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Abstract

Stochastic multilevel programming is a mathematical programming problem with some given number of hierarchical levels of
decentralized decision makers and having some kind of randomness properties in the problem definition. The introduction of
some randomness property in its hierarchical structure makes stochastic multilevel problems computationally challenging and
expensive. In this article, a systematic sampling evolutionary method is adapted to solve the problem. The solution procedure
is based on realization of the random variables and systematic partitioning of each hierarchical level’s decision space for
searching an optimal reaction. The search goes sequentially upwards starting from the bottom up through the top hierarchical
level problem. The existence of solution and convergence of the solution procedure is shown. The solution procedure is
implemented and tested on some selected deterministic test problems from literature. Moreover, the proposed algorithm can
be used to solve stochastic multilevel programming problems with additional complexity in their problem definition.

Keywords: multilevel programming, stochastic programming, Stackelberg equilibrium, sample average approximation, sys-

tematic sampling, particle swarm optimization

1. Introduction

Multilevel programming was first introduced in the field of game theory by Stackelberg in 1934 as a two-
person leader-follower game [53]. Bracken and McGill studied it as a generalization of mathematical
programming [17, 18]. Multilevel programming is defined as a sequential decision-making problem in
a non-cooperative, decentralized, and multiple-level hierarchical procedure. The main task in such prob-
lems is to optimize the objective of the leader (upper level), which is constrained by the optimal choice of
some variables by the followers, in a sequential structure. However, this kind of problem is usually hard
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to solve and is categorized as NP-hard even for its simplest case the linear bilevel programming prob-
lem [11, 56]. The inclusion of non-linearity, non-convexity, non-differentiability, and other undesirable
properties add further complexity to solving multilevel problems.

Proposed methods for solving multilevel programming problems include vertex enumeration [15, 51,
64] for solving linear bilevel and trilevel programming problems, sub-gradient or bundle method [52],
reformulation method using the Karush-Kuhn-Tucker (KKT) conditions for solving bilevel programming
[10], reformulation technique with Taylor’s approximation for solving quad-level programming [30],
optimal value reformulation technique for trilevel linear problems [8, 40], parametric approach [6, 7, 24,
32, 33, 45], data-driven optimization approach [12–14] and also fuzzy approach [37, 50].

Evolutionary algorithms have been presented for solving bilevel programming problems by convert-
ing them into single-level mathematical programming problems [3, 55, 57] and other special methods
are also described in [22]. Reformulation technique with particle swarm optimization (PSO) is also pro-
posed for solving trilevel problems [28, 29]. However, solutions that are obtained through the fuzzy goal
programming method for multilevel problems are shown to be suboptimal [21].

A multi-parametric programming method is also used to solve multilevel programming problems and
depending on the type of functions involved and the constraint set, it can have an analytic (exact) solution
or approximated (non-exact) solution. For the case of bilevel linear [16], bilevel quadratic [1, 2], bilevel
mixed integer linear programs [9] and bilevel quadratically constrained quadratic programs [42], it has
been shown that analytic solutions can be obtained using the multi-parametric approach. In addition
to this, the approach can also be naturally extended for solving the Stackelberg–Nash equilibrium type
problems and for trilevel problems with polyhedral constraints [34, 45] and with multiple followers [35].
Even if the multi-parametric programming method can be extended to solve multilevel problems with any
finite hierarchical levels, it works mainly for polyhedral-constrained problems. The recently proposed
method in [62] may help to extend the multi-parametric programming approach to also solve problems
with non-polyhedral constraints.

Specific solution approaches for solving general multilevel problems for any number of levels are
proposed in [34, 54, 60]. In [54], evolutionary strategy is implemented for solving each decision-makers
problem at each hierarchical level sequentially by fixing their strategy down through the bottom level
problem and repeating this continuously until a termination criterion is fulfilled. Whereas, in [60] the
authors assume that systematically selected decision variable values are sent by the leader to check the
optimal reactions of the followers before deciding over its optimal decision variable value and continue
this until a termination criterion is fulfilled. In addition to this, in [34] branch and bound multi-parametric
method is proposed for smooth multilevel programming problems with polyhedral constraints that satisfy
strict second-order complementarity conditions. In general, all those proposed methods can only be
applied to the deterministic version of multilevel programming problems.

If randomness is introduced in a multilevel programming problem, we shall call such a problem a
stochastic multilevel programming (SMLP) problem. SMLP is a generalization of a multilevel program-
ming problem when the variance of the randomness in a probability distribution is different from zero.
Basic principles of SMLP have been designed by Patricsson and Wynter [44] for solving structural pro-
gramming problems. Christiansen [19] also formulated a topological optimization model in structural
mechanics. There are various application problems listed in the open literature that use the idea of
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stochastic multilevel programming procedures in one way or the other. Namely, in transportation [4], in
traffic modelling [43], in telecommunications problems [5, 58], in resource allocation problems [36], and
the references in [25].

SMLP is classified into two categories. The first one is a two-stage stochastic multilevel program (TS-
SMLP), where the decision system allows the decision maker at each hierarchical level to adjust his/her
decisions when some randomness appears over time. The other category is a chance constraint multilevel
program (CC-MLP), where the decision maker at each hierarchical level needs to look for fault tolerance
and system reliability. In either of the cases, solving such kinds of problems is computationally expensive
and challenging due to its hierarchical structure and the existence of randomness property.

Some of the proposed methods are reformulation methods with a scenario analysis approach for solv-
ing a two-stage stochastic bilevel programming problem [4, 58]. In those methods, the lower-level prob-
lem is assumed to be strictly convex and regular, and also continuous differentiability of all functions that
are involved in the problem is required. Then, the program is reformulated into a single-level, two-stage
stochastic program using KKT conditions as their solution technique. Similar reformulation technique is
implemented for solving stochastic bilevel problems also in [23, 31, 61, 63]. However, all those proposed
methods work only for two-level problems and cannot be extended to three or more levels of hierarchy.

For chance constraint type problems, a fuzzy goal programming approach is proposed by assigning
some aspiration level [39, 46–48]. But, those proposed methods work only for problems in which random-
ness is involved only in the constraints, especially in the form of linear constraints, not in the objective
functions. Moreover, the proposed optimization procedure in these methods may produce a suboptimal
solution as it was indicated in [21]. Generally, a comprehensive method for solving SMLP problems is
lacking, i.e., there are limitations in the study of the recourse as well as the chance constraint version of
the problem for any number of hierarchical levels.

The main objective of this study is to develop a strategy for solving SMLP by extending the Systematic
Sampling Evolutionary (SSE) method which was proposed by the authors for solving stochastic bilevel
programming (SBLP) in [25]. The same method is further extended in [26] for bilevel problems with
multiple followers cases, and in [27] for various forms of supply chain management problems. In the case
of SBLP, the follower’s problem becomes a global optimization problem or Nash equilibrium problem
when the leader sets his/her strategy. Then any optimization technique can be implemented for solving
the second level problem for a single follower case and Nash equilibrium solution technique for multiple
followers case. However, in the case of SMLP having more than two levels, only the bottom levels
can be a global optimization problem when higher-level hierarchical decision-makers set their strategy.
Now, the difficulty in solving the SMLP problem is how to formulate strategies for the intermediate
decision makers since each decision maker is assumed to have an infinite number of possible strategies.
These infinitely induced strategies at each intermediate hierarchical level make any given solution method
too expensive and challenging. So, some fundamental adjustments are required to be made to the SSE
method to manage the strategies of the intermediate decision makers. The remaining part of the paper is
structured as follows. In section 2, a general introduction to SMLP is discussed. In Section 3, solution
procedures are presented. Simulation results are presented in section 4. An section 5, some remarks on
SMLP are made.
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2. Stochastic multilevel programming

Consider a probability space (Ω,F , P ), where Ω is a non-empty sample set, F is a σ-algebra of mea-
surable subsets (events) of Ω and P is a probability measure on F . Stochastic programming problems
are mainly classified into two-stage stochastic programming and chance-constrained programming prob-
lems. In the next paragraph, a two-stage stochastic multilevel programming problem is presented and
the formulation for the chance-constrained multilevel programming problem is presented at the end of
Section 3.

A mathematical formulation for a two-stage stochastic bilevel programming is given by

min
x1

F1(x1, x2) + Eω[Q(x1, x2, ω)] (1)

subject to G1(x1, x2) ≤ 0, where x2 solves the problem

min
x2

F2(x1, x2)

subject to G2(x1, x2) ≤ 0,

where, ∀ω ∈ Ω,

Q(x1, x2, ω) =



min
x̄1

F̄1(x̄1(ω), x̄2(ω), ω)

subject to Ḡ1(x1, x̄1(ω), x2, x̄2(ω), ω) ≤ 0

where x̄2(ω) solves the problem
min
x̄2

F̄2(x̄1(ω), x̄2(ω), ω)

subject to Ḡ2(x1, x̄1(ω), x2, x̄2(ω), ω) ≤ 0

with x1 and x2 are first-stage decision variables which are supposed to be decided before observing the
random outcome at the second stage; x̄1 and x̄2 are second-stage decision variables which are supposed
to be decided after all randomness properties have been removed.

In problem (1), assume that Q(x1, x2, ω), F̄1(x̄1(ω), x̄2(ω), ω) and F̄2(x̄1(ω), x̄2(ω), ω) are measur-
able functions with respect to ω. So, ∀ω ∈ Ω problem (1) can be reformulated as a standard stochastic
bilevel program in the following form [4]

min
x1,x̄1

F1(x1, x2) + Eω[F̄1(x̄1(ω), x̄2(ω), ω)] (2a)

subject to G1(x1, x2) ≤ 0

Ḡ1(x1, x̄1(ω), x2, x̄2(ω), ω) ≤ 0

where x2 and x̄2 solve the problem

min
x2,x̄2

F2(x1, x2) + Eω[F̄2(x̄1(ω), x̄2(ω), ω)] (2b)

subject to G2(x1, x2) ≤ 0

Ḡ2(x1, x̄1(ω), x2, x̄2(ω), ω) ≤ 0

xi ∈ Xi, x̄i is a measurable function from Ω to X̄i
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In general, for an ℓ level two-stage hierarchical decision problem, suppose that the vectors xi,
1 ≤ i ≤ ℓ represent the first stage decision variables, which are called here-and-now variables, and
the vectors x̄i, 1 ≤ i ≤ ℓ represent the second stage decision variables, which are called the wait-and-see
variables. The here-and-now variables are assumed to be decided before observing the random outcome
at the second stage, whereas the wait-and-see variables are supposed to be decided after all randomness
properties have been removed. Then, such an ℓ level TS-SMLP problem with randomness in the given
probability distribution can be given ∀ω ∈ Ω by

min
x1,x̄1

F1(x1, x2, . . . , xℓ) + Eω[F̄1(x̄1(ω), x̄2(ω), . . . , x̄ℓ(ω), ω)] (3a)

subject to G1(x1, x2, . . . , xℓ) ≤ 0

Ḡ1(x1, x̄1(ω), x2, x̄2(ω), . . . , xℓ, x̄ℓ(ω), ω) ≤ 0,

where x2, x̄2, . . . , xℓ and x̄ℓ solve the problem

min
x2,x̄2

F2(x1, x2, . . . , xℓ) + Eω[F̄2(x̄1(ω), x̄2(ω), . . . , x̄ℓ(ω), ω)]

subject to G2(x1, x2, . . . , xℓ) ≤ 0

Ḡ2(x1, x̄1(ω), x2, x̄2(ω), . . . , xℓ, x̄ℓ(ω), ω) ≤ 0,

where x3, x̄3, . . . , xℓ and x̄ℓ solve the problem
. . .

where xℓ and x̄ℓ solve the problem

min
xℓ,x̄ℓ

Fℓ(x1, x2, . . . , xℓ) + Eω[F̄ℓ(x̄1(ω), x̄2(ω), . . . , x̄ℓ(ω), ω)] (3b)

subject to Gℓ(x1, x2, . . . , xℓ) ≤ 0

Ḡℓ(x1, x̄1(ω), x2, x̄2(ω), . . . , xℓ, x̄ℓ(ω), ω) ≤, . . . ,

xi ∈ Xi, x̄i is a measurable function from Ω to X̄i

Here we study problem (3) having a decision variable space Rm, such that (x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ)

∈
ℓ∏

t=1

(Xt × X̄t) =: S(̸= ∅) ⊆ Rm, where Xi = [li, ui]
mi ⊆ Rmi . Moreover, for each hierarchical level

i ∈ {1, 2, . . . , ℓ}, let Si denote the set given by

Si ={(x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) : Gi(x1, x2, . . . , xℓ)

≤ 0, Ḡi(x1, x̄1(ω), x2, x̄2(ω), . . . , xℓ, x̄ℓ(ω), ω) ≤ 0, ∀ω ∈ Ω}

Then, consider the following necessary assumptions about the functions involved in the problem (3).

A1. Each of the objective functions Fi and F̄i is assumed to be continuous and Caratheodory functions
on S, respectively (i.e., each Fi and F̄i is continuous on S and F̄i is measurable in ω) and convex
with respect to their corresponding variables xi and x̄i, where i indicates the ith level of decision
hierarchy, ∀i ∈ {1, 2, . . . , ℓ}.

A2. Each of the constraint functions Gi and Ḡi which determine the set Si, for i ∈ {1, 2, . . . , ℓ}, is
assumed to be convex concerning their corresponding variables xi, x̄i and for all ω ∈ Ω; they are
also Caratheodory functions.
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Now, consider the bottom or ℓth level problem of (3), which is

min
xℓ,x̄ℓ

Fℓ(x1, x2, . . . , xℓ) + Eω[F̄ℓ(x̄1(ω), x̄2(ω), . . . , x̄ℓ(ω), ω)] (4)

subject to Gℓ(x1, x2, . . . , xℓ) ≤, . . . ,

Ḡℓ(x1, x̄1(ω), x2, x̄2(ω), . . . , xℓ, x̄ℓ(ω), ω) ≤ 0, ∀ω ∈ Ω

The involvement of the expectation function in the objective and the effect of the random variable ω

in the constraint functions make problem (4) difficult to solve or make it even intractable. Therefore, it
is customary to approximate the problem using the sample average approximation [38, 49]. The approxi-
mated form of problem (4) is given by

min
xℓ,x̄ℓ

Fℓ(x1, x2, . . . , xℓ) +
1

n

n∑
i=1

F̄ℓ(x̄1(ω
i), x̄2(ω

i), . . . , x̄ℓ(ω
i), ωi) (5)

subject to (x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) ∈ Sℓ

where
Sℓ = {(x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) : Gℓ(x1, x2, . . . , xℓ) ≤ 0 (6)

Ḡℓ(x1, x̄1(ω
i), x2, x̄2(ω

i), . . . , xℓ, x̄ℓ(ω
i), ωi) ≤ 0, ∀ωi ∈ Ω}

and ωi is a realization of the random variable having support Ξ̂ using monte carlo simulation method.
If the variables in Fℓ and F̄ℓ controlled by upper decision makers are considered as parameters (or known

values) and if the objective functions Fℓ and F̄ℓ are continuous and Caratheodory functions on S, respectively,
and convex concerning their corresponding variables xℓ and x̄ℓ, and also if the constraint functions Gℓ and Ḡℓ

which determine the set Sℓ are convex concerning their corresponding variables xℓ, x̄ℓ for all ω ∈ Ω and they
are also Caratheodory functions, then a problem solution (5) is an approximated solution

One can apply similar arguments on each of the hierarchical levels in the problem (3) to obtain an
approximated ℓ-level deterministic problem

min
x1,x̄1

F1(x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) (7a)

subject to (x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) ∈ S1,

where x2, x̄2, . . . , xℓ and x̄ℓ solve

min
x2,x̄2

F2(x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ)

subject to (x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) ∈ S2,

where x3, x̄3, . . . , xℓ and x̄ℓ solve
. . .

where xℓ and x̄ℓ solve

min
xℓ,x̄ℓ

Fℓ(x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) (7b)

subject to (x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) ∈ Sℓ

where for each j = 1, . . . , ℓ,
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Fj(x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) = Fj(x1, x2, . . . , xℓ) (8)

+
1

n

n∑
i=1

F̄j(x̄1(ω
i), x̄2(ω

i), . . . , x̄ℓ(ω
i), ωi)

and

Sj = {(x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) : Gj(x1, x2, . . . , xℓ) ≤ 0 (9)

Ḡj(x1, x̄1(ω
i), x2, x̄2(ω

i), . . . , xℓ, x̄ℓ(ω
i), ωi) ≤ 0, ∀ωi ∈ Ω}

Since the problem solution (5) is the approximated solution for problem (4) [38, 49], the same argu-
ment can be generalized sequentially from the bottom level to the upper level. Therefore, the optimal
solution of the approximated deterministic multilevel problem (i.e., problem (7)), which is constructed
using a finite number of realizations of the random variable ω, is convergent to the optimal solution of
TS-SMLP (problem (3)), as the number of realizations tends to infinity due to the law of large numbers,
provided that assumptions A1 and A2 are satisfied.

Now, consider the wait-and-see variables as finite dimensional vectors (x̄
(1)
i , x̄

(2)
i , . . . , x̄

(n)
i )

= (x̄i(ω
1), x̄i(ω

2), . . . , x̄i(ω
n)) such that (x̄1, x̄2, . . . , x̄ℓ) ∈ X̄ (̸= ∅) ⊆ Rm̄, where x̄

(j)
i ∈ [l̄i, ūi]

m̄i ,
X̄i = [l̄i, ūi]

m̄i ⊆ Rm̄i , lji (l̄
j
i ) and uj

i (ū
j
i ) are lower and upper bounds for each decision component

of the hear-and-now variables and the wait-and-see variables, respectively,
ℓ∑

i=1

(mi + m̄i) = m and

Ki :=
ℓ∏

t=i

(Xt × X̄t). Below some important TS-SMLP definitions are presented.

Definition 1. For the ℓ level TS-SMLP problem (7)

1. The relaxed constraint region is given by

Ψ = {(x1, x̄1, . . . , xℓ, x̄ℓ) ∈ S : (x1, x̄1, . . . , xℓ, x̄ℓ) ∈ S1 ∩ S2 ∩ · · · ∩ Sℓ}

2. For each given vector (x⋆
1, x̄

⋆
1, . . . , x

⋆
i−1, x̄

⋆
i−1) ∈

i−1∏
t=1

(Xt × X̄t), 2 ≤ i ≤ ℓ, the ith level feasible

region is given by

Ψ(x⋆
1, x̄

⋆
1, . . . , x

⋆
i−1, x̄

⋆
i−1) = {(xi, x̄i, . . . , xℓ, x̄ℓ) ∈

ℓ∏
t=i

(Xt × X̄t) :

(x⋆
1, x̄

⋆
1, . . . , x

⋆
i−1, x̄

⋆
i−1, xi, x̄i, . . . , xℓ, x̄ℓ) ∈ Si ∩ · · · ∩ Sℓ}

3. Projection of Ψ on to the decision space of the 1st, . . . , ith, 1 ≤ i < ℓ, level is given by

Ψ i = {(x1, x̄1, . . . , xi, x̄i) ∈
i∏

t=1

(Xt × X̄t) :

∃(xi+1, x̄i+1, . . . , xℓ, x̄ℓ) ∈
ℓ∏

t=i+1

(Xt × X̄t) with (x1, x̄1, . . . , xℓ, x̄ℓ) ∈ Ψ}
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Note that Ψ ℓ = Ψ .

4. For each (x⋆
1, x̄

⋆
1, . . . , x

⋆
ℓ−1, x̄

⋆
ℓ−1) ∈ Ψ ℓ−1, the rational reaction set for the ℓth level is given by

(which is modified for stochastic case from literature [59])

Φℓ(x⋆
1, x̄

⋆
1, . . . , x

⋆
ℓ−1, x̄

⋆
ℓ−1) = argmin

xℓ,x̄ℓ

{Fℓ(x
⋆
1, x̄

⋆
1, . . . , x

⋆
ℓ−1, x̄

⋆
ℓ−1, xℓ, x̄ℓ) :

(xℓ, x̄ℓ) ∈ Kℓ, (x⋆
1, x̄

⋆
1, . . . , x

⋆
ℓ−1, x̄

⋆
ℓ−1, xℓ, x̄ℓ) ∈ Ψ}

Then inductively, for 2 ≤ i ≤ ℓ−1 and (x⋆
1, x̄

⋆
1, . . . , x

⋆
i−1, x̄

⋆
i−1) ∈ Ψ i−1, define the rational reaction

set to be

Φi(x⋆
1, x̄

⋆
1, . . . , x

⋆
i−1, x̄

⋆
i−1) = argmin

xi,x̄i

{Fi(x
⋆
1, x̄

⋆
1, . . . , x

⋆
i−1, x̄

⋆
i−1, xi, x̄i, . . . , xℓ, x̄ℓ) :

(x⋆
1, x̄

⋆
1, . . . , x

⋆
i−1, x̄

⋆
i−1, x

◦
i , x̄

◦
i , . . . , x

◦
ℓ , x̄

◦
ℓ) ∈ Ψ, (10)

(xt, x̄t, . . . , xℓ, x̄ℓ) ∈ Φt(x⋆
1, x̄

⋆
1, . . . , x

⋆
i−1, x̄

⋆
i−1, xi, x̄i, . . . , xt−1, x̄t−1),

∀i+ 1 ≤ t ≤ ℓ− 1 and (xi, x̄i, . . . , xℓ, x̄ℓ) ∈ Ki}

5. The induced region for the leader’s decision is defined as

Υ̂ = {(x1, x̄1, . . . , xℓ, x̄ℓ) ∈ S1 : (x1, x̄1) ∈ X1 × X̄1

(x2, x̄2, . . . , xℓ, x̄ℓ) ∈ Φ2(x1, x̄1)}

The TS-SMLP problem (7) can be equivalently [20] described as a single level problem using the set
Υ̂ (if it is nonempty) as

min
(x1, x̄1, . . . , xℓ, x̄ℓ) ∈ Υ̂

F1(x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) (11)

Therefore, any optimal solution of problem (11) is a Stackelberg solution for TS-SMLP given in
problem (7) because of this equivalence.

In problem (11), the leader cannot decide on all of the components of the decision vector (x1, x̄1, . . . ,

xℓ, x̄ℓ) but only on (x1, x̄1), which is the decision sub-vector for the leader’s objective function, F1(x1, x̄1,

. . . , xℓ, x̄ℓ) and similarly, (xi, x̄i) is the decision sub-vector for the ith hierarchical level decision maker,
where 1 ≤ i ≤ ℓ. Assume that actions or decisions are made sequentially beginning from the top-
level decision maker who has control over the sub-vector (x1, x̄1) ∈ X1 × X̄1, followed by the 2nd
level decision maker who has control over the sub-vector (x2, x̄2) ∈ X2 × X̄2 down through the ℓth
level decision maker who has control over the sub-vector (xℓ, x̄ℓ) ∈ Xℓ × X̄ℓ. If the ℓth level decision
maker has more than one minimizer, then the decision maker at (ℓ − 1)th level needs a clear definition
of whether he/she uses an optimistic or pessimistic approach and the same approach is used for the
remaining hierarchical levels of decision.

On the other hand, corresponding to each choice of a decision variable from above, the reaction is
also made sequentially beginning from the bottom level decision maker up through the 2nd level decision
maker, this procedure continues sequentially until they attain the Stackelberg equilibrium.



A solution method for stochastic multilevel programming. . . 157

In the case when the second-level and/or subsequent lower-level subproblems of (7) have multiple
optimal solutions, we assume that the decision maker at the respective level chooses the one that leads
to the best value for the upper-level decision maker, i.e., we consider the sequential optimistic version of
multilevel optimization problems.

Now consider the following additional necessary assumptions to ensure the existence of an optimal
problem solution (7).

A3. Assumption A1 is employed after all the random variables are realized and problem (3) is approxi-
mated using sample average approximation.

A4. Assumption A2 is employed after all the random variables are realized and problem (3) is approxi-
mated using sample average approximation.

A5. All the decision variables are assumed to be in a closed boxed region.
A6. The optimal reaction set in problem (7) at any hierarchical level is assumed to be non-empty.

Under the consideration of the above assumptions, the following theorem shows the existence of a
problem solution (7).

Theorem 1. If assumptions A3–A6 hold, then problem (7) has an optimal solution.

Proof. Decision is assumed to be started from the top level and sequentially cascades down through the
bottom level decision maker. Corresponding to any choice (x1, x̄1, . . . , xℓ−1, x̄ℓ−1) of the top
(ℓ − 1) decision makers, there is at least one reaction (xℓ, x̄ℓ) by A6. Here, one of the elements can
be possibly selected in a unique way from the rational reaction set Φℓ(x1, x̄1, . . . , xℓ−1, x̄ℓ−1) due to the
sequential optimistic assumption of the problem and say the value is Φℓ◦(x1, x̄1, . . . , xℓ−1, x̄ℓ−1). In a
similar argument, the optimal reaction can be selected at each hierarchical level in a unique way from
the bottom level up through the top level. Let Φ2◦(x1, x̄1) := (x2, x̄2, . . . , xℓ, x̄ℓ) be the chosen unique
optimal reaction for the 1st level decision maker for his/her decision (x1, x̄1) and then in terms of this
value, problem (11) becomes

min
x1, x̄1

(x1, x̄1, . . . , xℓ, x̄ℓ) ∈ Υ̂

F1(x1, x̄1, Φ
2◦(x1, x̄1)) (12)

Therefore, since Υ̂ is closed because of assumption A4 and A5, and because of Υ̂ ⊆ S and S is a bounded
set, the set Υ̂ is compact. Hence, the Weierstrass theorem implies that there exists a solution for problem
(12) due to the continuity assumption in A3 over the compact set Υ̂ . □

3. Solution approach

3.1. Two-stage stochastic programming problems
The SSE solution procedure is a non-derivative meta-heuristic type approach. The solution procedure
was proposed for solving SBLP problems in [25] for a single follower case and is extended in [26] for
multiple followers problems. In this work, it is further extended for solving SMLP problems for any
number of hierarchical levels. The approach is based on the realization of the random variables and then
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selecting an optimal reaction from the partitioned region using the systematic sampling approach at each
hierarchical level sequentially from the bottom level up through the top level. We implement the PSO
algorithm for searching for a better optimal reaction if there is one at each hierarchical level. Parameters
that are used in the approach are described in Table 1.

Table 1. Description of parameters used in the algorithm

Parameter Description
dji length of each side of the hyper-box (hypercube) along the jth component
β parameter of the partition

aji aji =
dji
β

, ∀j ∈ {1, . . . , mi}, ∀i ∈ {1, . . . , ℓ}

bji
two consecutive aji partition are merged to be bji as bji (p) = aji (2p− 1) + aji (2p),
where total number of merged partitions is represented by p

ρ SSE algorithm maximum iteration number

β◦ a parameter β◦ =
β

ρ
is used to avoid repetition of representatives at each iteration

q particles number
π PSO maximum iteration number

lji , l̄ji
lower bounds for each decision component of
“hear and now variables” and ‘̀wait and see variables”

uj
i , ūj̄

i

upper bounds for each decision component of
“hear and now variables” and “wait and see variables”

After realizing the random variables, the next step is partitioning the leader’s decision spaces using
a systematic sampling approach as presented in Figure 1. The schematic diagram indicates how the
hierarchical decision spaces at each level can be partitioned using a systematic sampling approach. A
box in each of the Fi’s represents one hyper-box1 (or hypercube) in the respective dimension. One
representative is randomly chosen from each of the partitioned regions and then the rest representa-
tives of the actions are selected systematically as described in reference [25]. Using a similar mech-
anism, each of the remaining hierarchical decision spaces (DS) as presented in Figure 1 can be parti-
tioned using a systematic sampling approach and two strategies xj

i (1) = lji + rand(1)β and xj
i (2) = lji

+ rand(1)β + β, respectively, are selected from the first two consecutive partitions. The other representa-
tives of the decision variables from the remaining partitions are selected similarly as outlined in [25] for
each hierarchical level i.

In a hierarchical decision system, a decision process starts from the top-level decision maker by
anticipating the potential reaction of the followers sequentially. The intermediate decision maker Fi,
2 ≤ i ≤ ℓ − 1, optimizes his/her problem in light of the knowledge of the upper (i − 1) decision mak-
ers’ decision and the potential reactions of the bottom decision makers. Lastly, given the top (ℓ − 1)

decision makers’ decision, the ℓth level decision maker decides to optimize his/her objective function.
And response of an action or a strategy from each partition region at each hierarchical decision space
starts from the bottom level up through the top level. This decision process is repeatedly carried out until
Stackelberg equilibrium is attained in all vertical structures at the current iteration.

1By hyper-box (or hypercube) we refer to a geometric structure in an arbitrary finite-dimensional real space, which repre-
sents the n-dimensional analog of a square in R2, and a cube in R3.
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Figure 1. Partitioning each hierarchical level decision space

However, there might be another better solution for the problem because of the possible infinite rep-
resentatives from each decision space. So, one keeps this solution and selects another set of possible
combinations of solutions from each sub-region. But the repetition of representative actions has to be
avoided from any of the sub-regions of the leader’s decision space by further subdividing each partition
region into a maximum number of iteration ρ as described in reference [25]. The procedure of SSE for
solving the TS-SMLP problem is presented using a flowchart in Figure 2.

The pseudo-code is given in Algorithm 1 for solving the reformulated TS-SMLP as a deterministic
multilevel program.Algorithm 1. Solution procedure pseudo code

Step 1. A multilevel programming problem with bounded decision variables is considered.
Input: mi, m̄i, lji , uj

i , l̄j̄i , ūj̄
i , Si, Fi, dji , d̄j̄i , ∀j ∈ {1, . . . , mi}, ∀j̄ ∈ {1, . . . , m̄i}, ∀i ∈ {1, . . . , ℓ}.

Algorithm parameters: ρ, β, β◦ = β
ρ

, ăj
i = 2 · ceil( d

j
i

2β
), b̆ji = floor( ă

j
i
2
) and Γ = randperm(ρ), where b̆ji is the number of partitions

of bji and ăj
i is the number of partitions of aj

i . For wait-and-see variables is also done the same.

Step 2. Iteration counter is set to be κ = 1, and initialize the set of solutions Υ = ∅.

Step 3. Leader’s decision space is partitioned, given by the hyper-box [l1, u1]
m1 .

xj
1(1) = lj1 + (Γ(κ)− 1)β◦ + rand(1)β◦

xj
1(2) = lj1 + β + (ρ− Γ(κ) + 1)β◦ + rand(1)β◦

for q = 3 to 2b̆1 − 1 using 2 steps do
xj
1(q) = xj

1(q − 2) + 2β

xj
1(q + 1) = xj

1(q − 1) + 2β

end for
The same is done for the wait-and-see-variables space (which is also assumed to be a hyper-box). In addition, partition each hierar-
chical decision space on the hyper-box [li, ui]

mi .
for i = 2 to ℓ

xj
i (1) = lji + rand(1)β

xj
i (2) = lji + rand(1)β + β

for q = 3 to 2b̆1 − 1 using 2 steps do
xj
i (q) = xj

2(q − 2) + 2β

xj
i (q + 1) = xj

i (q − 1) + 2β

end for q
end for i
The same procedure is applied also for the wait-and-see variables of the follower’s problem.

Step 4. For i = 1, . . . , ℓ− 1, and for each (x⋆
1, x̄

⋆
1, . . . , x

⋆
i , x̄

⋆
i ) ∈ X1 × X̄1 × · · ·×Xi × X̄i, find an optimal reaction sequentially from

the bottom level to 2nd level using Definition 1.4. For this chosen vector,

• if an optimal reaction is obtained, go to Step 5.
• if no optimal reaction is obtained, set κ := κ+ 1 and go to Step 3.
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Step 5. If κ = 1, then set Υ := Υ ∪ {(xκ
1 , x̄

κ
1 , x

κ
2 , x̄

κ
2 , . . . , x

κ
ℓ , x̄

κ
ℓ )}. Otherwise (i.e., if κ ≥ 2), select a best solution using

F1(x
κ
1 , x̄

κ
1 , x

κ
2 , x̄

κ
2 , . . . , x

κ
ℓ , x̄

κ
ℓ ) ≤ F1(x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) (13)

such that (x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) ∈ Υ and then set (xκ
1 , x̄

κ
1 , x

κ
2 , x̄

κ
2 , . . . , x

κ
ℓ , x̄

κ
ℓ ) as the best solution for iteration κ and update

Υ := Υ ∪ {(xκ
1 , x̄

κ
1 , x

κ
2 , x̄

κ
2 , . . . , x

κ
ℓ , x̄

κ
ℓ )}. Terminate, if ρ = κ, else set κ := κ+ 1 and go to Step 3.

Step 6. Output: (xρ
1, x̄

ρ
1, x

ρ
2, x̄

ρ
2, . . . , x

ρ
ℓ , x̄

ρ
ℓ ) := (x◦

1, x̄
◦
1, x

◦
2, x̄

◦
2, . . . , x

◦
ℓ , x̄

◦
ℓ ).

Figure 2. Flowchart for solving TS-SMLP

Now, the convergence of the above iterative procedures which is described by Algorithm 1 is justified
in the following theorem.
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Theorem 2. For problem (7), let assumptions A3–A6 hold and let (x◦
1, x̄

◦
1, x

◦
2, x̄

◦
2, . . . , x

◦
ℓ , x̄

◦
ℓ) be a Stack-

elberg solution for problem (7). Then, for any chosen parameter β > 0 the iterations of Algorithm 1
produce a sequence of points (xκ

1 , x̄
κ
1 , x

κ
2 , x̄

κ
2 , . . . , x

κ
ℓ , x̄

κ
ℓ ) that converges to (x◦

1, x̄
◦
1, x

◦
2, x̄

◦
2, . . . , x

◦
ℓ , x̄

◦
ℓ).

Proof. In the case of ℓ = 2, the convergence of the Stackelberg equilibrium was shown in [25]. Extend-
ing the result in [25] for any hierarchical level ℓ and using similar argument, (xκ

1 , x̄
κ
1 , x

κ
2 , x̄

κ
2 , . . . , x

κ
ℓ , x̄

κ
ℓ )

→ (x◦
1, x̄

◦
1, x

◦
2, x̄

◦
2, . . . , x

◦
ℓ , x̄

◦
ℓ) is wanted to be shown as κ → ∞. Note that each of (xκ

1 , x̄
κ
1 , x

κ
2 , x̄

κ
2 , . . . ,

xκ
ℓ , x̄

κ
ℓ ) and (x◦

1, x̄
◦
1, x

◦
2, x̄

◦
2, . . . , x

◦
ℓ , x̄

◦
ℓ) satisfy Definition 1. optimal reaction condition (4) at any hierar-

chical level sequentially starting from the last level up through the first level. The Euclidean distance be-
tween (xκ

1 , x̄
κ
1 , x

κ
2 , x̄

κ
2 , . . . , x

κ
ℓ , x̄

κ
ℓ ) and (x◦

1, x̄
◦
1, x

◦
2, x̄

◦
2, . . . , x

◦
ℓ , x̄

◦
ℓ) is given by ∥(xκ

1 , x̄
κ
1 , x

κ
2 , x̄

κ
2 , . . . , x

κ
ℓ , x̄

κ
ℓ )

− (x◦
1, x̄

◦
1, x

◦
2, x̄

◦
2, . . . , x

◦
ℓ , x̄

◦
ℓ)∥ such that

∥(xκ
1 , x̄

κ
1 , x

κ
2 , x̄

κ
2 , . . . , x

κ
ℓ , x̄

κ
ℓ )− (x◦

1, x̄
◦
1, x

◦
2, x̄

◦
2, . . . , x

◦
ℓ , x̄

◦
ℓ)∥2 (14a)

≤ ∥(xκ
1 , x̄

κ
1)− (x◦

1, x̄
◦
1)∥2 + ∥(xκ

2 , x̄
κ
2)− (x◦

2, x̄
◦
2)∥2 + · · ·+ ∥(xκ

ℓ , x̄
κ
ℓ )− (x◦

ℓ , x̄
◦
ℓ)∥2

= ∥(xκ
1 , x̄

κ
1)− (x◦

1, x̄
◦
1)∥2

+ ∥ argmin
x2,x̄2

F2(x
κ
1 , x̄

κ
1 , x2(x

κ
1 , x̄

κ
1), x̄2(x

κ
1 , x̄

κ
1), . . . , xℓ(x

κ
1 , x̄

κ
1), x̄ℓ(x

κ
1 , x̄

κ
1))

− argmin
x2,x̄2

F2(x
◦
1, x̄

◦
1, x2(x

◦
1, x̄

◦
1), x̄2(x

◦
1, x̄

◦
1), . . . , xℓ(x

◦
1, x̄

◦
1), x̄ℓ(x

◦
1, x̄

◦
1))∥2

+ · · ·+ ∥ argmin
xℓ−1,x̄ℓ−1

Fℓ−1(x
κ
1 , x̄

κ
1 , . . . , x

κ
ℓ−2, x̄

κ
ℓ−2, xℓ−1(x

κ
1 , x̄

κ
1), x̄ℓ−1(x

κ
1 , x̄

κ
1), xℓ(x

κ
1 , x̄

κ
1), x̄ℓ(x

κ
1 , x̄

κ
1))

− argmin
xℓ−1,x̄ℓ−1

Fℓ−1(x
◦
1, x̄

◦
1, . . . , x

◦
ℓ−2, x̄

◦
ℓ−2, xℓ−1(x

◦
1, x̄

◦
1), x̄ℓ−1(x

◦
1, x̄

◦
1), xℓ(x

◦
1, x̄

◦
1)), x̄ℓ(x

◦
1, x̄

◦
1))∥2

+∥ argmin
xℓ,x̄ℓ

Fℓ(x
κ
1 , x̄

κ
1 , . . . , x

κ
ℓ−1, x̄

κ
ℓ−1, xℓ(x

κ
1 , x̄

κ
1), x̄ℓ(x

κ
1 , x̄

κ
1))

− argmin
xℓ,x̄ℓ

Fℓ(x
◦
1, x̄

◦
1, . . . , x

◦
ℓ−1, x̄

◦
ℓ−1, xℓ(x

◦
1, x̄

◦
1), x̄ℓ(x

◦
1, x̄

◦
1))∥2

≤ ∥xκ
1 − x◦

1∥2 + ∥x̄κ
1 − x̄◦

1∥2 + (14b)

∥ argmin
x2,x̄2

F2(x
κ
1 , x̄

κ
1 , x2(x

κ
1 , x̄

κ
1), x̄2(x

κ
1 , x̄

κ
1), . . . , xℓ(x

κ
1 , x̄

κ
1), x̄ℓ(x

κ
1 , x̄

κ
1))

− argmin
x2,x̄2

F2(x
◦
1, x̄

◦
1, x2(x

◦
1, x̄

◦
1), x̄2(x

◦
1, x̄

◦
1), . . . , xℓ(x

◦
1, x̄

◦
1), x̄ℓ(x

◦
1, x̄

◦
1))∥2

+ · · ·+ ∥ argmin
xℓ−1,x̄ℓ−1

Fℓ−1(x
κ
1 , x̄

κ
1 , . . . , x

κ
ℓ−2, x̄

κ
ℓ−2, xℓ−1(x

κ
1 , x̄

κ
1), x̄ℓ−1(x

κ
1 , x̄

κ
1), xℓ(x

κ
1 , x̄

κ
1), x̄ℓ(x

κ
1 , x̄

κ
1))

− argmin
xℓ−1,x̄ℓ−1

Fℓ−1(x
◦
1, x̄

◦
1, . . . , x

◦
ℓ−2, x̄

◦
ℓ−2, xℓ−1(x

◦
1, x̄

◦
1), x̄ℓ−1(x

◦
1, x̄

◦
1), xℓ(x

◦
1, x̄

◦
1)), x̄ℓ(x

◦
1, x̄

◦
1))∥2

+∥ argmin
xℓ,x̄ℓ

Fℓ(x
κ
1 , x̄

κ
1 , . . . , x

κ
ℓ−1, x̄

κ
ℓ−1, xℓ(x

κ
1 , x̄

κ
1), x̄ℓ(x

κ
1 , x̄

κ
1))

− argmin
xℓ,x̄ℓ

Fℓ(x
◦
1, x̄

◦
1, . . . , x

◦
ℓ−1, x̄

◦
ℓ−1, xℓ(x

◦
1, x̄

◦
1), x̄ℓ(x

◦
1, x̄

◦
1))∥2

In the inequality (14b) the norm of the here-and-now variables of the leader is given by

∥xκ
1 − x◦

1∥2 =
m1∑
j=1

|xj(κ)
1 − x

j(◦)
1 |2 (15)

Then, in equation (15), the Stackelberg solution component corresponding to the chosen parameter β,
x
j(◦)
1 is assumed to be in the middle of the partition. Using Theorem 2 in [25], xj(κ)

1 → x
j(◦)
1 as κ → ∞
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and/or for β → 0. This argument is also true if xj(◦)
1 is at any position of the partition since only their

corresponding distance is considered. So, xκ
1 → x◦

1. One can show using similar arguments that x̄κ
i → x̄◦

i

for all i = 1, . . . , ℓ in the inequality (14b) since each strategy is a sequential action and reaction of the
other decision maker’s strategy.

Therefore, (xκ
1 , x̄

κ
1 , x

κ
2 , x̄

κ
2 , . . . , x

κ
ℓ , x̄

κ
ℓ ) → (x◦

1, x̄
◦
1, x

◦
2, x̄

◦
2, . . . , x

◦
ℓ , x̄

◦
ℓ) as κ → ∞. □

From Theorem 2, (xκ
1 , x̄

κ
1 , x

κ
2 , x̄

κ
2 , . . . , x

κ
ℓ , x̄

κ
ℓ ) converges to (x◦

1, x̄
◦
1, x

◦
2, x̄

◦
2, . . . , x

◦
ℓ , x̄

◦
ℓ) as κ → ∞

means that each hierarchical decision maker’s functional value at each level is convergent due to the
continuity assumption in A3. The convergence proof for the SSE solution procedure is done only for
problem (7) fulfilling the assumptions raised in Theorem 2.

However, there are an infinite number of strategies between two consecutive systematically selected
strategies at each hierarchical level’s decision space which is shown in Figure 1. So, there might be a bet-
ter solution or strategy out of those infinite strategies due to the continuity property at each hierarchical
decision space. In addition to this, the bottom-level problem is a standard mathematical programming
problem for each strategy of the top (ℓ− 1) decision-makers decision. For implementation purposes, the
PSO technique is used for solving the bottom-level decision maker’s problem and searching for a better
optimal reaction, if it exists, at each hierarchical level’s decision space. The better solution from the
sampled partition region is used as an initialization for PSO.

The penalty method is used to control infeasible solutions by converting the problem at each hierar-
chical level into an unconstrained problem by adding a penalty function to the objective function. The
penalty function consists of a penalty parameter Λ multiplied by a measure of violation of the constraints
K. The measure of violation is non-zero when the constraint is violated and is zero in the region where
the constraint is not violated. The converted unconstrained problem is given in the following equation
for each hierarchy level i, where i ∈ {1, 2, . . . , ℓ}.

F̂i(x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) = Fi(x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) + Λ ·max{K, 0} (16)

where K = 0 if (x1, x̄1, x2, x̄2, . . . , xℓ, x̄ℓ) ∈ Si and K = some large constant number if (x1, x̄1, x2, x̄2,

. . . , xℓ, x̄ℓ) /∈ Si.

3.2. Chance constrained stochastic programming problems

The solution procedure described in the Subsection 3.1 also works for other types of problems like CC-
MLP, where the chance constraint programming problem is defined at each hierarchical level of the
multilevel programming problem. Mathematical formulation for CC-MLP problem ∀ω ∈ Ω is given by

min
x̄1

γ1Eω[F̄1(x̄1, x̄2, . . . , x̄ℓ, ω)] + γ2Varω[F̄1(x̄1, x̄2, . . . , x̄ℓ, ω)] (17a)

subject to P{Ḡ1(x̄1, x̄2, . . . , x̄ℓ, ω) ≤ 0} ≥ α,

where x̄2, x̄3, . . . , x̄ℓ−1 and x̄ℓ solve

min
x̄2

γ1Eω[F̄2(x̄1, x̄2, . . . , x̄ℓ, ω)] + γ2Varω[F̄2(x̄1, x̄2, . . . , x̄ℓ, ω)]
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subject to P{2(x̄1, x̄2, . . . , x̄ℓ, ω) ≤ 0} ≥ α,

where x̄3, x̄4, . . . , x̄ℓ−1 and x̄ℓ solve
. . .

min
x̄i

γ1Eω[F̄i(x̄1, . . . , x̄ℓ, ω)] + γ2Varω[F̄i(x̄1, . . . , x̄ℓ, ω)](17a)

subject to P{i(x̄1, x̄2, . . . , x̄ℓ, ω) ≤ 0} ≥ α,

where x̄i+1, x̄i+2, . . . , x̄ℓ−1 and x̄ℓ solve
. . .

where x̄ℓ solve

min
x̄ℓ

γ1Eω[F̄ℓ(x̄1, . . . , x̄ℓ, ω)] + γ2Varω[F̄ℓ(x̄1, . . . , x̄ℓ, ω)](17)

subject to P{ℓ(x̄1, x̄2, . . . , x̄ℓ, ω) ≤ 0} ≥ α,

x̄1, . . . , x̄ℓ−1 and x̄ℓ are decision variables expected to be decided before randomness is observed, α ∈ [0,1]

is reliability level, γ1 and γ2 are convex weight factors determining which one to minimize the most.
Problem (17) cannot be optimized directly due to the variance non-convexity property which is in-

volved in the problem. Problem (17) can be changed into expectation criteria and the constraint becomes
an a.s. constraint if the problem is risk-free and α = 1. In such cases, the designed solution procedure for
the TS-SMLP problem can be implemented also for SMLP risk-free with a.s. constraint type problem if
Fi, Gi and xi are set to be identically zero for all i and the assumptions presented in Theorem 2 hold. If
problem (17) is non-risk free and/or α ∈ (0, 1), then problem (17a) can be mathematically rewritten as

min
x̄i

γ1
1

n

n∑
i=1

F̄i(x̄1, x̄2, . . . , x̄ℓ, ω
i) + (18)

γ2
1

n

n∑
i=1

[F̄i(x̄1, x̄2, . . . , x̄ℓ, ω
i)− 1

n

n∑
i=1

F̄i(x̄1, x̄2, . . . , x̄ℓ, ω
i)]2

subject to
1

n

n∑
i=1

IḠi(x̄1,x̄2, ..., x̄ℓ,ωi)≤0[Ḡi(x̄1, x̄2, . . . , x̄ℓ, ω
i)] ≥ α, ∀ωi

where IḠi(x̄1,x̄2, ..., x̄i, ..., x̄ℓ,ωi)≤0 is the indicator function and
1

n

n∑
i=1

[F̄i(x̄1, x̄2, . . . , x̄i, . . . , x̄ℓ, ω
i)

− 1

n

n∑
i=1

F̄2(x̄1, x̄2, . . . , x̄i, . . . , x̄ℓ, ω
i)]2 approximates Varω[F̄i(x̄1, x̄2, . . . , x̄i, . . . , x̄ℓ, ω)]. In similar

argument, rewrite all hierarchical level problems in problem (17) in the form of problem (18). Then,
Algorithm 1 can be implemented on it to find a solution.

Any deterministic multilevel problem can be solved by the same solution procedure as long as it
fulfills the deterministic versions of assumptions A3–A6.

4. Simulation results

Deterministic version problems from literature and some carefully constructed stochastic versions are given in
subsection 4.1. The performance and total elapsed time of SSE solution procedure presents subsection 4.2.
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4.1. SMLP test problems

Selected problems from literature, i.e., Examples 1–5, and constructed problems, i.e., Examples 6–8
are presented in this subsection, where the random variables which are involved in the problems are
assumed to be either normally (N ) or uniformly (U ) distributed. Those test problems are used to show
the effectiveness and competitiveness of the proposed solution procedure in the next subsection.

Example 1. The following trilevel problem is taken from [41].

min
x1

−x1 + 4x2

subject to x1 + x2 ≤ 1, where x2 and x3 solve

min
x2

2x2 + x3

subject to − 2x1 + x2 ≤ x3, where x3 solve

min
x3

−x2
3 + x2

subject to x3 ≤ x1

x1 ∈ X1 = [0, 0.5], x2 ∈ X2 = [0, 1]

x3 ∈ X3 = [0, 1]

Example 2. The following trilevel problem is taken from [60].

min
x1

x2
1 + 4x2

2 + sin2(x2 + x3)− 6

subject to 3x1 − 2x2 − x3 ≤ 0, 2x1 − x2
2 + x3

3 ≤ 0,

2|x1| − 3x2 ≤ 2, where x2 and x3 solve

min
x2

x2
1 +

1

5
sin2 x2

subject to x1 − x2
2 ≤ −x3, where x3 solve

min
x3

x2
2 + x2

3

subject to x1 + x2 ≤ x3

x1 ∈ X1 = [−2, 2], x2 ∈ X2 = [−2, 2]

x3 ∈ X3 = [−2, 2]

Example 3. The following quad-level problem is taken from [30].

min
x1

x2
1 + 4x2 − 2x3 + x4

where x2, x3 and x4 solves

min
x2

7x1 − x2
2 + 21x3 − 2x4

where x3 and x4 solves

min
x3

−x1 + 7x2 + x2
3 − x2

4
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where x4 solves

min
x4

−x1 + 3x2 + 2x1x3 − 3x2
4

subject to x1 − 3x2 + x2
3 + x4 ≤ 32,

-3x1 + 5x2x3 − x3 − x4 ≤ 101,

3x2
1 + 5x2 − x3 + 2x4 ≤ 168

x1 ∈ X1 = [0, 10], x2 ∈ X2 = [0, 5],

x3 ∈ X3 = [0, 6], x4 ∈ X4 = [0, 3]

Example 4. The following quad-level problem is taken from [30].

min
x1

−x1 − 4x2
2 − 2x1x3 − x4

where x2, x3 and x4 solve

min
x2

−x1x3 − x2 − x3 − x1x4

where x3 and x4 solve

min
x3

−x1x
2
2 + 2x2 − 2x2

3 + x2x4

where x4 solves

min
x4

−x1x2 + x2 − 3x3 − x3x4

subject to − x1 − x2 ≤ −3,

3x1x
2
2 − 2x2 + x3 + x4 ≤ 10,

−2x1 + x2 − 2x3 − x4 ≤ −1

x1 ∈ X1 = [0, 2], x2 ∈ X2 = [0, 8],

x3 ∈ X3 = [0, 8], x4 ∈ X4 = [0, 6]

Example 5. The following penta-level problem is taken from [34].

min
x1

−7x2
1 − x2

where x2, x3,x4, x5 and x6 solve

min
x2,x3

cos(x2)e
x3 + x1e

x2x3 + x4

subject to x1 + x2 − x3 + x6 − 5 ≤ 0,

where x4, x5 and x6 solve

min
x4

2x4
4 − x1x2 + x3x4 + x6

subject to − x4 + x2 + x1 − 3 ≤ 0

where x5 and x6 solve

min
x5

5x5 + x1x
2
5 + x3x4x5 + x6

subject to − 2x5 − x4 − 3x1 ≤ 0

where x6 solve
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min
x6

x2
6 − 8x6 + x2

5 + x2
1x

2
2

subject to x6 + x5 − 6 ≤ 0, 2x6 + x4 − x3 − 4 ≤ 0

x1 ∈ X1 = [0, 2], x2 ∈ X2 = [0, 1], x3 ∈ X3 = [0, 2],

x4 ∈ X4 = [0, 1], x5 ∈ X5 = [0, 2], x6 ∈ X6 = [0, 1]

Example 6. The following example is a two stage stochastic trilevel programming problem in normal
(N) probability distribution.

min
x1,x̄1

−x1 + 4x2 + E[2ωx̄2
1 + (x̄2 + ω)2 + x̄3]

subject to x1 − x2 ≤ 25, x1 + x̄1 − x̄3 − ω ≤ 20,

where x2, x̄2, x3 and x̄3 solve

min
x2,x̄2

2x2 + x3 + E[ωx̄1 + (x̄2 + ω)2]

subject to 2x1 − 2x2 ≤ x3, x
2
1 + x̄1 − x̄3 + ωx̄2

2 ≤ 20,

where x3 and x̄3 solve

min
x3,x̄3

−x2
3 + x2 + E[ωx̄1 + x̄2

2 + x̄3]

subject to x3 ≤ x1,−x̄2 − x2x̄3 + ωx̄2
2 ≤ 0

x1 ∈ X1 = [0, 2], x2 ∈ X2 = [0, 1], x3 ∈ X3 = [0, 1]

x̄1 ∈ X̄1 = [0, 6], x̄2 ∈ X̄2 = [0, 5], x̄3 ∈ X̄3 = [0, 4]

∀ω ∈ Ω, ω ∼ N(2, 3)

Example 7. The following example is a stochastic quad-level programming problem with almost sure
constraint in normal (N) probability distribution.

min
x̄1

E[ωx̄1 + (x̄3 + ω)2 + x̄2
4]

subject to x̄1 − 2ωx̄3 + 2x̄4 ≤ 50,

where x̄2, x̄3 and x̄4 solve

min
x̄2

E[x̄2
1 + ωx̄2

2 + x̄3x̄4]

subject to 3ωx̄1 + ωx̄2 − ωx̄2
4 ≤ 15,

where x̄3 and x̄4 solve

min
x̄3

E[x̄2 + 2ωx̄2
3 + ωx̄4]

subject to x̄2
1 + 2ωx̄2

2 + ωx̄3 ≤ 20

where x̄4 solves

min
x̄4

E[x̄2
1 − 2x̄2

2 + 2ωx̄4]

subject to x̄3
2 + x̄2 − 2x̄2

3 + ωx̄2
4 ≤ 10

x̄1 ∈ X̄1 = [0, 5], x̄2 ∈ X̄2 = [0, 4]

x̄3 ∈ X̄3 = [0, 6], x̄4 ∈ X̄4 = [0, 8]

∀ω ∈ Ω, ω ∼ N(2, 3)
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Example 8. The following example is a chance constraint penta-level programming in normal (N)
probability distribution.

min
x1

γ1E[ωx̄2
1 + 2x̄2

2 + x̄4 + 2x̄5] + γ2V ar[ωx̄2
1 + 2x̄2

2 + x̄4 + 2x̄5]

subject to P{2ωx̄2
1 − 3x̄2

2 + x̄5 ≤ 50} ≥ α, where x̄2,x̄3, x̄4 and x̄5 solve

min
x̄2

γ1E[x̄3
1 + ωx̄2

2 + x̄2
3 − x̄4] + γ2V ar[x̄3

1 + ωx̄2
2 + x̄2

3 − x̄4]

subject to P{3x̄1 + 5x̄2
2 + 6ωx̄3 − x̄5 ≤ 60} ≥ α, , where x̄3, x̄4 and x̄5 solve

min
x̄3

γ1E[x̄1 + 2ωx̄2
2 − x̄3 + x̄2

5] + γ2V ar[x̄1 + 2ωx̄2
2 − x̄3 + x̄2

5]

subject to P{3ωx̄2
2 + 3x̄2

4 − x̄5 ≤ 40} ≥ α, where x̄4 and x̄5 solve

min
x̄4

γ1E[x̄2
1 + x2

3 + ωx̄2
4 + x̄5] + γ2V ar[x̄2

1 + x̄2
3 + ωx̄2

4 + x̄5]

subject to P{2x̄1 + 3x̄2
4 + 6ωx̄5 ≤ 30} ≥ α, where x̄5 solve

min
x̄5

γ1E[x̄2
1 − x̄3 + x̄4 + ωx̄2

5] + γ2V ar[x̄2
1 − x̄3 + x̄4 + ωx̄2

5]

subject to P{2x̄1 + 5x̄2
3 + 6ωx̄5 ≤ 40} ≥ α

x̄1 ∈ X̄1 = [2, 6], x̄2 ∈ X̄2 = [−5, 5], x̄3 ∈ X̄3 = [−5, 5],

x̄4 ∈ X̄4 = [2, 6], x̄5 ∈ X̄5 = [−5, 5],

γ1 = 0.6, γ2 = 0.4, α = 0.98, ∀ω ∈ Ω, ω ∼ N(2, 1)

In the next subsection, the simulation results of each test problem are discussed to show the effective-
ness and competitiveness of the proposed SSE solution procedure.

4.2. Solution results and analysis

The simulation for the SSE solution procedure is performed using MATLAB 9.4.0(R2018a) software on
an Intel core i3-380M laptop machine. The solution procedure is let to run 5 independent times and the
best approximated solution is recorded for each simulation case.

First, we have to show the effectiveness and competitiveness of our proposed method for solving
deterministic problems. Parameter values β = 0.1, β = 0.5, β = 3, β = 1 and β = 1 are set
for each of the five problems in this category. Moreover, ρ = 50, q = 5 and π = 10 are set in the
implementation of the solution procedure. The results from SSE method are comparedother methods’
best results and presented in Table 2. In Examples 1, 2 and 4, the results obtained from the SSE method
using equation (11) are superior in the objective values of all levels, whereas in Examples 3 and 5 the
solutions obtained using the SSE solution procedure are better for some of the objectives (especially in
the leader’s objectives) and lag behind in some of the objectives of other levels. To closely analyze the
total improvement of the result, percentage improvement (or variations) of our method for each of the
decision makers in each of the problems is presented in Table 3. Here, the percentage improvement is
computed using the formula

Percentage improvement =
(New value – Original value)× 100%

Original value
. (13)
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Table 2. Comparison of the results

No. Method Best solution Best F1 Best F2 Best F3 Best F4 Best F5

1 [60] (0.4994, 0.0016, 0.4988) −0.4929 0.5020 −0.2472
SSE (0.5, 0, 0.49951) −0.5 0.49951 −0.24951

2 [60] (−0.0290, 0.0062, 0.0041) −5.9989 8.4293e−004 5.4521e−005

SSE
(−0.0066,−3.5689e−06,
–1.275 e−05)

−6 4.3969e−05 1.7529e−10

3 [30] (7.01, 4, 5.22, 2.53) 57.23 137.63 11.82 58.97
SSE (0.02, 5, 0, 3) 23 −30.8547 25.9792 −12.0208

4 [30] (0, 5.51, 5.02, 4.38) −125.82 −10.53 −15.24 −31.53
SSE (0.10054, 6, 6, 5) −150.3071 −13.106 −33.6196 −42.6033

5 [34] (2, 0.0398, 0.782, 0.999, 1.804, 1) −24.9604 5.2467 −5.0796 17.9474 −3.737
SSE (2, 1, 0, 0, 0, 1) −29 2.5403 −1 1 −3

In Table 3, a positive percentage improvement value is assigned for decreased optimal value since the
problem is minimization and a negative percentage improvement value is assigned for increased optimal
value. All decision makers except the 3rd level decision maker’s objective in Example 3 and, 3rd and
5rd levels objective values in Example 5 have shown improvements. In general, the solutions using SSE
solution procedure (as can be seen from the average percentage performance values in the last column of
Table 3) have shown improvement. Therefore, using the results in Table 2 and Table 3, the outcome of the
new solution procedure is very much promising and competitive in terms of obtaining a good solution.

Table 3. Comparison results with SSE method [%]

No.
Comparison

with SSE Best F1 Best F2 Best F3 Best F4 Best F5
Average

improvement
1 [60] 1, 44 0.49 0.93 0.95
2 [60] 0.018 94.8 99.9 64.9
3 [30] 59.8 122.4 −119.79 120.4 45.7
4 [30] 19.46 24.46 120.61 35.11 49.9
5 [34] 16.18 51.58 −80.31 94.42 −19.72 12.43

In addition, the quality of the solution will be improved by decreasing β as it is shown in Theorem
1. Now, to investigate the impact of increasing the value of β by some values in the performance of the
algorithm, we demonstrate the results in Table 4 for deterministic case and in Table 7 for stochastic case.
For the deterministic version, the performance of the method for two different values of β is presented in
Table 4, where a parameter value ρ = 50, q = 5 and π = 10 are set in the code.

Using the results in Table 4, the improvement in the objective values of each level for two β values is
considered so that one can see the cost and benefit of varying the β values in the algorithm. It can be seen
from Table 4 that decision makers, except 3rd level’s of Example 1 and, 3rd and 4th levels’ of Example 3
are beneficial when the value of β is decreased. In addition to this, the time needed to solve the problem
increases when the value of β decreases as presented in Table 4. So, we have to compromise between
accuracy of the solution and the time it takes for the method to obtain the solution of the problem when
choosing the value of β. The percentage improvement of each decision maker is presented in Table 5 to
visualize the relation between improvement of optimal value of each decision maker and the variation of
β values (as shown in the second column of the table).
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Table 4. Two β parameter values comparison on each deterministic category problem

No. β Optimal solution Best F1 Best F2 Best F3 Best F4 Best F5 Time [s]

1 0.2 (0.5, 0, 0.49954) −0.5 0.49983 −0.24983 16.1
0.1 (0.5, 0, 0.49951) −0.5 0.49951 −0.24951 39.9

2 0.75
(−0.016,−1.218e−05,
7.757 e−06)

−5.9997 2.669e−004 2.086e−10 22.8

0.5
(−0.0066,−3.56e−06,
-1.27 e−05)

−6 4.3969e−05 1.7529e−10 37

3 3 (0.02, 5, 0, 3) 23 −30.8547 25.9792 −12.0208 36.5
1.5 (0.000546, 5, 0, 3) 23 −30.9962 25.9995 −12.0005 134

4 2 (0.0695, 6, 6, 5) −149.9036 −12.7646 −32.5022 −42.417 46.7
1 (0.10054, 6, 6, 5) −150.3071 −13.106 −33.6196 −42.6033 84.4

5 1 (2, 1, 0, 0, 0, 1) −29 2.5403 −1 1 −3 107
0.5 (2, 1, 0, 0, 0, 1) −29 2.5403 −1 1 −3 434

As can be seen in Table 5, as β is decreased by some value as shown in the second column of the table,
the objective values of all decision makers except 3rd level’s of Example 1 and, 3rd and 4th levels’ of
Example 3 have shown improvement. However, the solutions using smaller β values (as can be seen from
the 8th column in Table 5) are good in terms of the average percentage improvement values except for
Example 1. The average percentage improvement value for Example 1 shown positive due to the larger
improvement of the 3rd level decision maker’s optimal value compared to its 2nd level decision maker’s
optimal value which is poor. However, the time needed to run the program for each problem is increased
(cf. the last column of Table 5).

Table 5. Two different β parameter value percentage comparison results for each problem [%]

No. Change of β Best F1 Best F2 Best F3 Best F4 Best F5
Average

improvement Time [s]

1 from 0.2 to 0.1 0 0.064 −0.128 −0.02 23.8
2 from 0.75 to 0.5 0.005 83.52 16.15 33.225 13.7
3 from 3 to 1.5 0 0.458 −0.07 −0.168 0.055 97.5
4 from 2 to 1 0.269 2.67 3.43 0.439 1.702 37.5s
5 from 1 to 0.5 0 0 0 0 0 0 327s

The performance of the solution procedure is highly dependent on the value of β which is the param-
eter to be chosen. The simulation results can be improved further by choosing smaller values for β but
the time needed for solving the problem will be increased (cf. last column of Tables 4 and 5). For a
stochastic version case, optimal solution and optimal values are presented in Table 6, where parameter
values ρ = 50, π = 10, q = 5 and n = 25 are set in the code, are the results by the SSE method.

Table 6. Solutions by the SSE method

No. β Optimal solution Best F1 Best F2 Best F3 Best F4 Best F5

6 0.75 (0.19662, 0.19585, 0.040776, 0, 0, 0) 6.1185 6.3667 0.25955
7 1.5 (0.020759, 0, 0, 0) 10.3848 0.00043093 0 0.00043093
8 2 (2.0048, 0.0026364, 2.6926, 2,−0.29469) 9.8227 7.9851 0.36056 15.4954 2.0906

Like in the deterministic case, the impact of increasing β by some values in the performance of the solution
procedure is demonstrated in Table 7, where ρ = 50, π = 10, q = 5 and n = 25 are set in the code.
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Table 7. Two different β parameter value comparison results on each SMLP problem

No. β Optimal solution Best F1 Best F2 Best F3 Best F4 Best F5 Time [s]

6 1
(0.24226, 0.2463,
0.07463, 0, 0, 0) 9.7359 9.9587 0.33044 491

0.75
(0.19662, 0.19585,

0.040776, 0,0,0) 6.1185 6.3667 0.25955 1621

7 2 (0.036024, 0, 0, 0) 12.6529 0.0012978 0 0.0012978 266
1.5 (0.020759, 0, 0, 0) 10.3848 0.00043093 0 0.00043093 424

8 2.5
(2.104,−0.0253,

2.723, 2.03,−1.212)
12.0084 8.824 0.51236 17.2929 4.6429 1217

2
(2.0048, 0.00263,

2.6926,2, -0.29469) 9.8227 7.9851 0.36056 15.4954 2.0906 2258

It can be seen from Table 7 that all optimal values shown are with high quality when the value of β
is decreased (cf. the 2nd column of the table). The improvement in the payoff values for each decision
maker in each problem and the average improvement result when the value of β is decreased are analyzed
in Table 8. As β is decreased by the given value (cf. the second column of the table), the optimal values
for each decision maker in all the problems become better. The solutions using smaller β values (cf.
the average percentage improvement column in Table 8) are improving. In general, the results can be
improved further by choosing smaller values for β with the parameter values of n kept fixed. However,
in this case, the time elapsed for solving the problem will be increased (cf. the last column of Tables 7
and 8) like in the case of the deterministic version.

Table 8. Two different β parameter value percentage comparison results on each SMLP problem

No. Change of β Best F1 Best F2 Best F3 Best F4 Best F5
Average

improvement
Time

increment [s]
6 from 1 to 0.75 37.1 36 21.4 31.5 1130
7 from 2 to 1.5 17.9 66.8 0 66.8 37.8 158
8 from 2.5 to 2 18.2 9.5 29.6 10.4 54.9 24.5 1041

Table 9. Two different n parameter value comparison results on each SMLP problem

No. n Optimal solution Best F1 Best F2 Best F3 Best F4 Best F5 Time [s]
SSE

parameters

6 25
(0.24226, 0.2463,
0.07463,0, 0, 0) 9.7359 9.9587 0.33044 491

β = 1
ρ = 50,

50
(0.17629, 0.17457,
0.11484, 0.044437,
0.28521, 0)

11.9612 12.3577 0.28851 904
π = 10,
q = 5

7 25 (0.036024, 0, 0, 0) 12.6529 0.0012978 0 0.0012978 266
β = 2,
ρ = 50,

50 (0.028274, 0, 0, 0) 10.8594 0.00079944 0 0.00079944 511
π = 10,
q = 5

8 25
(2.104,−0.0253,
2.723, 2.03, –1.212) 12.0084 8.824 0.51236 17.2929 4.6429 1217

β = 2.5,
ρ = 50,

50
(2.0054,−1.6607,
4.9858, 2.0567,
−4.9832)

9.7303 24.806 31.6684 26.4292 272.9188 2086
π = 10,
q = 5
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In addition to the parameter β, the choice of the value of n for stochastic version problems also affects
the solution quality and the time needed for solving the problem. As n increases, the number of functional
evaluations and the number of constraints, which are formed by the number of realization n, increases.

Table 9 presents the optimal values and the time needed for solving the SMLP problem for two differ-
ent values of n. It can be seen from Table 9 that the objective function value of the 3rd decision maker
in Example 6, all decision-maker’s objective values in Example 7 and the 1st level decision maker’s in
Example 8 have shown improvement when the value of n is increased (as indicated in the 2nd column
of the table). The improvement in the payoff values for each decision maker in each problem and the av-
erage improvement result, when the value of n is increased, are analyzed in Table 10. As n is increased
by the given value (cf. the second column of the table), the optimal values for the 3rd level decision
maker in Example 6, all decision-makers in Example 7 and the 1st level decision maker in Example 8
show improvement. But, only the performance in Example 7 has produced a good result in terms of
average percentage improvement. Notice that as n → ∞, sample average approximation converges un-
der suitable conditions (like convexity condition) but some of the decision makers in Examples 6 and 8
have non-convexity property. In addition, the convergence to an optimal solution for one of the decision
makers in the hierarchy can affect the optimal values of the other decision makers.

Table 10. Two different n parameter value percentage comparison results on each SMLP problem [%]

No. Change of n Best F1 Best F2 Best F3 Best F4 Best F5
Average

improvement
Time

increment [s]
6 from 25 to 50 −22.8 −24 12.68 −11.3 413
7 from 25 to 50 14.1 38.4 0 38.4 22.725 245
8 from 25 to 50 18.9 −124.1 −6085 −52.8 −5778 −1187 869

Therefore, the proposed SSE method is very promising in finding approximate solutions for hierarchi-
cal problems and is also competitive in solving various types of SMLP problems especially when in the
implementation the parameter value for β is taken to be sufficiently small. In addition, if a larger param-
eter value for π, q, and/or n is set, the time required for the algorithm to solve the problem increases but
the approximated solution for each decision makers will show improvement.

5. Conclusion

In this study, stochastic multilevel programming (SMLP) problems have been considered. The SSE
method, which is a non-derivative meta-heuristic type algorithm, is proposed for solving the problem.
The algorithm is constructed based on the realization of the random variables to convert the problems
into deterministic form. Then the procedure employs systematic partitioning of each level’s decision
space to search for an optimal reaction from each decision space starting from the last level problem up
through the first level problem. Meanwhile, the PSO algorithm is applied to find the best response for the
decision of each hierarchical level. The process of updating responses for each leader’s action continues
iteratively until the maximum number of iterations is attained.

The existence of a solution and convergence of the algorithm is established. Since stochastic optimiza-
tion methods generalize deterministic methods, the proposed algorithm is compared with other methods
from the literature on a deterministic version of the problem. The results of the numerical simulations
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are very much promising. The solution procedure can be used to solve complex stochastic multilevel
programming and deterministic multilevel programming problems. It can also be considered as a new
additional topic for stochastic multilevel programming problems.

The proposed method can handle multilevel problems of any type ranging from continuous optimiza-
tion problems with any type of constraint to problems with mixed-integer decision variables. Since it uses
meta-heuristic methods, smoothness of the involved functions is not required. In addition, since a penalty
method is implemented to discriminate a non-feasible solution at each stage, the method guarantees the
multilevel feasibility of the solution obtained in each iteration. Moreover, the use of PSO in solving the
most inner-level problem allows to obtain an approximate global optimal solution even if the problem is
not convex.

However, since the method uses an inductive combination of selected points from each decision space,
the time the algorithm requires to solve a given problem increases with the increase in dimension, hierar-
chical levels, and number of partitions of the decision spaces (i.e., when β is small). The possibility of
reducing the running time of the algorithm in these cases might be one of the topics for future investiga-
tion. As in any other meta-heuristic method, one may not get the same solution when the algorithm is
repeated. However, the quality of the solution can be controlled by the algorithmic parameter β. In addi-
tion, the realization of the random variables is an area where it requires improvement in future studies.
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