K matrix S = (sij) with the value of SRCC between rankings i and j at position
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ij (instead of SRCC we can use PCC or CSM). However, the identification of the best technique of
normalization, based on this matrix, can be difficult. To solve this problem, we can use the method
proposed by Chakraborty and Yeh [5], who suggest calculating RSI for each normalization technique as
the average of the elements of the ith row of the matrix S; the method with the highest value indicates
the normalization technique most preferred.

2.3.5. The ranking consistency index (RCI )

RCI is a measure to determine how similar the ranking obtained by the chosen normalization technique
is to rankings obtained by other methods. The best technique of normalization is the one for which the
RCI reaches the highest value. We present an RCI adapted to our example (for more details, see e.g., [4]).
In the numerical example, we consider five different normalization techniques of the decision matrix so
the RCI equation is

RCI(Ns) = T1−5 +
3

4

∑
i, j, k=1,...,5

i, j, k ̸=s
i<j<k

Tsijk +
2

4

∑
i, j=1,...,5

i, j ̸=s
i<j

Tsij +
1

4

∑
i=1,...,5

i ̸=s

Tsi (24)

where Ns denotes the selected normalization technique for s = 1, ..., 5 and T1−5 – the number of times
when N1, N2, N3, N4 and N5 gave the same ranking, Tsijk – the number of times when Ns, Ni, Nj and
Nk gave the same ranking, Tsij – the number of times when Ns, Ni and Nj gave the same ranking, Tsi

– the number of times when Ns and Ni gave the same ranking.

3. A new similarity measure of the rankings obtained

Suppose we have an MCDM problem with m alternatives whose rankings are obtained using K different
methods. The ranking obtained for the kth method is written as

Rk =


rk1
rk2
...
rkm

 (25)

where k = 1, ..., K. Based on these rankings, we can construct a matrix R

R = (rki )m×K =

R1 R2 . . . RK

A1

A2

...

Am


r11 r21 . . . rK1

r12 r22 . . . rK2
...

... . . . ...

r1m r2m . . . rKm

 ,
(26)

that corresponds to the decision matrix in MCDM methods. The TOPSIS method is applied to the matrix
R, which does not require normalization. The reference points are defined as follows:
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• the positive ideal ranking (PIR) is the average of all rankings (average or compromise ranking)

R+ = (r+i )m×1 =

A1

A2

...

Am



1

K

K∑
k=1

rk1

1

K

K∑
k=1

rk2

...

1

K

K∑
k=1

rkm


(27)

• the negative ideal ranking (NIR), which is divided into two parts: the left negative ranking (LNR)

R−L = (r−L
i )m×1 =

A1

A2

...

Am


min
k

rk1

min
k

rk2
...

min
k

rkm

 (28)

and the right negative ranking (RNR)

R−R = (r−R
i )m×1 =

A1

A2

...

Am


max

k
rk1

max
k

rk2
...

max
k

rkm

 (29)

which provide maximum separation from the PIR.

Next, we calculate the similarity measure of each ranking Rk (k = 1, 2, ..., K) to the PIR and to each
part of NIR, respectively, denoted by

R+k, R−kL, R−kR (30)

To this end, the Kendall rank correlation coefficient is used [13].
Note. The elements of the vector R+ (27) may not be integers. In that case, we can rank order them

and replace the vector R+ (27) by this ranking (such a transformation does not affect the result).
Finally, the RCC to PIR (for each ranking) is calculated from the formula

RCCk =
(1−R−kL) + (1−R−kR)

(1−R+k) + (1−R−kL) + (1−R−kR)
. (31)

Using the RCCk (k = 1, ..., K), the methods under consideration are ordered in descending order
regarding values and the one with the highest RCCk is regarded as the most appropriate.
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4. Numerical example

The numerical example from the paper by Yazdani et al. [28] is used to analyze the impact of the normalization
technique on the obtained values of alternatives in the CoCoSo method and on their ranking. The MCDM
problem consists of seven alternatives and five criteria, of which the second is of the cost type and the others
of the benefit type. The decision matrix is shown in Table 1, while the vector criteria weights are

w = (0.036, 0.192, 0.326, 0.326, 0.120)

Table 1. Decision matrix of the MCDM problem
under consideration

Alternative C1 C2 C3 C4 C5

A1 60 0.4 2540 500 990
A2 6.35 0.15 1016 3000 1041
A3 6.8 0.1 1727.2 1500 1676
A4 10 0.2 1000 2000 965
A5 2.5 0.1 560 500 915
A6 4.5 0.08 1016 350 508
A7 3 0.1 1778 1000 920

Table 2. Values of alternatives obtained by the CoCoSo method
using different normalization techniques

Alternative N1 N2 N3 N4 N5

A1 2.0413 1.7210 2.0087 1.8066 1.7968
A2 2.7880 2.2606 2.2508 2.1308 1.7848
A3 2.8823 2.2662 2.2259 2.1113 1.7818
A4 2.4160 2.0184 1.9933 1.9204 1.7805
A5 1.2987 1.6364 1.6054 1.5908 1.6818
A6 1.4431 1.6817 1.6822 1.6267 1.6893
A7 2.5191 2.0637 2.0154 1.9404 1.7466

Table 2 and Figure 1 show the values of the indexes ki (10) obtained by the CoCoSo method in which
different techniques of normalization (equations (11)-(15)) of the input data (i.e., the decision matrix
shown in Table 1) were used (in the CoCoSo method it was assumed that λ = 0.5). Different techniques
of normalization produce different values of ki (Table 2). The most varied evaluations of alternatives
using the CoCoSo method are obtained using method N1. For methods N2 through N4, the variation is
smaller, and for method N5 the results are quite close to each other. This is perfectly illustrated in the
left-hand column of Figure 1. In turn, Table 3 and Figure 2 show the rankings obtained based on the
values ki in Table 2. We can see that the best alternative depends on the method of normalization and
therefore N1 and N2 (which generate the same ranking) indicated A3, while N3 and N4 indicated A2.
However, it is worth noting when analyzing the values in Table 2 that the evaluations of alternatives A2

and A3 for N1 through N4 are very similar. Furthermore, for N5, alternative A1 proved to be the best.
However, considering the ki values in Table 2, the application of N5 gives very similar evaluations for
alternatives A1 through A4, which is perfectly visible in the left-hand column of Figure 1. On the other
hand, all the normalization methods considered indicated as the weakest alternatives A5 and A6, as can
be seen in the figures in the right-hand column of Figure 2. Furthermore, in Table 2, we can see that their
ki values significantly deviate from the evaluations of the other alternatives.
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Figure 1. Values of alternatives obtained by the CoCoSo method using different normalization techniques

Tables 4–6 show the results obtained with the new TOPSIS-SM measure. Table 4 and Table 5 show
the reference points determined using equations (27)–(29) and the values of the similarity measure (in
this case, the Kendall rank correlation coefficient) of the obtained rankings from these reference points
(30). Lastly, Table 6 and Figure 3 show the results obtained by the new measure using equation (31) and
the ranking of the normalization techniques

N5 ≺ N3 ≺ N4 ≺ N2 ≈ N1

where ≺ means more suitable and ≈ means equivalent. Considering the similarity measures in Table 5,
we can see that N1–N4 give a most similar rating (the same value) to the PIR. On the other hand, N3

gives a rating that is most similar to both parts of the NIR, so it is inferior to N1, N2 and N4. Moreover,
the similarity measures to the NIR for N1 and N2 are lower than those for N4, so N4 should be lower in
the ranking of methods as confirmed in Table 6. N5 has the lower similarity measure to the PIR, so it
should be the worst method, as seen in the left column of Figure 3.

Table 3. Rankings of alternatives obtained by the CoCoSo method
using different normalization techniques

Alternative N1 N2 N3 N4 N5

A1 5 5 4 5 1
A2 2 2 1 1 2
A3 1 1 2 2 3
A4 4 4 5 4 4
A5 7 7 7 7 7
A6 6 6 6 6 6
A7 3 3 3 3 5
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Figure 2. Rankings of alternatives obtained by the CoCoSo method using different normalization techniques

Table 4. The reference points of TOPSIS-SM

Ranking A1 A2 A3 A4 A5 A6 A7

R+ 4.0 1.6 1.8 4.2 7.0 6.0 3.4
R−L 1 1 1 4 7 6 3
R−R 5 2 3 5 7 6 5
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Figure 3. Values of TOPSIS-SM and rankings obtained by the CoCoSo method
using different normalization techniques and their ranking
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Table 5. The similarity measures of each ranking from PIR and NIR

Ranking N1 N2 N3 N4 N5

R+k 0.95119 0.95119 0.95119 0.95119 0.55069
R−kL 0.72008 0.72008 0.82295 0.72008 0.82295
R−kR 0.82295 0.82295 0.92585 0.92582 0.72008

Table 6. Values of TOPSIS-SM and rankings
by the CoCoSo method using different normalization

techniques and their ranking

Normalization
technique TOPSIS-SM Rank

N1 0.9035 1
N2 0.9035 1
N3 0.8373 4
N4 0.8789 3
N5 0.5042 5

5. Comparison of the TOPSIS-SM method
with other similarity measures

In this section, based on the numerical example presented in Section 4, the similarity measures de-
scribed in Section 2.3 are calculated and the results are compared with those obtained using TOPSIS-SM.
Tables 7–13 show the results of the similarity measures analysis of the obtained values and rankings using
CoCoSo and various normalization techniques.

Table 7. Values of PCC obtained by the CoCoSo method
using different normalization techniques

Normalization
technique N1 N2 N3 N4 N5

N1 1.0000 0.9548 0.9682 0.9880 0.8203
N2 0.9548 1.0000 0.8965 0.9703 0.6408
N3 0.9682 0.8965 1.0000 0.9762 0.8876
N4 0.9880 0.9703 0.9762 1.0000 0.7968
N5 0.8203 0.6408 0.8876 0.7968 1.0000

Table 8. Values of RSI for PCC by the CoCoSo method
using different normalization techniques and their ranking

Normalization
technique RSI(PCC) Rank

N1 0.9462 1
N2 0.8924 4
N3 0.9457 3
N4 0.9462 1
N5 0.8291 5

Table 7 shows the PCC values for the normalization techniques considered, while Table 8 shows
their RSI and ranking. Analysing the PCC values (Table 7) we can see that they are well above 0.95

except for the coefficients of the normalization technique N5 with all the other methods. This means that
after applying the RSI, N5 is rated lowest as confirmed by Table 8. In addition, a single, lower value of
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PCC(N2, N3) results in N2 and N3 being ranked lower than N1 and N4, which are ranked highest by
applying the RSI (with the same value of RSI). In turn, low PCC(N2, N5) results in a lower ranking of
N2 as compared with N3. It is also worth noting that N3 has a slightly lower RSI value as compared to
N1 and N4, due to its higher PCC(N3, N5) value as compared to the others. Taking into account Table 8,
we can conclude that the preferred normalization techniques in this numerical example are N1 (dedicated
to CoCoSo) and N4, and their ranking is

N5 ≺ N2 ≺ N3 ≺ N4 ≈ N1

Table 9. Values of CSM obtained by the CoCoSo method
using different normalization techniques

Normalization
technique N1 N2 N3 N4 N5

N1 1.0000 0.9899 0.9888 0.9879 0.9717
N2 0.9899 1.0000 0.9984 0.9994 0.9936
N3 0.9888 0.9984 1.0000 0.9997 0.9956
N4 0.9879 0.9994 0.9997 1.0000 0.9963
N5 0.9717 0.9936 0.9956 0.9963 1.0000

Table 10. Values of RSI for CSM obtained by the CoCoSo method
using different normalization techniques and their ranking

Normalization
technique RSI(CSM) RANK

N1 0.9876 5
N2 0.9962 3
N3 0.9965 2
N4 0.9966 1
N5 0.9914 4

Table 9 shows the results obtained with CSM for the values obtained with CoCoSo and the different
normalization techniques, while Table 10 shows their RSI and rankings. Analysing the CSM values
(Table 9) we can see that most of them have a value of around 0.99. A single low CSM(N1, N5) value
results in N1 and N5 being rated lowest. Furthermore, for N5 the remaining values are higher than for
N1, resulting in N1 being rated worst, as confirmed in Table 10. The remaining methods have values
close to each other, making it difficult to rank them based on CSM values. This is confirmed by Table 10
where the RSI values for N2 through N4 are almost identical. Finally, RSI(CSM) generates the following
ranking of normalization techniques

N1 ≺ N5 ≺ N2 ≺ N3 ≺ N4

and indicates N4 (vector normalization) as the most preferred one.
Table 11 shows the results obtained with SRCC for the rankings obtained with CoCoSo and the differ-

ent normalization techniques while Table 12 shows their RSI and rankings. In Table 11, we can see that
the SRCC values are quite high, above 0.9, but when N5 is considered, they are quite low, which causes
N5 to be rated worst.

Although the differences in RSI for N1 through N4 are small, they result in the following ranking

N5 ≺ N1 ≈ N2 ≺ N4 ≺ N3
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Table 11. Values of SRCC obtained by the CoCoSo method
using different normalization techniques

Normalization
technique N1 N2 N3 N4 N5

N1 1.0000 1.0000 0.9286 0.9643 0.5714
N2 1.0000 1.0000 0.9286 0.9643 0.5714
N3 0.9286 0.9286 1.0000 0.9643 0.7143
N4 0.9643 0.9643 0.9643 1.0000 0.6071
N5 0.5714 0.5714 0.7143 0.6071 1.0000

Table 12. Values of RSI for SRCC obtained by the CoCoSo method
using different normalization techniques and their ranking

Normalization
technique RSI (SRCC) Rank

N1 0.8929 3
N2 0.8929 3
N3 0.9072 1
N4 0.9000 2
N5 0.6928 5

Table 13 shows the results obtained with RCI for the rankings obtained with CoCoSo and the different
normalization techniques. The values obtained are varied and result in the following ranking

N3 ≺ N5 ≺ N4 ≺ N1 ≈ N2.

Table 13. Values of RCI obtained by the CoCoSo method using different normalization techniques and their ranking

Normalization
technique RCI Rank

N1 24.25 1
N2 24.25 1
N3 19.50 5
N4 23.50 3
N5 20.00 4

Finally, Table 14 and Figure 4 present rankings of the normalization techniques considered obtained
through different similarity measures. Analysing the resulting rankings, we can notice that the different
similarity measures indicate different normalization techniques as the most appropriate for the MCDM
problem under consideration. In such a situation, we can use the suggestions of Vafaei et al. [24] and
use the plurality voting (PV) method to indicate the most appropriate normalization techniques, which
counts the number of times each method was the best. The results of the PV method are presented in
Table 15. This means that the most appropriate normalization technique in this numerical example is N1.
We can write this down in the form of the following ranking

N5 ≺ N3 ≺ N4 ≈ N2 ≺ N1.
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Table 14. Final rankings of the normalization techniques considered
obtained through different similarity methods

Normalization
technique RSI (PCC) RSI (CSM) RSI (SRCC) RCI TOPSIS-SM

N1 1 5 3 1 1
N2 4 3 3 1 1
N3 3 2 1 5 4
N4 1 1 2 3 3
N5 5 4 5 4 5
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Figure 4. Final rankings of the normalization techniques considered obtained through different similarity methods

Table 15. The results of the PV method

Normalization
technique PV Rank

N1 3 1
N2 2 2
N3 1 4
N4 2 2
N5 0 5

6. Conclusions

Using a numerical example, the paper analyses which of the selected normalization techniques is most
suitable for the CoCoSo method. In addition to the dedicated CoCoSo zero unitarization method, the
maximum method, the sum method, vector normalization, and logarithmic normalization were also in-
vestigated. To compare the results obtained by different normalization techniques, selected similarity
measures well-known from the literature were used, such as Pearson’s correlation coefficient, Spear-
man’s rank correlation coefficient, cosine similarity measure, and ranking consistency index. In addition,
a new method for assessing the similarity of rankings, called TOPSIS-SM, was developed, based on the
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algorithm of the TOPSIS method.
Based on the numerical example from the paper of Yazdani et al. [28], the authors of the CoCoSo

method, it was found that the most suitable normalization techniques for this example are the zero unita-
rization method and the vector normalization. The similarity measures RSI (PCC) and RCI indicated the
zero unitarization method, while vector normalization is indicated by RSI (PCC) and RSI (CSM). The
proposed TOPSIS-SM similarity measure indicated the zero unitarization method and maximum method
as the most appropriate normalization method in this numerical example.

This makes it difficult to say unequivocally which normalization technique is the most suitable for the
MCDM problem under consideration. Further research is needed in this area and perhaps even the de-
velopment of new similarity measures that will unambiguously indicate which method of normalization,
or which MCDM method, is the most appropriate for the MCDM problem being analyzed. It will be an
area of further research for the author.
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(2015), 113–126, (in Polish).

[13] Kendall, M. G. A new measure of rank correlation. Biometrika 30, 1/2 (1938), 81–93.
[14] Koganti, V. K., Menikonda, N., Anbuudayasankar, S. P., Krishnaraj, T., Athhukuri, R. K., and Vastav, M. S.

Grahp top model for supplier selection in supply chain: A hybrid MCDM approach. Decision Science Letters 8, 1 (2019), 65–80.



64 D. Kacprzak

[15] Kukuła, K. Zero-based unitarisation method against the background of selected methods for the normalisation of diagnostic char-
acteristics. Acta Scientifica Academiae Ostroviensis 4 (1999), 5–31 (in Polish).

[16] Kukuła, K. Zero-based unitarisation method. Wydanictwo Naukowe PWN, 2000 (in Polish).
[17] Nijkamp, P., and van Delft, A. Multi-Criteria Analysis and Regional Decision-Making. Vol. 8. Springer Science & Business

Media, 1977.
[18] Palczewski, K., and Sałabun, W. The fuzzy topsis applications in the last decade. Procedia Computer Science 159 (2019),

2294–2303.
[19] Rudnik, K., and Kacprzak, D. Fuzzy Topsis method with ordered fuzzy numbers for flow control in a manufacturing system.

Applied Soft Computing 52 (2017), 1020–1041.
[20] Saaty, T. L. The Analytic Hierarchy Process. McGraw-Hill, New York,1980.
[21] Stojčić, M., Zavadskas, E. K., Pamučar, D., Stević, Ž., and Mardani, A. Application of MCDM methods in

sustainability engineering: A literature review 2008–2018. Symmetry 11, 3 (2019), 350.
[22] Vafaei, N., Ribeiro, R. A., and Camarinha-Matos, L. M. Normalization techniques for multi-criteria decision making:

analytical hierarchy process case study. In Technological Innovation for Cyber-Physical Systems: 7th IFIP WG 5.5/SOCOLNET
Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2016, Costa de Caparica, Portugal, April
11–13, 2016, Proceedings (Cham 2016), L. M. Camarinha-Matos, A. J. Falcão, N. Vafaei and S. Najdi, Eds., Springer, pp. 261–269.

[23] Vafaei, N., Ribeiro, R. A., and Camarinha-Matos, L. M. Data normalisation techniques in decision making: case study
with TOPSIS method. International Journal of Information and Decision Sciences 10, 1 (2018), 19–38.

[24] Vafaei, N., Ribeiro, R. A., and Camarinha-Matos, L. M. Selecting normalization techniques for the analytical hierarchy
process. In Technological Innovation for Life Improvement: 11th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Com-
puting, Electrical and Industrial Systems, DoCEIS 2020, Costa de Caparica, Portugal, July 1–3, 2020, Proceedings (Cham, 2020), L.
M. Camarinha-Matos, N. Farhadi, F. Lopes, H. Pereira , Eds., Springer, pp. 43–52.

[25] Vafaei, N., Ribeiro, R. A., and Camarinha-Matos, L. M. Assessing normalization techniques for simple additive
weighting method. Procedia Computer Science 199 (2022), 1229–1236.

[26] Walesiak, M. Data Normalization in Multivariate Data Analysis. An Overview and Properties Przegląd Statystyczny 61, 4 (2014),
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