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Abstract

A feasible direction method for linear programming has been proposed. The method is embedded in the framework of the
simplex method, even though it works with non-edge feasible directions. The direction used is the steepest in the space of
all variables or an approximation thereof, and it is found by solving a strictly convex quadratic program in the space of the
nonbasic variables. Further, this program guarantees the feasibility of the direction even in the case of degeneracy. To remain
within the simplex framework, the direction is represented by an auxiliary, or external, nonbasic column, which is a nonnega-
tive linear combination of original nonbasic columns. We have made an experimental evaluation of the suggested method on
both nondegenerate and highly degenerate problem instances. The overall results are very promising for continued research
along this line, especially concerning various computational strategies that can be applied when the method is implemented.
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1. Introduction

Based on the type of paths they follow to reach optimality, the two fundamentally different and compet-
itive approaches for solving linear programs are the simplex method and interior methods. The simplex
method follows the edges of the feasible polyhedron while interior methods move through the relative
interior of the feasible polyhedron. Interior methods may be classified into two broad categories based
on their connection with the simplex method [17]: methods that work within the simplex framework and
those that do not. Our linear programming approach can be categorized as a simplex-type interior method.
It uses the steepest feasible directions, which are typically not along edges but can still be incorporated
into the simplex framework through the introduction of auxiliary variables.

The simplex method for solving general linear programming problems was developed in the late
1940s. It has since then been an efficient tool for solving linear programs arising in various applications,
and therefore immensely important within operations research. Borgwardt and Huhn [5] showed that the

Received 22 December 2022, accepted 5 April 2024, published online 8 July 2024
ISSN 2391-6060 (Online)/© 2024 Authors
The costs of publishing this issue have been co-financed by the program Development of Academic Journals of the Polish
Ministry of Education and Science under agreement No. RCN/SP/0241/2021/1

http:\www.ord.pwr.edu.pl
https://orcid.org/0000-0003-2094-7376
mailto:torbjorn.larsson@liu.se


164 B.C. Wolde and T. Larsson

average number of iterations needed by the standard version of the simplex method is polynomial, which
explains its practical efficiency. However, by considering specially formulated problem instances, Klee
and Minty [14] (see also, e.g., [18]) demonstrated that its worst-case performance is exponential. Much
research has been devoted to various ways of enhancing the computationally efficiency and numerical
stability of the simplex method; an example of this is the design of efficient computational schemes
for updating the basis inverse in each iteration. A crucial step in the simplex method is the pricing,
or column selection. This step examines the reduced costs of the nonbasic variables that violate the
optimality condition and then it selects one of them to enter the basis; the standard pricing rule is to
simply find the most negative reduced cost (for a minimization problem).

More advanced rules for choosing the entering variables can significantly reduce the number of itera-
tions needed to reach an optimal solution. Such rules are more elaborate and computationally demanding
than the standard rule. However, because they lead to fewer simplex iterations they can still be very
favourable for the practical efficiency of the overall simplex method. Several advanced pricing strategies
have been suggested and implemented (see, e.g., [16]). Two examples of this are the steepest-edge rule
and the Devex rule, which both decrease the number of iterations and the running time, as compared
to using the standard pricing rule [9, 11, 13]. A good account of pricing rules in connection with the
theoretical convergence properties of the simplex method can be found in [10].

Since optimality for any linear program is attained at an extreme point of the feasible polyhedron,
it is sufficient to examine only such points to find an optimum; this is the foundation for the simplex
method. In each nondegenerate iteration of the simplex method, it makes a move from a current ex-
treme point along an edge of the polyhedron to an adjacent extreme point with a better objective value.
Because moves are made along edges, the iterations become algebraically simple and computationally
inexpensive.

The rationale for developing non-edge following simplex-type methods for linear programming is the
convexity property of linear programs. Because of the convexity, it is always possible to move from
any given, non-optimal feasible point along a feasible descent direction to an optimal solution. (The
calculation of such a direction is however of course equivalent to solving the linear program.) Further-
more, given a basic feasible solution, such a direction can always be expressed as a nonnegative linear
combination of the edge directions corresponding to the nonbasic variables.

Non-edge following methods that work within the simplex framework attempt to reduce the overall
iterations and running times needed by the simplex method at the expense of additional computations
in every iteration, or only some of them. The efficiency of using non-edge directions can however be
expected to diminish as an optimal solution is approached, since at this stage the higher quality of a
non-edge direction, as compared to the quality of the edge directions, do not warrant the additional
computations that are needed. Further, non-edge directions typically lead to non-extreme points, and they
are therefore clearly not effective in the ultimate search for an optimal extreme point. By embedding a
non-edge following method in the simplex framework and allowing the overall method to fall back on a
pure simplex strategy, these drawbacks are however easily dealt with.

One of the non-edge methods that tries to exploit these observations is the external pivoting principle
of Eiselt and Sandblom [6, 7], which introduces auxiliary columns and corresponding variables into the
linear program; these are referred to as external columns and variables. An external column is generated



A steepest feasible direction method. . . 165

as a positive linear combination of a subset of the current nonbasic columns, and an edge direction for
an external variable then corresponds to a non-edge feasible direction in the original feasible polyhedron.
The augmented linear program is solved by the standard simplex method, and letting an external variable
enter the basis then corresponds to following a non-edge feasible direction in the original variable space.
Several heuristic strategies for constructing external columns have been studied, and as reported by Eiselt
and Sandblom [7], most of them decrease the number of simplex iterations quite considerably.

Another non-edge method is the feasible direction method of Murty and Fathi [8, 19], which has two
phases: construction of a profitable direction and a reduction process. The profitable direction is formed
as a nonnegative linear combination of the updated columns of the nonbasic variables with negative
reduced costs (for a minimization problem), or a subset thereof. Further, the direction is represented by
an auxiliary column. Two choices of weights are considered: equal weights and reduced cost weights.
The reduction process is similar to the procedure of the ordinary simplex method. The method begins
with a basic feasible solution and takes the maximal possible step in a profitable direction. The feasible
solution reached is mostly not basic, and the reduction process then converts such a solution into a basic
feasible solution without worsening the objective value. Convergence of the overall method is guaranteed
under a nondegeneracy assumption. The direction-finding step and the auxiliary variable used by Murty
and Fathi are clearly in essence equivalent to the techniques used by Eiselt and Sandblom [6, 7]. Mitra
et al. [17] also constructed profitable directions by taking a linear combination of the eligible updated
nonbasic columns using the negative of the reduced costs as weights.

In the same vein, Gondzio [12] has presented a practical non-edge feasible direction method for large
sparse linear programming problems, which can be interpreted as an active set method. At a partic-
ular iteration, the method moves from a given feasible point along an improving feasible direction to
a better feasible point. To find the feasible direction, the gradient of the objective function is projected
approximately on the face defined by the constraints that are active at the given point. This step involves
computing the inverse of a working basis, which is the submatrix of the active constraints.

More recently, Arsham [1] proposed still another, and rather opaque, non-edge feasible direction
linear programming method that can be embedded in the simplex method. The method has three phases:
an initialisation phase, a push phase, and a final iteration phase. The first two phases create an initial
basic feasible solution, while the last phase searches for an optimal basic feasible solution by moving
along non-edge directions that are obtained from projections of the full gradient of the objective function
onto binding constraints. To embed this move in the simplex framework, the direction is replaced by an
auxiliary variable, which is forced to enter the basis.

A still another non-edge linear programming method is the primal-dual algorithm (see, e.g., [18]).
This is a purely dual method that works with dual feasible solutions that do not need to be extreme points.
The non-edge direction used is the dual feasible direction that is steepest in the infinity norm. Since this
norm can be formulated with linear constraints, the direction-finding problem becomes a linear program.
The primal-dual algorithm does not rely on any of the mechanisms of the simplex method; hence it is not
a simplex-type interior method but a genuine non-edge feasible direction method. It has gained the most
attention for certain network optimization problems since the direction-finding linear program can then
be efficiently solved by exploiting the network structure.
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We present a feasible direction approach for general linear programming that can be incorporated into
the simplex method through the use of external columns. The aim is to reduce the number of iterations
and the running time of the simplex method. The generation of the feasible direction is founded on the
steepest edge entering variable criterion [11] but the direction found is typically steeper than the steepest
edge. Our approach differs from those in [6–8, 17, 19], and [12] in the way the feasible direction is con-
structed; in these works, ad hoc procedures are used, whereas we solve a convex quadratic programming
problem. Further, this quadratic program includes constraints that guarantee that the direction becomes
feasible even in the case of degeneracy.

The remainder of this paper is organised as follows. Section 2 introduces the problem, notations and
some basic facts, while Section 3 gives the derivation of our steepest feasible direction method and de-
scribes how it can be embedded in the framework of the simplex method. Section 4 gives numerical
results for the new method applied to randomly generated linear programs and linear programming relax-
ations of some medium-scale set covering problems; the former are nondegenerate, while the latter are
highly degenerate. Finally, in Section 5 we draw some conclusions from our findings.

The work presented here is a continuation of that presented in the short conference publication [20].
The contributions made here are that we include a complete way of handling degeneracy, provide a
review of related approaches, present some proofs (which was not done in [20]), and provide much more
extensive computational results, both on nondegenerate and degenerate problem instances.

2. Preliminaries

Given a matrix A ∈ Rm×n with n > m and full rank, and the vectors b ∈ Rm and c ∈ Rn, we consider
the linear program (LP)

xz⋆ = min z = cTx

s.t. Ax = b

x ≥ 0

The feasible set of the problem is assumed to be non-empty and a non-singleton.
It is further assumed that a basic feasible solution is available. The index sets of the corresponding

basic and nonbasic variables are denoted by B and N , respectively. Without loss of generality it can be
assumed that B = {1, . . . , m} and N = {m+ 1, . . . , n}. The basic feasible solution then corresponds
to the partitioning x = (xT

B, x
T
N)

T, with xB and xN being the vectors of basic and nonbasic variables,
respectively. We also introduce the partitionings A = (B,N) and c = (cTB, c

T
N)

T, where B ∈ Rm×m

is the non-singular basis matrix, N ∈ Rm×(n−m) is the matrix of nonbasic columns, and cB and cN are
the vectors of objective coefficients of the basic and nonbasic variables, respectively. The dual solution
that is complementary to the primal basic feasible solution is given by uT = cTBB

−1, and the vector of
reduced costs of the nonbasic variables is c̄TN = cTN − uTN . Denoting the identity matrix of size m by
Im, problem LP can be equivalently expressed in the given basis as
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z⋆ = min z = cTBB
−1b+ c̄TNxN

s.t. ImxB +B−1NxN = B−1b (1)

xB, xN ≥ 0

The basic feasible solution is xB = B−1b ≥ 0 and xN = 0, and it corresponds geometrically to an
extreme point of the feasible polyhedron of the problem. If the basic solution is nondegenerate, then it is
optimal if and only if c̄N ≥ 0 holds. In the case of degeneracy, c̄N ≥ 0 implies optimality, but optimality
may hold even though c̄N ≱ 0.

To introduce our approach, we first consider the nondegenerate case. Then a variable xj , j ∈ N , that
enters the basis corresponds geometrically to a movement from the current extreme point in a feasible
direction along an adjacent edge. Letting aj be column j ∈ N of the matrix A and ej−m ∈ Rn−m the
unit vector with a one entry in position j–m, the edge direction is given by (see, e.g., [18])

ηj =

(
−B−1aj

ej−m

)
∈ Rn

Further, the columns of the matrix of edge directions,

(ηm+1, ηm+2, . . . , ηn) =

(
−B−1N

In−m

)

where In−m is the identity matrix of size n−m is a basis for the null space of A, and under nondegeneracy
they span the cone of feasible directions from the current extreme point. (In the case of degeneracy,
directions in this cone may be infeasible.)

With ∥ · ∥ denoting the Euclidean norm, the directional derivative of the objective function along
a normalised edge direction is

cTηj
∥ηj∥

=
(cTB, c

T
N)ηj

∥ηj∥
=

(−cTBB
−1aj + cj)

∥ηj∥
=

c̄j
∥ηj∥

This directional derivative is used in the steepest-edge criterion [11] for choosing entering variable in the
simplex method. It finds a variable xr, r ∈ N , to enter the basis such that r ∈ argmin

j∈N
c̄j/∥ηj∥.

We next consider arbitrary feasible directions, constructed as nonnegative linear combinations of the
edge directions. Denoting the weights in the combination by w ∈ Rn−m

+ \ {0}, these directions are

η(w) =

(
ηB(w)

ηN(w)

)
=
∑
j∈N

wjηj =

(
−B−1N

In−m

)
w =

(
−B−1Nw

w

)

with ηB(w) and ηN(w) being the components in the basic and nonbasic spaces, respectively. Notice that
any feasible solution can be reached from the given extreme point along some such direction, and that
this in particular holds for an optimal solution. (This property holds also under degeneracy.) Notice also
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that ηB(w) = −B−1(am+1, . . . , an)w = −B−1
∑
j∈N

wjaj , that is, the negative of a nonnegative linear

combination of the original columns (aj)j∈N expressed in the current basis, and that the directional
derivative

cTη(w) =
(
cTB, c

T
N

)(−B−1N

In−m

)
w =

(
cTN − cTBB

−1N
)
w = c̄TNw

3. Derivation

The foundation for our development is the problem and result below. Letting supp(·) denote the support
of a vector, that is, its number of non-zero components, we define the steepest-edge problem (SEP)

min c̄TNw

s.t. |η(w)∥2 ≤ 1

supp(w) = 1

w ≥ 0

Proposition 1. An index r ∈ N fulfils the steepest-edge criterion

r ∈ argmin
j∈N

c̄j
∥ηj∥

if and only if the solution

wj =

{
1/∥ηj∥ if j = r

0 otherwise
, j ∈ N

solves SEP.

Proof. The problem SEP has |N | feasible solutions, say wk, k ∈ N , given by

wk
l =

{
1/∥ηl∥ if l = k

0 otherwise
, l ∈ N

Further, c̄TNw
k =

∑
l∈N

c̄lw
k
l = c̄k/∥ηk∥. The result follows. □

Notice that the optimal value of SEP coincides with the steepest-edge slope c̄r/∥ηr∥.
By relaxing the support constraint in problem SEP, it may be possible to find a feasible direction that

is steeper than the steepest-edge direction. The relaxed problem is referred to as the direction-finding
problem (DFP) and can be expressed as

min c̄TNw

s.t. wTQw ≤ 1 (2)

w ≥ 0
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where the matrix

Q =

(
−B−1N

In−m

)T(
−B−1N

In−m

)
= NTB−TB−1N + In−m ∈ R(n−m)×(n−m)

is symmetric and positive definite. If c̄N ≥ 0 holds, then the zero solution is optimal in problem DFP,
and otherwise, it has a unique, nonzero optimal solution with a negative objective value, and that fulfils
the normalisation constraint (2) with equality. Such a non-zero optimal solution defines the steepest
feasible direction of descent for problem LP from the given extreme point; in general this direction is a
non-trivial nonnegative linear combination of the edge directions and has a directional derivative that is
strictly better than that of the steepest-edge direction.

Example 3.1. Consider the linear program

z∗ = min z = −x1 − 2x2

s.t. 5x1 − 2x2 ≤ 10

− 2x1 + 4x2 ≤ 8

2x1 + x2 ≤ 6

x1, x2 ≥ 0

which has optimal solution (1.6, 2.8)T.

x1

x2

0 1 2 3
0

1

2

3

w1

w2

0.0 0.1 0.2 0.3

0.0

0.1

0.2

0.3

Figure 1. Illustration of steepest feasible direction and problem DFP

The problem is depicted to the left in Figure 1. We consider the extreme point at the origin, which
has the slack basis B = I3. Then η1 = (−5, 2, −2, 1, 0)T and η2 = (2, −4, −1, 0, 1)T, with c̄1/∥η1∥
= −1/

√
34 and c̄2/∥η2∥ = −2/

√
22. Hence, with the steepest-edge criterion, the variable x2 would

enter the basis. The picture to the right in Figure 1 shows the feasible set of DFP. Its optimal solution is
w∗ ≈ (0.163, 0.254)T (marked by the dot and shown as the short thick vector in the figure to the left) with
c̄TNw

∗ = cTη(w∗) ≈ −0.672, which shall be compared with −2/
√
22 ≈ −0.426. The feasible direction

found is η(w∗) ≈ (−0.309,−0.690,−0.581, 0.163, 0.254)T. The maximal feasible step in this direction
is about 10.3 (shown as the dashed vector) and yields the boundary point (x1, x2) ≈ (1.687, 2.625), which
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has an objective value that is better than those of the two extreme points that are adjacent to the origin.
Further, this point is close to the optimal solution.

Notice that in an optimal solution w∗ to DFP, w∗
j > 0 can hold even when c̄j > 0, which means

that the steepest feasible direction can include edge directions that alone give ascent. An example of this
is obtained if the objective function above is changed to min z = 2x1 − 5x2, which results in optimal
weights w∗ ≈ (0.065, 0.250)T.

Under degeneracy, a steepest-edge direction can be infeasible, and similarly, the steepest direction
obtained from DFP can be infeasible. Further, the current basic feasible solution can be optimal even
though a steepest-edge direction or a steepest direction from DFP indicates non-optimality. We next
describe how to properly handle degeneracy.

Let b̄ = B−1b and denote the ith row in B−1N by āTi . Then the constraint (1) can be written as

xi + āTi xN = b̄i, i ∈ B

Let B0 = {i ∈ B | b̄i = 0} be the index set of the degenerate basic variables. The following easily proven
result states how to effectively tackle degeneracy by using explicit degeneracy-breaking constraints.

Proposition 2. Let w ∈ Rn−m
+ \{0}. Then the direction η(w) is feasible in problem LP from the given

basic feasible solution if and only if āTi w ≤ 0 holds for all i ∈ B0.

Hence, to handle degeneracy the following degenerate DFP (DDFP) should be used.

min c̄TNw

s.t. wTQw ≤ 1 (3)

āTi w ≤ 0, i ∈ B0

w ≥ 0

Further, it can correctly verify optimality, as stated below.

Theorem 1. The basic feasible solution xB = B−1b and xN = 0 is optimal in problem LP if and only
if the zero solution is optimal in DDFP.

Proof. The basic feasible solution is optimal if and only if there is no feasible descent direction. Using
that c̄TNw = cTη(w), this holds exactly when the zero solution is optimal in DDFP. □

If the basic feasible solution is not optimal, then the non-zero optimal solution to DDFP is unique,
has a negative objective value, fulfils the constraint (3) with equality, and provides the steepest feasible
direction of descent for problem LP. As for DFP, this direction is in general a non-trivial combination of
edge directions.

The constraint (3) in DDFP is bounding the length of the direction found and thereby ensures that the
optimal value is finite. It will next be established that problem DDFP can however be solved by using
a problem where this constraint has been relaxed. Let µ/2 > 0 be a Lagrangian multiplier for constraint (3)
and consider the Lagrangian Relaxed DDFP (RDDFP)
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min r(w) = c̄TNw +
µ

2
wTQw

s.t. āTi w ≤ 0, i ∈ B0

w ≥ 0

The constant term −µ/2 is of no interest and therefore omitted. The objective function r is strictly
convex and therefore problem RDDFP has a unique optimum, which is denoted w∗(µ). As stated below,
this optimum can easily be scaled into an optimal solution to DDFP.

Theorem 2. If w∗(µ) = 0, then the zero solution is optimal in problem DDFP, and otherwise the
solution w∗ = w∗(µ)/∥η(w∗(µ))∥ is optimal in DDFP.

Proof. To prove the statement for w∗(µ) = 0 we use that problems DDFP and RDDFP are both
convex and have relative interior points. Hence, if w∗(µ) = 0 solves RDDFP then it is a Karush–Kuhn–
Tucker point for this problem, and since ∇r(0) = c̄N and w∗(µ)TQw∗(µ) = 0 < 1 hold, it is then also a
Karush–Kuhn–Tucker point for problem DDFP, and therefore solves this problem.

To prove the statement for the case w∗(µ) ̸= 0 we use Everett’s theorem (see, e.g., [2]). From this
theorem follows that if w∗(µ) solves RDDFP, then it also solves the problem

min c̄TNw

s.t. wTQw ≤ w∗(µ)TQw∗(µ)

āTi w ≤ 0, i ∈ B0

w ≥ 0

Using that w∗(µ)TQw∗(µ) = ∥η(w∗(µ))∥2 and introducing the scaled variable vector v = w/∥η(w∗(µ))∥,
this problem is equivalent to

min ∥η(w∗(µ))∥ c̄TNv
s.t. vTQv ≤ 1

āTi v ≤ 0, i ∈ B0

v ≥ 0

which is in turn equivalent to problem DDFP, which proves the statement. □

Hence, the quadratic program RDDFP will, for any choice of µ/2 > 0 provide the steepest feasible
direction of descent for LP.

Our next result gives an interesting characterisation of the gradient of the objective function r. It could
be useful for streamlining computations if problem RDDFP is approached by an iterative descent method
(see, e.g., [4]). The reader may recall that ηB(w) = −B−1Nw.

Proposition 3. Let ∆uT = µηB(w)
TB−1. Then ∇r(w) = cN −NT (u+∆u) + µw.
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Proof. Inserting ∆u = −µB−TB−1Nw gives that

∇r(w) = cN −NT (u+∆u) + µw = cN −NTu+ µ
(
NTB−TB−1Nw + In−m

)
w = c̄N + µQw

□

Notice that the expression for ∆u is similar to that of a complementary dual solution. Further, the
expression for the gradient ∇r(w) reveals that it can be computed by using the pricing mechanism of the
simplex method but with a modified dual solution.

We next consider how to utilise a nonzero optimal solution to DDFP; it is also possible to utilise
an approximate solution to DDFP provided that it is feasible and cTη(w∗) = c̄TNw

∗ < 0 holds. To
make use of the non-edge feasible descent direction η(w∗) within the framework of the simplex method,
it is translated into an external column [6, 7], which is simply a nonnegative linear combination of the
original columns in LP. The objective coefficient of the external column, which is indexed by n + 1, is
cn+1 = cTNw

∗ and the vector of constraint coefficients is an+1 = Nw∗. Problem LP is then augmented
with the external column and a corresponding external variable, xn+1, giving

min z = cTx+ cn+1xn+1

s.t. Ax+ an+1xn+1 = b

x, xn+1 ≥ 0.

This augmented problem LP is, in essence, equivalent to the original problem LP, as stated below; this
result is easily verified.

Proposition 4. If an external column is constructed at the basic feasible solution (xB, xN ) = (B−1b, 0)

and the solution (x̄, x̄n+1) with x̄n+1 > 0 is feasible in the augmented LP, then the solution

x̂ = (x̂B, x̂N) = (B−1b−B−1N(x̄N + x̄n+1w
∗), x̄N + x̄n+1w

∗)

is feasible in LP with cTx̂ = cTx̄+ cn+1x̄n+1.

Although the addition of the external variable does not alter the given problem in any essential way,
it introduces a linear dependency between the columns in the problem (which should however not be
difficult to handle for a modern solver) and it can also introduce alternative optimal solutions.

The result of Proposition 4 can be used for recovering an optimal solution to the original LP whenever
the external variable takes a positive value in the optimal solution found. The result also has implications
concerning the possibility of an external column to remain basic in an optimal solution. If some variable
xj , j ∈ N , with w∗

j > 0, is nonbasic in all optimal solutions to LP, then the external variable must be
nonbasic in all optimal solutions to the augmented LP. Conversely, if an optimal value of xn+1 is strictly
positive, then there is an optimal solution to LP where all variables xj , j ∈ N , with w∗

j > 0 are basic.
Hence, the external column can, loosely speaking, remain in the basis at optimality only if all columns
that it includes are basic at optimality.
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Letting c̄n+1 = cn+1 − uTan+1, the augmented LP expressed in the current basis is

z⋆ = min z = cTBB
−1b+ c̄TNxN + c̄n+1xn+1

s.t. ImxB +B−1NxN +B−1an+1xn+1 = B−1b

xB, xN , xn+1 ≥ 0

Notice that B−1an+1 = B−1Nw∗ = −ηB(w
∗) and that c̄n+1 = cTNw

∗ − uTNw∗ = c̄TNw
∗ < 0. By letting

the external column enter the basis, the feasible direction will be followed. If B−1an+1 ≤ 0 holds, then
the optimal objective value of LP is unbounded. Otherwise, the step taken in the direction is given by the
value that the external variable obtains.

4. Numerical experiments

We present the results of some numerical experiments with the use of external columns constructed from
steep feasible directions. The aim of the experiments is only to make a preliminary assessment of the
potential benefit of using this principle within the simplex method. We use a straightforward Matlab
implementation of the revised simplex method with the standard Dantzig entering variable criterion but
allow ordinary pivots to be replaced by pivots on external columns. To handle degeneracy, Bland’s second
rule (see, e.g., [18]), which selects a leaving variable based on the smallest index is used.

We have performed experiments on randomly generated problem instances and linear programming
relaxations of real-life set covering problem instances; the former are nondegenerate while the latter are
highly degenerate. The randomly generated instances are created according to the principle used in [7];
they are of maximization type. The set covering instances is taken from OR-Library [3]. Sizes of the
instances used are included in Tables 1–3.

The simplex method is initialised at a basic feasible solution. The nondegenerate problems are
inequality-constrained and the origin is feasible, and hence we initialise with the slack basis. For the
degenerate problems we use an ad hoc heuristic method to construct an integer-valued basic feasible
solution; the resulting basis is typically highly degenerate (for the instances used).

For large instances of problem LP the quadratic program RDDFP can be too demanding to solve, consid-
ering its sole purpose of giving a feasible direction, even though this direction is expected to be of high quality.
This justifies the use of a restricted version of problem RDDFP, which includes only a subset J ⊂ N of the
edge directions. Let wJ = (wj)j∈J , c̄J = (c̄j)j∈J , NJ = (aj)j∈J , QJ = NT

J B
−TB−1NJ + I|J|, and let āTiJ be

the ith row in B−1NJ . The restricted RDDFP then is

min rJ(wJ) = c̄TJwJ +
µ

2
wT

JQJwJ

s.t. āTiJwJ ≤ 0, i ∈ B0

wJ ≥ 0

Notice that even though RDDFP always finds a feasible descent direction, the restricted problem
may fail to do so, since the edge directions included therein do not span all feasible directions. If the
restricted problem is feasible, then it will give an approximate steepest feasible descent direction. A small
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value of |J | makes the problem computationally cheap but at the expense of the quality of the feasible
direction found. A high value of |J | makes the problem more expensive, but it can then also yield a
steeper direction which results in fewer simplex iterations; this trade-off is studied in the experiments. In
our implementation, the restricted RDDFP is solved using the built-in Matlab solver quadprog.

Even though an optimal solution to RDDFP can include edge directions with positive reduced costs,
it is still reasonable to construct a restriction by only selecting edges with negative reduced costs. Two
ways of constructing the set J are considered, referred to as Dantzig selection and steepest-edge selection,
respectively. With k denoting the number of edge directions included in the restricted RDDFP), these are
to find the k most negative values among {c̄j}j∈N and {c̄j/∥ηj∥}j∈N , respectively; the latter selection
is of course computationally more costly. The constructed restrictions of RDDFP contain only edge
directions that correspond to original columns, although it is in principle possible to use an already
generated external columns to define a new external column.

The restrictions of RDDFP used include small portions of the edge directions with negative reduced
costs. For the nondegenerate instances, the restricted RDDFP includes the 5%, 10% or 20% of these
directions that are best according to the criterion used (Dantzig or steepest-edge). For the degenerate
instances, which contain much more variables, the best 0.5%, 1% or 10% are included.

For the degenerate instances, we let the set J contain also several additional edge directions, which
are included to span the set of feasible directions sufficiently well to allow the restricted RDDFP to find
a feasible direction. These additional edge directions are randomly chosen (without any regard to their
reduced costs). It is reasonable to let their number be related to the number of degenerate basic variables,
and we tried using 5, 10 or 20 times the number of degenerate basic variables.

From the derivation of the problem DFP follows that it can provide non-edge feasible directions that
are steeper that the steepest-edge direction. Our first experiment illustrates that the restricted RDDFP
can also have this feature even when the simple Dantzig selection is used to construct a moderately sized
set J . We also compare with two ad hoc rules for constructing feasible directions; the names of these
rules, M2 and M3, are taken from [6, 7]. To state them, we let N− = {j ∈ N | c̄j < 0}. In both
rules, wj = 0, j ∈ N \ N−. The rule M2 is to use wj = −c̄j , j ∈ N−, and the rule M3 is to use
wj = −c̄j min{ b̄i/āij | āij > 0, i ∈ B}, j ∈ N−. Rule M3 is quite computationally demanding since it
includes the minimum ratio criterion of the simplex method for all possible entering variables. (The rule
M1 is to use wj = 1, j ∈ N−. It is however in general inferior to M2, and therefore not considered.)

To compare the quality of various feasible directions, we normalise their lengths and calculate di-
rectional derivatives. We first give results for two nondegenerate instances, of sizes 1,000 × 2,000

and 500×5,000. The directional derivatives of the steepest-edge directions at the initial bases are for these
instances −0.116 and −0.182, respectively. For both these instances the rules M2 and M3 give almost
identical feasible directions (after normalisations); this is because the random generation yields values of
min{ b̄i/āij | āij > 0, i ∈ B} that are similar for all j ∈ N . For the two instances, the rules M2/M3 give
feasible directions with directional derivatives −0.165 and −0.230, respectively; hence they are steeper
than the steepest-edge directions. We compare them to directions obtained from restricted RDDFP
problems that include the 5%, 10% or 20% best edges according to the Dantzig selection. For the two in-
stances, the directional derivatives of the feasible directions found are in the ranges of −0.244 to −0.247
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and −0.378 to −0.384, respectively. Hence, the directions are even steeper than those found by the
rules M2/M3. (Using more than 20% best edges gives only marginally better directions.)

We next consider the degenerate instance rail507. This problem contains 63,009 variables, out of
which 17,539 have negative reduced costs in the initial basis. Out of these, only 90 (about 0.51%) yield
a nondegenerate pivot. In particular, the entering variables obtained from the Dantzig or steepest-edge
criteria yield degenerate pivots. Among the edges that yield a nondegenerate pivot, the steepest has a
directional derivative of −0.707. Rule M2 does not give a feasible direction; this is due to the non-zero
weights on all the edge directions, among which most are infeasible and cause the weighted direction to
become infeasible. The rule M3 however puts non-zero weights only on feasible edge directions (since
wj = 0 if b̄i = 0 for some āij > 0), and it is therefore, by convexity, guaranteed to give a feasible
direction. The directional derivative of the feasible direction found by M3 is −1.108. We compare this
with the directional derivative of the feasible direction produced by the restricted RDDFP when using
the 0.5%,1%, or 10% best columns according to the Dantzig selection, together with 5, 10 or 20 times the
number of degenerate basic variables of additional, randomly chosen columns. These restricted RDDFP
problems always produce feasible directions—even for the most restrictive choices—and their directional
derivatives are in the range −1.173 to −2.050, obtained from the smallest and largest restricted RDDFP,
respectively. Hence, these directions are all steeper than the direction found by the rule M3.

Although a non-edge direction obtained from the restricted RDDFP is advantageous compared to edge
directions, it is more computationally costly to find. Further, as mentioned in Section 1, non-edge direc-
tions are likely to be less efficient as an optimal solution is approached, concerning their computational
cost, and typically they do not lead to extreme points in the feasible polyhedron. It is therefore reasonable
to combine pivots on external columns with ordinary simplex pivots, and in particular it is reasonable to
fall back to the latter in later iterations.

For the nondegenerate problem instances, the solution process alternates between the generation of
external columns that directly enter the basis and the use of the standard simplex method. The process
always starts with the generation of an external column, but for the continuation, we have tried three
strategies: (i) no more external column is generated, (ii) external columns are generated with regular
intervals (concerning simplex pivots), and (ii) an external column is generated when the latest external
column leaves the basis. In the latter two strategies, the generation of external columns is terminated
when the number of negative reduced costs is below a low threshold, which we set to 10, since this
indicates that the number of remaining simplex iterations is small. For the degenerate problem instances,
we only present results for the strategy of generating an external column when the latest external column
exits the basis, since this turned out to be the best strategy.

We study the number of simplex iterations and the running times needed to reach optimality when
using external columns based on approximate steepest feasible directions, and when using the various
solution strategies, as compared to when using the standard simplex method. The simplex iterations and
running times used for the nondegenerate problem instances are given in Tables 1 and 2. Figure 2 shows
the convergence histories for the problem instance of size 1,000 × 2,000 when using a single external
column that is calculated from 5%, 10% or 20% of the edge directions that are best according to the
Dantzig or steepest-edge selections.
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Table 1. Results for nondegenerate instances1

Problem size Parameters Dantzig selection Steepest-edge selection
m× n port max iter time ext size iter time ext size

1,000× 2,000 – – 35,181 418.0 – – – – – –
5 ∞ 17,881 183.5 1 100.0 20,503 214.4 1 100.0
5 1,000 17,295 179.3 18 17.6 19,778 214.7 20 21.2
5 exit 17,512 183.4 6 28.0 20,611 222.3 5 28.6

10 ∞ 21,460 225.9 1 200.0 22,160 234.5 1 200.0
10 1,000 19,072 200.5 20 30.1 20,336 223.6 21 30.8
10 exit 19,685 207.1 9 35.7 17,757 186.9 2 111.0
20 ∞ 20,244 217.6 1 400.0 21,110 226.7 1 400.0
20 1,000 20,098 221.4 21 62.7 21,162 237.0 22 67.9
20 exit 19,380 201.7 5 111.8 21,159 229.3 2 231.5

1,000× 4,000 — – 57,572 1,096.1 – – – – – –
5 ∞ 37,823 571.8 1 200.0 28,582 443.6 1 200.0
5 1,000 36,749 558.5 37 25.6 28,450 446.9 29 25.7
5 exit 38,334 552.7 5 49.2 28,188 427.9 2 109.0

10 ∞ 32,322 486.4 1 400.0 32,598 489.9 1 400.0
10 1,000 33,358 514.6 34 46.3 31,758 507.8 32 47.8
10 exit 33,068 519.5 4 115.5 33,127 515.9 4 110.0
20 ∞ 34,024 504.5 1 800.0 32,887 499.4 1 800.0
20 1,000 33,861 527.8 34 95.1 31,218 500.1 32 103.3
20 exit 34,003 507.9 9 127.0 32,371 494.1 4 232.3

2,000× 3,000 – – 104,123 4,606.6 – – – – – –
5 ∞ 64,174 2,338.5 1 150.0 56,275 2,044.7 1 150.0
5 1,000 62,890 2,452.5 63 23.3 60,817 2,473.1 61 20.5
5 exit 62,680 2,399.5 14 23.6 56,787 2,191.4 5 38.8

10 ∞ 72,156 2,714.8 1 300.0 54,484 1,992.5 1 300.0
10 1,000 62,764 2,413.7 63 42.2 56,348 2,234.2 57 42.6
10 exit 71,116 2,784.3 13 43.9 54,876 2,117.9 6 61.3
20 ∞ 60,708 2,222.1 1 600.0 61,965 2,247.0 1 600.0
20 1,000 56,299 2,124.2 57 85.0 62,368 2,483.6 63 78.8
20 exit 60,087 2,277.9 13 75.9 58,193 2,230.3 4 176.0

800× 1,500 – – 19,206 134.0 – – – – – –
5 ∞ 12,351 74.8 1 75.0 11,237 67.0 1 75.0
5 1,000 12,842 81.7 13 15.6 11,490 72.1 12 16.3
5 exit 12,214 75.2 7 19.4 9,649 58.2 2 43.5

10 ∞ 10,895 63.8 1 150.0 10,722 63.2 1 150.0
10 1,000 10,986 68.3 11 35.8 10,068 63.1 11 29.7
10 exit 11,112 67.6 8 29.4 9,709 58.1 3 59.7
20 ∞ 10,728 64.1 1 300.0 10,695 63.4 1 300.0
20 1,000 12,879 83.2 13 55.7 10,636 68.3 11 53.2
20 exit 12,003 75.1 10 43.1 10,471 66.2 2 166.0

1 m and n are the numbers of constraints and variables, respectively, port is the portion of the edge
directions with negative reduced costs that are included in the restricted RDDFP, max is the number
of simplex iterations between the generation of external columns, iter and time are the number of
simplex iterations used and the running time, respectively, ext is the number of external columns
generated, and the size is the average number of edge directions included in the RDDFP problem.
Further, ∞ means that an external column is generated at the initial basis only, and exit means that
an external column is generated when the latest external column exits the basis. For each instance,
the first line gives the number of simplex iterations and the running time with the standard simplex
method. The three best results for each instance and selection strategy, concerning iterations and
running time, respectively, are shown in boldface.
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Table 2. Results for nondegenerate instances (notations as in Table 1)

Problem size Parameters Dantzig selection Steepest-edge selection
m× n port max iter time ext size iter time ext size

800× 3,000 – – 35,023 378.5 – – – – – –
5 ∞ 20,171 175.6 1 150.0 19,225 169.5 1 150.0
5 1,000 20,269 181.7 21 23.5 20,588 188.1 21 23.9
5 exit 19,684 171.5 3 56.7 19,176 169.5 5 38.0

10 ∞ 20,967 192.7 1 300.0 19,129 172.1 1 300.0
10 1,000 21,589 192.8 22 43.1 19,497 177.3 20 39.3
10 exit 19,726 171.4 12 46.8 17,160 147.1 2 159.0
20 ∞ 20,103 188.7 1 600.0 18,834 169.5 1 600.0
20 1,000 18,763 165.6 19 92.7 18,293 168.7 19 88.1
20 exit 19,510 181.8 8 96.9 18,185 161.3 4 165.0

800× 4,500 – – 38,140 582.9 – – – – – –
5 ∞ 28,322 334.4 1 225.0 22,920 262.9 1 225.0
5 1,000 23,569 268.1 24 35.5 21,731 259.6 22 32.4
5 exit 26,331 302.1 6 46.5 22,462 257.1 3 83.0

10 ∞ 22,130 253.8 1 450.0 21,007 245.8 1 450.0
10 1,000 23,335 270.9 24 54.3 18,772 220.2 19 63.6
10 exit 20,246 236.1 5 100.8 21,358 245.6 7 74.7
20 ∞ 22,533 264.9 1 900.0 24,324 295.7 1 900.0
20 1,000 23,272 270.8 24 127.8 20,184 242.3 21 102.2
20 exit 22,869 268.2 12 97.0 22,975 264.2 3 321.0

For the nondegenerate problem instances, we conclude that it is possible to significantly reduce both
the number of simplex iterations and the running time—sometimes up to around 50%—by using external
columns derived from steep feasible directions. As can be expected, the steepest-edge selection criterion
often gives a slightly superior performance with respect to iterations, but also with respect to running
time even though it is computationally more demanding. The overall results are however surprisingly
insensitive to the choice of selection criterion and parameter values; we believe that this supports the
general principle of using external columns that are derived from steep feasible directions.

The results for the degenerate problem instances are given in Table 3. Figure 3 shows the convergence
histories for the problem instance scpnrg1.

Figure 2. Objective value versus simplex iteration and running time, respectively, for the instance of size 1,000× 2,000
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Table 3. Results for degenerate instances1

Problem size Parameters Dantzig selection Steepest-edge selection
m× n port mult iter time ext size iter time ext size

507× 63,009 – – 23,002 182.4 – – – – – –
[rail507] 0.5 5 19,436 165.7 59 357.7 16,477 150.1 21 374.9

0.5 10 16,013 147.1 42 666.5 18,736 181.7 19 878.3
0.5 20 17,172 206.3 38 1,232.8 21,496 291.5 32 1,624.9
1 5 19,260 157.7 45 392.1 17,226 157.3 16 418.4
1 10 18,711 174.1 52 659.0 18,826 180.2 20 777.5
1 20 18,223 242.9 45 1,420.3 17,767 208.3 17 1,655.2

10 5 17,208 175.1 31 1,107.8 18,117 176.7 18 1,005.1
10 10 16,144 166.8 29 1,265.5 15,377 151.4 13 1,426.2
10 20 16,262 224.1 25 2,008.4 17,778 290.6 25 2,191.5

516× 47,311 – – 15,462 108.3 – – – – – –
[rail516] 0.5 5 11,184 69.3 18 654.8 10,387 72.1 11 700.7

0.5 10 9,378 82.9 21 1,305.0 11,603 93.1 11 1,477.1
0.5 20 9,948 160.3 17 2,569.3 9,738 134.6 11 2,764.4
1 5 10,577 73.6 27 715.5 10,136 77.4 15 771.7
1 10 9,910 101.7 27 1,398.2 11,148 101.1 15 1,467.3
1 20 11,833 236.2 22 2,799.8 10,396 210.4 17 2,994.6

10 5 11,726 95.9 16 1,489.7 9,805 86.5 10 1,668.5
10 10 11,413 113.0 13 2,133.1 8,824 91.4 9 2,150.4
10 20 13,853 305.6 17 3,679.6 10,466 216.2 12 3,612.3

582× 55,515 – – 40,744 380.2 – – – – – –
[rail582] 0.5 5 27,332 254.2 79 328.4 23,080 224.1 10 436.4

0.5 10 24,699 249.1 58 633.8 27,098 271.5 14 798.9
0.5 20 24,825 304.8 51 1,244.0 24,360 325.4 33 1,430.0
1 5 27,451 264.8 63 369.1 25,349 252.2 17 461.9
1 10 23,127 218.6 22 717.5 24,111 252.7 22 866.1
1 20 26,429 322.1 41 1,367.8 25,390 311.2 24 1,527.8

10 5 26,847 263.2 24 1,165.8 24,984 246.1 16 1,179.3
10 10 23,065 224.4 23 1,298.0 24,083 246.7 20 1,315.2
10 20 25,355 385.2 30 2,219.1 22,892 302.5 17 2,232.1

500× 5,000 – – 34,091 141.1 – – – – – –
[scpnre1] 0.5 5 16,404 69.3 18 48.2 22,101 80.9 5 147.8

0.5 10 13,583 58.1 14 107.6 14,111 56.3 8 181.3
0.5 20 13,277 59.6 13 220.2 16,508 69.7 5 557.2
1 5 21,868 93.8 8 97.6 21,241 89.6 4 185.5
1 10 13,583 59.3 14 108.4 14,615 57.1 3 470.3
1 20 13,277 60.1 13 220.8 15,336 71.6 4 695.8

10 5 18,355 67.5 20 71.4 20,365 86.3 3 338.0
10 10 16,746 62.4 7 244.4 14,013 54.4 6 276.0
10 20 13,129 52.6 8 378.3 14,141 61.9 5 588.2

1,000× 10,000 – – 216,009 2,591.2 – – – – – –
[scpnrg1] 0.5 5 99,321 1,485.6 8 258.1 100,534 1,466.9 3 671.3

0.5 10 91,055 1,239.0 14 282.8 88,183 1,187.1 6 669.2
0.5 20 71,980 951.1 29 282.8 73,070 1,071.3 7 1,137.4
1 5 94,423 1,281.0 24 97.3 100,009 1,478.2 6 345.5
1 10 87,849 1,245.1 17 246.5 89,298 1,185.7 9 450.8
1 20 66,153 882.6 15 538.9 74,977 1,003.3 4 1,985.0

10 5 100,213 1,413.1 13 233.0 94,269 1,342.3 4 642.3
10 10 83,007 1,179.3 3 1,513.7 88,839 1,230.5 4 1,124.5
10 20 75,001 1,048.1 6 1,456.0 73,406 967.2 4 2,058.5

1 Notations as in Table 1. Further, mult is the multiple of the number of degenerate basic variables that gives
how many additional randomly chosen edge directions are included in RDDFP.
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Figure 3. Objective value versus simplex iteration and running time, respectively, for the instance scpnrg1

It is also for the degenerate instances possible to reduce both the number of iterations and the running
time significantly, but the strategies that give the best results are highly problem dependent. However,
the strategy of taking the 1% best edge directions based on the Dantzig selection and adding 5 times
the number of degenerate basic variables randomly chosen edge directions, shows a relatively consistent
good performance for all the instances except rail507. For the instances scpnre1 and scpnrg1 it
is possible to obtain even better performance by simply using all edge directions with negative reduced
costs for constructing the external column. This is because these instances contain relatively few variables
compared to the rail instances.

As can be seen in Figure 3, the degeneracy causes the standard simplex method to stall for many
iterations at the initial basic feasible solution, while our method can find a feasible direction of descent
and immediately move to an improved feasible solution, even when the restricted RDDFP includes
relatively few edge directions. This advantage of our method can of course be very beneficial when
dealing with degenerate linear programs.

We conclude the experimental results by comparing the use of the restricted RDDFP for constructing
feasible directions and external columns with the use of the ad hoc weighting strategies M2 and M3 [6, 7].
Instead of solving the restricted RDDFP with the quadratic programming solver, we then apply the M2
and M3 weighting strategies to the columns included in the restricted RDDFP; the M2 and M3 rules will
then produce approximate solutions to the restricted RDDFP, at a relatively low computational cost.

The most important outcome from this experiment is that both the strategies M2 and M3 always fail
to produce feasible directions at the initial basis, for all the instances given in Table 3 and for all the
values of port and mult used there. This shows that in the case of degeneracy, these strategies are very
fragile and can not be relied upon, which is notable since many real-life linear programs are (heavily)
degenerate. In contrast, the restricted RDDFP, constructed as described above, is always able to find
feasible directions, for all the instances and all the choices of parameter values. These results show that
the degeneracy-breaking constraints in RDDFP are instrumental in finding feasible directions.

Preliminary experiments indicated that for nondegenerate instances the performance of the restricted
RDDFP versus rules M2 and M3 depends of the shape of the linear program, which prompted us to
study instances with n ≫ m. In Table 4 we give results for five additional nondegenerate instances. For
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three out of these, n ≫ m holds. A conclusion from this experiment (and others, not reported here)
is that the rules M2 and M3 both perform well compared to using the restricted RDDFP whenever m
and n are of the same magnitude. Further, there is in this case no consistent or significant difference in
performance between M2 and M3. However, when n is much larger than m, the use of the restricted
RDDFP outperforms both the rules M2 and M3; this conclusion is notable, since it is most common in
real-life linear programs that n is much larger than m.

Table 4. Comparison between using the restricted RDDFP called RRDDFP for constructing
feasible directions and external columns and using the ad hoc weighting strategies M2 and M3

on nondegenerate instances. Other notations as in Table 1

Problem size Dantzig selection Steepest-edge selection

m× n
Parameters RRDDFP M2 M3 RRDDFP M2 M3

port max iter time iter time iter time iter time iter time iter time
1,000× 3,000 – – 47,647 828.8 – – – – – – – – – –

5 ∞ 28,172 448.6 26,285 433.5 24,289 400.3 21,768 334.5 20,807 333.3 19,746 311.1
5 1,000 27,689 454.4 27,513 444.7 21,878 369.1 22,369 373.3 20,812 350.6 19,955 344.7
5 exit 28,211 462.7 27,479 469.9 22,708 400.6 22,282 389.3 20,682 337.3 19,996 369.5

10 ∞ 26,121 414.9 21.049 326.1 17,820 270.8 25,480 403.2 18,456 291.1 16,085 250.1
10 1,000 27,304 426.8 20,554 325.8 19,019 321.8 23,337 396.4 17,320 290.9 18,204 314.3
10 exit 25,568 412.7 20.909 336.7 19,304 336.8 24,745 399.7 17,106 276.1 17,423 299.7
20 ∞ 24,106 383.3 21,010 328.1 22,111 347.1 19,297 298.7 22,621 365.2 22,005 354.1
20 1,000 23,172 381.6 21,306 341.4 24,886 427.2 18,761 308.9 19,877 324.7 19,811 344.6
20 exit 22,519 361.7 20,193 357.3 22,632 403.6 18,318 297.1 21,597 372.6 22,566 401.5

1,000× 6,000 – – 61,471 1,646.4 – – – – – – – – – –
5 ∞ 39,439 1,000.1 41,864 1,067.4 43,331 1,106.4 33,026 829.5 32,781 819.9 35,684 874.3
5 1,000 37,234 926.4 39,006 966.5 42,845 1,080.2 36,901 988.2 33,587 8888.3 34,070 899.1
5 exit 40,343 1,016.4 42,196 1,117.4 45,559 1,159.3 32,924 824.7 33,073 865.5 35,450 918.2

10 ∞ 39,725 1,024.7 37,020 928.8 40,261 1,016.0 33,385 852.3 34,718 868.1 36,513 902.1
10 1,000 39,480 1,002.6 36,535 959.9 39,540 995.9 30,552 811.1 34,799 936.1 36,494 937.5
10 exit 38,373 985.1 36,596 976.6 37,365 957.9 31,931 806.6 33,514 879.7 35,272 902.6
20 ∞ 36,806 931.8 42,946 1,088.9 45,293 1,204.4 36,453 949.4 43,414 1,125.2 43,531 1,091.9
20 1,000 39,877 1,024.5 40,638 1,031.8 40,803 1,033.4 35,221 956.9 40,997 1,115.8 37,404 948.7
20 exit 36,385 920.6 42,666 1,221.5 41,209 1,082.6 34,432 884.3 40,290 1,179.9 45,075 1,235.7

500× 5,000 – – 17,182 144.4 – – – – – – – – – –
5 ∞ 11,027 91.5 12,339 103.1 13,064 104.6 10,140 82.9 9,251 74.9 9,354 73.4
5 1,000 12,398 103.6 13,057 106.5 13,564 108.2 10,154 85.1 9,289 77.5 9,599 76.2
5 exit 10,544 87.3 12,444 110.2 13,518 108.1 9,645 78.9 9,239 79.2 9,384 74.6

10 ∞ 10,814 88.8 13,383 112.2 12,335 98.6 10,251 83.4 12,128 98.8 10,422 116.8
10 1,000 11,976 98.7 13,274 110.2 12,722 102.1 10,606 88.3 10,380 85.5 10,601 85.7
10 exit 9,999 81.5 13,447 122.4 13,035 114,7 9,947 79.3 12,320 105.1 10,397 84.5
20 ∞ 11,530 95.8 13,591 114.4 13,229 106.7 11,091 91.5 14,172 121.7 12,741 105.2
20 1,000 11,630 97.7 13,255 112.1 13,118 106.8 10,545 88.5 14,310 127.2 12,444 101.0
20 exit 11,222 94.6 12,470 109.2 13,643 118.4 10,442 84.3 12,593 129.6 13,517 116.2

500× 10,000 – – 16,515 241.6 – – – – – – – – – –
5 ∞ 12,643 183.8 13,930 199.4 14,750 214.9 10,787 157.3 12,638 179.1 12,419 178.8
5 1,000 11,895 169.6 14,276 200.7 14,781 208.0 10,570 150.1 12,183 174.3 11,441 194.1
5 exit 12,852 190.1 14,598 253.6 14,798 226.5 10,959 152.8 12,155 173.9 12,226 173.1

10 ∞ 11,033 155.8 12,097 171.2 13,480 192.4 10,262 145.5 13,274 189.9 13,286 189.2
10 1,000 12,409 178.5 13,353 189.8 13,359 187.7 11,151 160.9 12,515 177.5 12,567 176.3
10 exit 11,330 161.3 12,592 200.9 13,272 214.2 9,932 141.6 12,775 187.1 12,932 191.9
20 ∞ 11,800 168.8 14,560 214.3 13,778 198.1 11,572 165.5 14,589 211.8 14,411 205.2
20 1,000 11,602 168.1 14,484 205.7 13,138 184.8 10,682 153.3 13,122 186.5 13,764 193.5
20 exit 11,433 164.3 14,778 245.4 14,478 216.9 11,390 164.2 13,296 203.3 14,964 229.8

500× 20,000 – – 17,065 500.2 – – – – – – – – – –
5 ∞ 13,118 377.4 15,950 446.7 16,473 469.7 13,928 393.8 14,331 403.7 13,900 392.8
5 1,000 13,649 460.9 15,738 440.1 16,241 454.5 12,751 358.5 15,049 423.2 14,564 409.4
5 exit 13,091 368.1 16,395 511.1 16,520 502.1 13,512 377.6 13,875 403.6 14,177 402.7

10 ∞ 12,894 365.8 16,436 469.0 15,791 442.5 12,444 351.4 16,202 465.1 16,703 469.9
10 1,000 13,983 393.5 17,149 490.6 17,242 480.2 12,156 342.9 15,287 429.1 16,102 458.2
10 exit 12,849 370.2 17,052 557.6 16,983 500.1 12,253 349.7 15,128 456.6 14,940 431.8
20 ∞ 13,471 421.8 16,980 485.6 17,368 492.8 13,038 404.2 15,919 456.6 16,915 482.7
20 1,000 13,034 377.6 16,827 475.2 17,175 481.5 13,271 388.3 16,644 474.2 16,334 458.8
20 exit 13,898 420.4 16,093 518.5 17,205 517.3 12,551 417.0 15,591 513.8 16,608 505.2
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5. Conclusions

We have derived a simplex-type feasible direction method for linear programming. The directions are
steepest in the space of all variables and they are found by solving a quadratic direction-finding problem.
A feature of this problem is that it includes degeneracy-breaking constraints, which prevents stalling at the
current feasible solution. In practice, it is preferable to consider a restricted direction-finding problem,
which gives an approximately steepest feasible direction. The method is easily embedded within the
standard simplex method by using external columns. Our linear programming method allows many
computational strategies, especially regarding the construction and solution of the restricted direction-
finding problem and the strategy for replacing ordinary simplex pivots with pivots on external columns.

The presented results, and also our experience from experiments not reported here, indicate that the
use of approximate steepest feasible directions can considerably reduce both the number of simplex
iterations and the total running time. It is however necessary to find a proper trade-off between the com-
putational burden of creating advantageous external columns and the reductions in simplex iterations
and running times that they may lead to, both with respect to the size of the restricted direction-finding
problem and the frequency of generating external columns. Further, this trade-off depends of the char-
acteristics of the linear program at hand. The general observation is that the direction-finding problems
should be neither too restricted nor too large, and that external columns should be generated seldomly. If
using too restricted or too large direction-finding problems, or if generating external columns frequently,
then the overall performance can instead actually get worse than that of the standard simplex method.

The approach presented here is related to the ones in [6, 7] and [8, 19], which both also use auxiliary
primal variables for following a feasible direction. However, these two works do not use any direction-
finding optimization problem, but rely on ad hoc rules for constructing feasible directions, for example,
based on reduced costs. We have compared our approach to such ad hoc rules. We observe that our
approach performs better when there are many more columns than constraints in the linear program and
that our approach can effectively handle degeneracy, while the ad hoc rules can fail in this situation.
These observations are notable since real-life linear programs typically have much more columns than
constraints and are degenerate.

The computational results are promising for further investigation of our feasible direction approach.
This includes the study of various computational strategies and the design of tailored algorithms for
fast, approximate solution of restricted versions of the direction-finding problem RDDFP, for example,
algorithms based on the projected Newton strategy [4]. Further, the ability of our method to find a feasible
direction of descent from a degenerate extreme point, so that the simplex method can escape from such a
point in a single pivot, is worth further consideration.

As is well known (see, e.g., [15]), the performance of the standard simplex method is sensitive to
problem scaling (column and row scaling). An interesting research topic is therefore to investigate if and
how the performance of our simplex-type feasible direction approach is affected by problem scaling.

A fundamental research question is the extension of our simplex-type feasible direction method to
a column generation setting, that is, structured linear programs that contain huge numbers of variables
that can be found by solving column generation problems. In such an extension it would be necessary to
apply a column generation approach to build a direction-finding problem.
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