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Abstract

This paper studies the flexible Lomax distribution’s order statistics with graphical and numerical findings. Along with the
quantitative measurements, some plots are furnished, including those for the skewness and kurtosis measures. We will dwell
on the numerous results that relate to statistics of moments of order. We consider the single and product moment of order
statistics from the new distribution. Further, we establish some recurrence relation for single moments of order statistics. We
have sought to apply the derived relations to empirically evaluate the moments of smallest (largest) order statistics to establish
well-known moments and related measures. For order statistics of a flexible Lomax distribution, exact analytical expressions
of entropy, residual entropy, and past latent entropy are determined.

Keywords: Weibull distribution, weighted family, moments, simulation, maximum likelihood estimation

1. Introduction

Order statistics have been used in a wide range of problems, including robust statistical estimation and detec-
tion of outliers, characterization of probability distribution, goodness of fit-tests, quality control, and analysis
of censored samples. One of the most essential techniques in non-parametric statistics and inference is order
statistics. An order statistic tree, for instance, is a variation of the binary search tree used in data structuring.
Order statistics are applied in life testing to speed up component testing. The use of recurrence relations for
the moments of order statistics is quite well-known in the statistical literature (see e.g. [2, 8]). For the im-
proved form of these results, Samuel and Thomes [15], Arnold et al. [2], and Ali and Khan [1] reviewed many
recurrence relations and identities for the moments of order statistics arising from several specific continuous
distributions such as normal, Cauchy, logistic, gamma and exponential. Until recently, Dar and Abdullah [4]
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studied the sampling distribution of order statistics of the two parametric Lomax distributions and derived the
exact analytical expressions of entropy, residual entropy and past residual entropy for order statistics of Lomax
distribution. Asadi et al. [3] explored Rényi information and entropy, also referred to as dynamic information
divergence, concerning the order of entropy. By establishing a residual entropy of order statistics premised
on quantiles, Sunoj et al. [17] investigated the ordered observations for used products. Mustafa et al. [12] de-
rived the order statistics of inverse Pareto distribution, however, the numerical application of these expressions
seems a far-fetched notion. Keeping this in view, we tried to fill this void by providing the practical utility of
these recurrence relations. The fact that many of these relations and identities express higher-order moments
in terms of lower-order moments facilitates the ability to evaluate higher-order moments. Furthermore, these
relations and identities offer some streamlined verifications to determine whether the computation of moments
of order statistics was accurate.

1.1. Definitions

A random variableX with a range of values (0, ∞) is said to have the flexible Lomax distribution (FLD),
if its probability density function (pdf) is given by [9]

f(x) =
αλ

θ
xλ−1

(
1 +

(x
θ

)λ)−α−1

, x ≥ 0, α, λ, θ ≥ 0 (1)

Here α is the shape parameter. The hazard rate function of FLD can model failure rates of both
monotonic and non-monotonic nature.

F (x) = 1−
(
1 +

(x
θ

)λ)−α

(2)

F (x) =

(
1 +

(x
θ

)λ)−α

(3)

Noting that all FLDs possess the upside-down bathtub shape for their hazard rates, we consider a flex-
ible Lomax distribution that can be effectively used to model the upside-down bathtub shape hazard rate
data. The following functional relationship exists between the pdf and cdf of the FLD

f(x) =
αλ

θ
xλ−1

(
1 +

(x
θ

)λ)−1

(1− F (x)) (4)

Table 1 provides the empirical findings for some basic quantities of the FLD distribution which in-
cludes the first four ordinary moments, variance, standard deviation, coefficient of variation (CoV) and
the coefficients of skewness (CoS) and kurtosis (CoK). Plots of the Bowley skewness and Moors kurtosis
are depicted in Figure 1. Fayomi et al. [7] employed another method, termed MacGillivray (MGs) skew-
ness (due to [11]) to evaluate the skewness measure based on the quantile. These plots are displayed in
Figure 2. These plots show the flexible behavior of FLD for selected parameter combinations.

To study the distributional behaviour of the set of observations, we can use minimum and maximum
(min-max) plots of the order statistics. Min-max plot depends on extreme order statistics. It is introduced
to capture all information about the distribution’s tails and the whole data distribution.
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Table 1. Moments and related measures of the FLD (α, λ, θ) for selected parameters

Parameters (α, λ, θ) E(X) E(X2) E(X3) E(X4) V(X) SD(X) CoV CoS CoK
(0.3, 1.6, 2.7) 23.593 986.803 60427.71 4339151 430.193 20.741 0.879 0.553 2.323
(1.3, 0.6, 1.5) 4.288 152.132 8915.759 627496 133.745 11.565 2.697 4.785 28.807
(1.9, 1.6, 1.5) 1.607 4.575 39.09 1075.887 1.991 1.411 0.878 5.443 120.065
(2.9, 1.6, 1.5) 1.079 1.601 4.141 22.867 0.437 0.661 0.613 1.702 21.747
(3.3, 2.1, 1.3) 0.554 0.435 0.461 0.669 0.128 0.358 0.647 1.713 10.024
(3.5, 2.1, 1.3) 0.533 0.4 0.4 0.533 0.116 0.34 0.637 1.614 8.982
(3.9, 2.2, 1.3) 0.499 0.345 0.312 0.363 0.096 0.31 0.622 1.463 7.606
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Figure 1. Graphs of the Bowley skewness and Moors kurtosis of X
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Figure 2. MacGillivray skewness of FLD for selected parameters combinations of X

Figure 3 shows the smallest and the largest order statistics for some parametric values and depends on
E(X1:n) and E(Xn:n), respectively. As the values of α increase, the median line moves to a much more
central position. Similarly, the lower and upper record values are illustrated in Figure 4.
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Figure 3. Min-Max plots of FLD for some parametric combinations
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Figure 4. Plots of the upper and lower record value of FLD

An entropy of a continuous random variable X with density function fX(x) is defined as [16]

H(X) = −
∞∫
0

fX(x)logfX(x)dx. (5)
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Laz and Rathie have discussed analytical expressions for univariate distribution [10], Nadarajah and
Zografos [13]. Also, the information properties of order statistics were studied by Wong and Chen [18],
Park [14], and Ebrahimi et al. [6]. The measure given in equation (5) is not suitable for measuring the
uncertainty of a component with information only about its current age. A more realistic approach which
takes the use of age into account is described by Ebrahimi [6] and is defined as follows:

H(X) = −
∞∫
t

f(x)

F (t)
log

f(x)

F (t)
dt (6)

It is obvious that for t = ∞, equation (6) is reduced to equation (5). In many realistic situations,
uncertainty is not necessarily related to the future but can also refer to the past. Based on this idea, di
Crescenzo and Longobardi [5] develop the concept of past entropy over (0, t).

If X denotes the lifetime of a component, then the past entropy of X is defined by

H0(X) = −
∞∫
t

f(x)

F (t)
log

f(x)

F (t)
dt (7)

For t = 0, equation (7) is reduced to equation (5).
The rest of the paper is structured as follows: in Section 2, the distribution of order statistics based

on FLD is derived with mathematical proofs; Section 3 comprises the single and product moments with
explicit expressions derived both mathematically and empirically for the distribution of order statistics;
the practical applicability of the proposed distribution based on entropy measures is discussed in Section
4. Finally, Section 5 consists of conclusive remarks and future directions related to the proposed model.

2. Distribution of order statistics
Let X1, X2, X3, . . . , Xn be a random sample of size from the flexible Lomax distribution and let
X1:n ≤ X2:n ≤ X3:n ≤, . . . ,≤ Xn:n denotes the corresponding order statistics. Then the pdf of
Xr:n, 1 ≤ r ≤ n is given by [2, 13]

fr:n(x) = Cr:n(F (x))
r−1(1− F (x))n−r (8)

where Cr:n =
n!

(r − 1)!(n− r)!
.

The probability density functions of smallest (r = 1) and largest (r = n) order statistics can be easily
obtained from equation (8) and are given, respectively, by

f1:n(x) = n(1− F (x))n−1f(x)

fn:n(x) = n(F (x))n−1f(x)

Using equations (1) and (2), and taking r = 1 in equation (8) yields the pdf of the minimum order
statistics for the flexible Lomax distribution

f1:n(x) =
nαλ

θλ
xλ−1

(
1 +

(x
θ

)λ)−n(α+1)

(9)
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Similarly using equations (1) and (2), and taking r = n in equation (8) yields the pdf of the largest
order statistics for the flexible Lomax distribution

fn:n(x) =
nαλ

θλ

n−1∑
i=0

(
n− 1

i

)
(−1)ixλ−1

(
1 +

(x
θ

)λ)−α(i+1)−1

(10)

The joint pdf of Xr:s and Xr:s for 1 ≤ r ≤ s ≤ n is given by [2]

fr:s:n(x) = Cr:s:n(F (x))
r−1(F (y)− F (x))s−r−1(1− F (y))n−s (11)

for −∞ ≤ X ≤ y ≤ ∞ where Cr:s:n =
n!

(r − 1)!(s− r − 1)!(n− s)!

Following two theorems gives the distribution of the order statistics from the distribution.

Theorem 1. Let f(x) and F (x) be the cdf and pdf of the flexible Lomax distribution. Then the density
function of the rth order statistics say fr:n(x) is given by

fr:n(x) = Cr:s:n
nαλ

θλ

r−1∑
i=0

(
r − 1

i

)
(−1)ixλ−1

(
1 +

(x
θ

)λ)−α(n+i−r+1)−1

(12)

Proof. First it should be noted that equation (8) can be written as

fr:n(x) = Cr:n

n−r∑
i=0

(
n− r

i

)
(−1)i(F (x))r+i−1f(x) (13)

The proof follows by substituting equations (1) and (2) into equation (13).

Theorem 2. Let Xr:n and Xs:n for 1 ≤ r ≤ s ≤ n be the rth and sth order statistics from the flexible
Lomax distribution. Then the joint pdf of Xr:n and Xs:n is given by

fr:s:n(x) = (αλ)2Cr:s:n

s−r−1∑
i=0

n−s∑
j=0

s−r−1−i+j∑
k=0

r+i−1∑
l=0

×
∞∑

m=0

∞∑
n=0

(
s− r − 1

i

)(
n− s

j

)(
s− r − 1− i+ j

k

)(
r + i− 1

l

)

× (−1)i+j+k+l+m+n−2 mn

θλ(m+n+2)
xλ(m+1)−1yλ(n+1)−l

Proof. Another form of representing equation (11) is as follows:

fr:s:n(x) = Cr:s:n

s−r−1∑
i=0

n−s∑
j=0

(
s− r − 1

i

)(
n− s

j

)
(−1)i+j

× (F (y))s−r−1−i+j(F (x))r+i−1f(x)f(y)

(14)

The proof immediately follows by substituting equations (1) and (2) into equation (11).



On the theory of order statistics. . . 39

3. Single and product moments

In this section, we derive explicit expressions from the FLD for both single and product moments of order
statistics.

Theorem 3. Let X1, X2, X3, . . . , Xn be a random sample of size n from the distribution and let
X1:n, X2:n, . . . , Xn:n denote the corresponding order statistics. Then kth moment of the rth order statis-
tics for k = 1, 2, . . . denoted by µ(k)

r:n is given by

µ(k)
r:n = θk

n−r∑
i=0

(
n− r

i

)
(−1)i+

k
λ
−1β(n− r − i

α
+ 1

α
+ 1; r)

β(r;n− r + 1)
(15)

where β(..; ..) is the beta function.

Proof. We know that

µ(k)
r:n =

∞∫
0

xkfr:n(x)dx, µ(k)
r:n = Cr,n

∞∫
0

xk(F (x))r−1(1− F (x))n−rf(x)dx (16)

Now substituting equations (1) and (2) into equation (16), yields equation (15).
Theorem 3 can be exploited to derive the mean, variance and other related measures of the rth order

statistics. For example, when k = 1, we can obtain the mean of the rth order statistics as follows:

µ(1)
r:n = θ

∞∑
i=0

(−1)i+
1
λ
−1β(n− r − i

α
+ 1

α
+ 1; r)

β(r;n− r + 1)
(17)

For k = 2, one can get the second order moment of the rth order statistics as

µ(2)
r:n = θ2

∞∑
i=0

(−1)i+
2
λ
−1β(n− r − i

α
+ 1

α
+ 1; r)

β(r;n− r + 1)
(18)

Therefore, the variance of the rth order statistics can be obtained easily by using the equation

V ar(Xr:n) = µ(2)
r:n − (µ(1)

r:n)
2

V ar(Xr:n) =θ
2Cr;n

(
∞∑
i=0

(−1)i+
2
λ
−1β(n− r − i

α
+

1

α
+ 1; r)

− Cr;n

( ∞∑
i=0

(−1)i+
1
λ
−1β(n− r − i

α
+

1

α
+ 1; r)

)2)
The third and fourth order moments of the rth order statistic, µ(3)

r:n and µ(4)
r:n, can be obtained in similar

ways. The mean, variance and other statistical measures of the extreme order statistics are always of
great interest. Taking r = 1, one can obtain the mean of the smallest order statistics:

µ
(1)
1:n = nαθ

∞∑
i=0

(−1)i+
1
λ
−1 1

nα− i+ 1
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Also, the second-order moment of the smallest-order statistics can be obtained as follows:

µ
(2)
1:n = nαθ2

∞∑
i=0

(−1)i+
2
λ
−1 1

nα− i+ 1

Therefore, the variance of the smallest order statistics is

V ar(X1:n) = µ
(2)
1:n − [µ

(1)
1:n]

2

= nαθ2

 ∞∑
i=0

(−1)i+
2
λ
−1 1

nα− i+ 1
− nα

(
∞∑
i=0

(−1)i+
1
λ
−1 1

nα− i+ 1

)2


Similarly, the mean, the second order moment and hence the variance of the largest order statistics
(r = n) is given by

µ(1)
n:n = nθ

∞∑
i=0

(−1)i+
1
λ
−1β

(
1

α
− i

α
+ 1;n

)
and

µ(2)
n:n = nθ2

∞∑
i=0

(−1)i+
2
λ
−1β

(
1

α
− i

α
+ 1;n

)
Therefore, the variance of the largest order statistics is

V ar(Xn:n) = µ(2)
n:n − [µ(1)

n:n]
2

V ar(Xn:n) = nθ2

 ∞∑
i=0

(−1)i+
2
λ
−1β

(
1

α
− i

α
+ 1;n

)
− n

(
∞∑
i=0

(−1)i+
1
λ
−1β

(
1

α
− i

α
+ 1;n

))2


In Table 2, employing the result defined in equation (15), we compute the moments and other related
measures for smallest order statistics for some values of n = 10, 20, 30, 50 for selected combinations of
parameter of the density defined in equation (9). This table is the modified version of Table 1. It gives
the empirical findings for the distribution for the kth smallest order statistics.

Table 2. Moments and related measures for smallest order statistics (r = 1) for selected parameters at various sample sizes

Parameters
(α, λ, θ) n µ

(1)
1:n µ

(2)
1:n µ

(3)
1:n µ

(4)
1:n V(X) SD(X) CoV CoS CoK

10 –0.182 0.364 –0.727 1.455 0.331 0.575 –3.162 8.100 9.100
(0.9, 1.2, 2.0) 20 –0.095 0.190 –0.381 0.762 0.181 0.426 –4.472 18.050 19.050

30 –0.065 0.129 –0.258 0.516 0.125 0.353 –5.477 28.033 29.033
50 –0.160 0.319 –0.638 1.277 0.294 0.542 –3.396 9.618 10.618

(1.0, 0.5, 1.5) 10 0.136 0.205 0.307 0.460 0.186 0.431 3.162 8.100 9.100
20 0.071 0.107 0.161 0.241 0.102 0.319 4.472 18.050 19.050
30 0.048 0.073 0.109 0.163 0.070 0.265 5.477 28.033 29.033
50 0.120 0.180 0.269 0.404 0.165 0.406 3.396 9.618 10.618

(0.89, 1.1, 2.5) 10 –0.042 0.104 –0.260 0.651 0.102 0.320 –7.681 57.017 58.017
20 –0.002 0.004 –0.010 0.024 0.004 0.062 -40.112 1.61× 103 1.61× 103

30 -0.0001 0.0002 -0.0004 0.001 0.0002 0.013 -198.800 3.95× 104 3.95× 104

50 6.969 17.423 43.557 108.8917 65.990 8.123 1.166 4.095 3.095
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Theorem 4. Let X1, X2, X3, . . . , Xn be a random sample of size n from FLD and let X1:n, X2:n,

X3:n, . . . , Xn:n denote the corresponding order statistics.
Then for 1 ≤ r ≤ n we have the following moment relation:

µ(k)
r:n = αλ

∞∑
i=0

(−1)i−1(n− r + 1)

θλi(k + λi)

(
µ(k−λi)
r:n − µ

(k−λi)
r−1:n

)
.

Proof. Using equations (4) and (16) gives

µ(k)
r:n =

∞∫
i=0

xk(F (x))r−1(1− F (x))n−rf(x)dx

µ(k)
r:n = αλ

∞∑
i=0

(−1)i−1

θλi
Cr:n

∞∫
i=0

xk+λi−1(F (x))r(1− F (x))n−r+1dx

By using integration by parts, we easily obtain the desired result.

Theorem 5. for 1 ≤ r ≤ s ≤ n ≤ , and n ∈ N , we have

µ(k1,k2)
r:s:n =αλ2

∞∑
i=0

∞∑
j=0

(−1)i+j−2(n− s+ 1)

θλ(i+j)(k1λi, k2 + λj)(
r
(
µ(k1λi,k2+λj)
r:s:n − µ

(k1λi,k2+λj)
r:s−1:n

)
− n

(
µ
(k1λi,k2+λj)
r−1:s−1:n−1 − µ

(k1λi,k2+λj)
r−1:s−2:n−1

))
Proof: We start by noting that

µ(k1,k2)
r:s:n = Cr:s:n

∞∫
0

∞∫
x

xk1yk2(F (x))r−1(F (y)− F (x))s−r−1(1− F (y))n−sf(x)f(y)dydx

or

µ(k1,k2)
r:s:n = Cr:s:n

∞∫
0

xk1(F (x))r−1f(x)IXdx

where

IX =

∞∫
x

yk2(F (y)− F (x))s−r−1(1− F (y))n−sf(y)dy (19)

Applying equation (4) gives

IX = αλ
∞∑
j=0

(−1)j−1

βλj

∞∫
x

yk2+λj−1(F (y)− F (x))s−r−1(1− F (y))n−s+1dy

Now, integrating by parts and then substituting IX into equation (19) gives directly the desired result.
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4. Entropy-based order statistics

Let X1, X2, X3, . . . , Xn be a random sample of size n from a distribution FX(x) with density function
f(x) and let Y1 ≤ Y2 ≤ · · · ≤ Yn denote the corresponding order statistics. Then the pdf of Yr, 1 ≤ r ≤ n,
is given by

fYr(y) = Cr:n(FX(y))
r−1(1− FX(y))

n−r, 0 ≤ X ≤ ∞

for Cr:n =
1

β(r, n− r + 1)
=

n!

(r − 1)!(n− r)!
and β(. . . , . . . ) is the beta function as before.

Further, let U be the uniform distribution defined over the unit interval. The order statistics of a sample
taken randomly from a uniform distribution U1, U2, U3, . . . , Un are denoted by W1 ≤ W2 ≤ · · · ≤ Wn.
The random variable Wr, r = 1, 2, . . . , n has a beta distribution with density function

gr(w) = Cr:n(w)
r−1(1− w)n−r, 0 ≤ w ≤ 1

In the following subsections, we derive the exact form of entropy, residual entropy and past residual
entropy for the FL distribution based on order statistics.

4.1. Entropy

Using the transformation Wr = FX(Yr), the entropies of order statistics can be computed by

H(Yr) = Hn(Yr)− Egr(log fX(F
−1
X (Wr)) (20)

where fX is the probability density function of the random variable X and Hn(Wr) denotes the entropy
of the beta distribution and is given by

Hn(Wr) = log β(r, n− r + 1)− (r − 1)(ψ(r)− ψ(n+ 1))

− (n− r)(ψ(n− r + 1)− ψ(n+ 1))
(21)

ψ is the digamma function and is defined by ψ(θ) =
(
d

dθ

)
log Γ(θ).

Remark 4.1. For r = 1, i.e., the smallest order statistics and for r = n, i.e., the largest order statistics,
it can be easily shown that

Hn(W1) = Hn(Wn) = 1− log(n)− 1

n
(22)

Remark 4.2. It should be noted that ψ(n+ 1)− ψ(n) =
1

n
.

Theorem 6. Let X1, X2, X3, . . . , Xn be a random sample of size n from FLD with a distribution
function given in equation (2) and let Y1 ≤ Y2 ≤ · · · ≤ Yn denote the corresponding order statistics.
Then the entropy of rth order statistics of FLD is given by
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Hn(Wr) = log β(r, n− r + 1)− (r − 1)(ψ(r)− ψ(n+ 1))− (n− r)(ψ(n− r + 1)

−ψ(n+ 1))− log

(
αλ

θ

)
− α

(
1− 1

λ

) r−1∑
i=0

(
r − 1

i

)
(−1)i−1

β(r;n− r − 1)

×
(
ψ(1)− ψ(1− α(n− r + i+ 1))

)(
1 +

1

α

)
[ψ(n− r + 1)− ψ(n+ 1)]

(23)

Proof. Using equation (2) and the probability integral transformation Y r = F−1(Wr), one can easily
arrive at

F−1(Wr) = θ((1−Wr)
−1
α − 1)

1
λ

Therefore, after applying equation (20) we get the following:

Egr(log fX(F
−1
X (Wr)) = − log

(
αλ

θ

)
− α

(
1− 1

λ

) r−1∑
i=0

(
r − 1

i

)
(−1)i−1

β(r;n− r − 1)

× (ψ(1)− ψ(1− α(n− r + i+ 1)))

(
1 +

1

α

)
(ψ(n− r + 1)− ψ(n+ 1))

Corollary 1. For r = 1, i.e., smallest order statistics, we have

H(Y1) =

(
1− 1

n

)
+ log

(
θ

nαλ

)
+

(
1− 1

λ

)
(ψ(1− αn) + γ) +

1

n

(
1− 1

α

)
where −ψ(1) = γ = 0.5772 is the Euler constant.

Corollary 2. For r = n, i.e., largest order statistics, we have

H(Yn) =

(
1− 1

n

)
+ log

(
θ

nαλ

)
+ n

(
1− 1

λ

) n−1∑
i=0

(
n− 1

i

)

× (−1)i

(i+ 1)

(
ψ(1− α(i+ 1)) + γ

)
−
(
1− 1

α

)
(ψ(n+ 1) + γ)

4.2. Residual entropy

Analogous to equation (6), the residual entropy of order statistics Xr;n is given by

H(Xr,n;t) = −
∞∫
t

fr,n(x)

F̄r,n(t)
log

fr,n(x)

F̄r,n(t)
dt (24)

The residual entropy of first-order statistics is obtained by substituting r = 1 and using the probability
integral transformation U = FX(x) in equation (24). Then, we have
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H(X1,n;t) =
n

n− 1
− log n+ log F̄ (t)− n

F̄ n(t)

∞∫
t

(1− u)n−1 log(f(F−1(u)))du (25)

The residual entropy of the first-order statistics for MI distribution can be easily obtained by using
equations (1), (2), and (3), and then put F−1(u) = θ((1− u)

−1
α − 1]

1
λ into equation (25)

H(X1,n;t) =
n

n− 1
− log

(
nαλ

θ

)
− log F̄ (t)−

(
1− 1

λ

)(
(F̄ (t))

1
α log

(
(F̄ (t))

1
α − 1

))

× n

F̄ n(t)

∞∑
i=0

(
(F̄ (t))

1
α − 1

)
i

−
(
1− 1

α

)(
log F̄ (t)− 1

)
where F (t) and F̄ (t) are the cumulative distribution function and survival function for FLD given by
equations (2) and (3), respectively. The case for r = n follows on similar lines.

4.3. Past residual entropy

Analogous to equation (7), the past residual entropy of the rth f(F−1(u)) order statistics is defined as

H0(Xr,n;t) = −
t∫

0

fr,n(x)

Fr,n(t)
log

fr,n(x)

Fr,n(t)
dt (26)

The past residual entropy of nth order statistics is obtained by substituting r = n and using the
probability integral transformation U = FX(x) in equation (27), we have

H0(Xn,n;t) =
n− 1

n
− log n+ log(F (t))− n

F n(t)

∞∫
t

un−1 log(f(F−1(u)))du (27)

The past residual entropy of the nth order statistics for MI distribution can be easily obtained by using

(1), (2), (3) and f(F−1(u)) =
αW

1− 1
α

r (W
1
α
r − 1)

(2W
1
α
r − 1)

in equation (27)

H0(Xn,n;t) =
n

n− 1
− log

(
nαλ

θ

)
− logF (t)− nα

F n(t)

(
1− 1

λ

) n−1∑
i=0

∞∑
j=0

(
n− 1

i

)
(−1)i

×

(
(F̄

1
α (t))j−1

j − 1
log
(
F̄

1
α (t)− 1

)
− (F̄

1
α (t))j−1

(j − 1)2

)

×
(
1− 1

α

) n−1∑
i=0

(
n− 1

i

)
(−1)i

(
(F̄ (t))i+1

(i+ 1)2
− (F̄ (t))i+1

(i+ 1)
log F̄ (t)

)
The case for r = 1 follows on similar lines.
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5. Conclusion

In this paper, we study the sampling distribution from the order statistics of FL distribution. Explicit
mathematical expressions have been derived for applied purposes. Also, we consider the single and prod-
uct moment of order statistics from FL distribution. We establish recurrence relations for single moments
of order statistics. Also, we have derived the entropy, residual and past residual entropies for order statis-
tics of the FL distribution. The distribution of order statistics of FLD may have significant applications in
numerous disciplines such as goodness-of-fit testing, quality control, dependability analysis, and many
other issues. Further, its utility can be fascinating to explore in the research of lifelong reliability theory.

Acknowledgement
The authors are grateful to the lead Editor and the anonymous reviewers for their valuable comments/suggestions on this

manuscript’s previous draft.

References

[1] Ali, M. A., and Khan, A. H. Recurrence relations for expected values of certain functions of two order statistics. Metron 56,
1-2 (1998), 107–119.

[2] Arnold, B. C. Balakrishnan, N., and Nagaraja, H. N. A First Course in Order Statistics, vol. 54. SIAM, Philadelphia,
1992.

[3] Asadi, M; Ebrahimi, N., and Soofi, E. S. Dynamic generalized information measures. Statistics & Probability Letters 71, 1
(2005), 85–98.

[4] Dar, J., and Al-Hossain, A. Order statistics properties of the two parameter Lomax distribution. Pakistan Journal of Statistics
and Operation Research 11, 2 (2015), 181–194.

[5] Di Crescenzo, A., and Longobardi, M. Entropy-based measure of uncertainty in past lifetime distributions. Journal of
Applied probability 39, 2 (2002), 434–440.

[6] Ebrahimi, N., Soofi, E. S., and Zahedi, H. Information properties of order statistics and spacings. IEEE Transactions on
Information Theory 50, 1 (2004), 177–183.

[7] Fayomi, A., Khan, S., Tahir, M. H., Algarni, A., Jamal, F., and Abu-Shanab, R. A new extended Gumbel
distribution: Properties and application. PLOS ONE 17, 5 (2022), 0267142.

[8] Henrick Malik, J. Balakrishnan, N., and Ahmed, S. E. Recurrence relations mid identities for moments of order
statistics. I: arbitrary continuous distribution. Communications in Statistics - Theory and Methods 17, 8 (1988), 2623–2655.

[9] Ijaz, M., Asim, M., and Khalil, A. Flexible Lomax distribution. Songklanakarin Journal of Science and Technology 42, 5
(2019), 1125–1134.

[10] Laz, A., and Rathie, P. On the entropy of continuous probability distribution. IEEE Transactions on Information Theory 24, 1
(1978), 120–122.

[11] MacGillivray, H. L. Skewness and asymmetry: Measures and orderings. The Annals of Statistics 14, 3 (1986), 994–1011.
[12] Mustafa, G. Ijaz, M., and Jamal, F. Order statistics of inverse Pareto distribution. Computational Journal of Mathematical

and Statistical Sciences 1, 1 (2022), 51–62.
[13] Nadarajah, S., and Zografos, K. Formulas for Rényi information and related measures for univariate distributions. Informa-

tion Sciences 155, 1-2 (2003), 119–138.
[14] Park, S. The entropy of consecutive order statistics. IEEE Transactions on Information Theory 41, 6 (1995), 2003–2007.
[15] Samuel, P., and Thoma, P. Y. An improved form of a recurrence relation on the product moments of order statistics. Commu-

nications in Statistics - Theory and Methods 29, 7 (2000), 1559–1564.
[16] Shannon, C. E. A mathematical theory of communication The Bell System Technical Journal 27, 3 (1948), 379–423.
[17] Sunoj, S. M., Krishnan, A. S., and Sankaran, P. G. Quantile-based entropy of order statistics. Journal of the Indian

Society for Probability and Statistics 18, 1 (2017), 1-17.
[18] Wong, K. M., and Chen, S. The entropy of ordered sequences and order statistics. IEEE Transactions on Information Theory

36, 2 (1990), 276–284.


	Introduction
	Definitions

	Distribution of order statistics
	Single and product moments
	Entropy-based order statistics
	Entropy
	Residual entropy
	Past residual entropy

	Conclusion

