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1Department of Operations Research and Mathematical Economics, Poznań University of Economics and Business, Poznań, Poland
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Abstract

The paper aims to improve a simple additive weighting method (SAW) and the max-min rule designed for M-DMC (multi-
criteria decision making under certainty) based on already developed extensions for the Laplace and Wald rules (applied to
one-criterion decision making under uncertainty, i.e., 1-DMU). Some evident analogies between scenario-based 1-DMU and
M-DMC have been recently revealed in the literature, which gives the possibility to implement necessary amendments in
M-DMC procedures, particularly in the multiple solutions case. The suggested modifications consist of applying additional
decision tools (for SAW) and using the lexicographic approach (for the max-min rule). Thanks to them, options, treated
as equivalent according to original M-DMC procedures, may obtain different ranks in the ranking. Such an improvement
facilitates the decision making process. Both modified methods are illustrated by employing an example concerning the
ranking creation for UE countries.

Keywords: rankings, multiple solutions case, one-criterion decision making under uncertainty, multi-criteria decision making

under certainty, SAW and max-min rule, Laplace and Wald rules

1. Introduction

Rankings are generated very often for different purposes (Best Countries 2020, Global MBA ranking
2020, Gross Domestic Product 2019), [33, 49]. Some of them are based on one criterion (e.g., Gross
Domestic 2019), others take into account more than one feature (e.g., Global MBA ranking 2020). They
enable indicating the best person, institution, region, investment project, marketing strategy, and so on.
They show the relation (superiority, inferiority, equivalence) between analyzed objects. They also allow
us to make our final decisions more consciously.

The ranking creation is one of the issues investigated within multi-criteria optimization or multi-
criteria decision making (M-DM). M-DM involves two groups of areas: multiple attribute decision prob-
lems (MADP) and multiple objective decision problems (MODP). In MADP, the number of possible
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options (decision variants, courses of action) is precisely defined at the beginning of the decision making
process and the levels of considered attributes are assigned to each alternative [46]. For MODP the cardi-
nality of the set of potential decision variants is not exactly known. The decision maker only knows the
mathematical optimization model, i.e., the set of objective functions and constraints that create the set of
possible solutions [7, 22]. The ranking creation is a domain belonging to MADP where the considered
objects are treated as potential options.

Numerous methods have been already developed to establish diverse rankings, e.g., the goal program-
ming [4, 5], TOPSIS [22, 23, 53], AHP [42]. In this paper, we examine in detail two selected existing
procedures, i.e., the SAW (simple additive weighting) method and the max-min method. Both approaches
are well-known techniques applied to diverse problems [1, 24, 34, 45, 52]. However, it is worth stressing
that each of them has some drawbacks.

We intend to modify the original versions of the aforementioned methods. To improve them, we:

• refer to some analogies which occur between two different issues (multi-criteria decision making
under certainty and scenario-based one-criterion decision making under uncertainty); these similar-
ities have been recently revealed [16],

• present similarities between procedures already developed for both problems,
• indicate some modifications suggested for classical uncertain techniques,
• attempt to apply the same modifications to SAW and max-min approaches.

The rest of the paper is organized as follows. Section 2 presents in detail the analogies between
scenario-based one-criterion decision making under uncertainty (1-DMU) and multi-criteria decision
making under certainty (M-DMC). Section 3 reminds the idea of the SAW method (developed for M-
DMC) and the Laplace rule (developed for 1-DMU). This part discusses their similarities and defects. It
also refers to an improvement proposed for the Laplace rule and recommends applying the same modifi-
cation to the SAW procedure. Section 4 describes, compares and critically analyzes the max-min method
devoted to M-DMC and the Wald rule designed for 1-DMU. It also suggests improving the existing
max-min approach by introducing a modification already proposed for the Wald rule. Section 5 uses an
example to show how both amended methods may be applied to generate rankings. We illustrate the
procedures using the example of EU countries. The features of the suggested approaches are discussed
in Section 6. Conclusions are gathered in the last section.

2. Analogies between multi-criteria optimization
under certainty and scenario-based
one-criterion optimization under uncertainty

The structure of M-DM under certainty (M-DMC) is extremely similar to the structure of scenario-based
1-DMU, i.e., one-criterion decision making under uncertainty based on scenario planning (SP). The first
area is related to cases where the decision maker assesses particular alternatives in terms of many criteria
(at least two). „Under certainty” signifies that the parameters of the problem are supposed to be known.
The second area is connected with situations in which the DM (decision maker) evaluates a given decision
variant in terms of one objective function, but, due to numerous unknown future factors, the parameters
of the problem are not deterministic. A set of potential scenarios is available [3]. These scenarios may be
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defined by experts, decision makers or by a person who is simultaneously an expert and a DM. “Scenario”
means a possible way in which the future might unfold.

The scenario-based 1-DMU is investigated by many researchers and practitioners since real economic
decision problems (e.g., choice of investment projects, selection of marketing strategies, choice of tech-
nology, human resource management) are usually uncertain [8–11, 13, 14, 17, 19, 20, 25, 28, 30, 39, 47].

It is worth underlining that there are diverse uncertainty levels [6, 15, 51]:

• Uncertainty with known probabilities (the DM knows the options, scenarios, scenario probabilities
and particular payoffs).

• Uncertainty with partially known probabilities (the DM knows the options, scenarios, partial sce-
nario probabilities and particular payoffs – probabilities may be given as interval values, sometimes
scenarios are ordered according to their approximate chance of occurrence).

• Uncertainty with unknown probabilities (the DM knows the options, scenarios and particular pay-
offs – scenario probabilities are not known).

• Uncertainty with unknown scenarios (the DM knows the options only).

In this article, the third level is investigated since in connection with the fact that the set of scenarios
in SP does not need to be exhaustive, the use of probabilities seems to be unjustifiable [31, 48]. Fur-
thermore, von Mises [32] adds that the probability of a single event should not be expressed numerically
because probabilities only concern repetitive situations which are not frequent in real economic problems
(innovative or innovation projects, turbulent times, etc.).

In the list of possible uncertainty levels the notion of “payoff” appears many times. The words “pay-
off”, “result” or “outcome” signify the effect gained by the DM if he or she selects a given alternative and
a given scenario occurs. Table 1 shows the payoff matrix related to M-DMC while Table 2 represents the
payoff matrix connected with 1-DMU.

Table 1. Payoff matrix for M-DMC (after [18])

Criterion Alternative
A1 · · · Aj · · · An

C1 b1,1 · · · b1,j · · · b1,n
...

...
. . .

...
. . .

...

Ck bk,1
... bk, j

... bk,n
...

...
. . .

...
. . .

...
Cp bp,1 · · · bp,j · · · bp,n

n – number of alternatives, p – number of criteria,
bk, j – performance of criterion Ck if option Aj is
selected.

Based on Tables 1 and 2, one can formulate the following conclusions. First, there is a signifi-
cant difference between M-DMC and 1-DMU consisting in the fact that within 1-DMU, if Aj is cho-
sen, the outcome (ai, j) is single and depends on the real scenario which will occur, meanwhile, within
M-DMC, if Aj is selected, there are p outcomes, i.e., b1,j , . . . , bk, j , . . . , bp,j , because particular decision
variants are evaluated in terms of p essential objectives. The next difference results from the fact that in
the case of M-DMC initial values usually have to be normalized since they represent the performance of
different criteria. Hence, they are expressed through different scales and units.
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Table 2. Payoff matrix for 1-DMU
with unknown probabilities (after [18])

Scenario Alternative
A1 · · · Aj · · · An

S1 a1,1 · · · a1,j · · · a1,n
...

...
. . .

...
. . .

...

Si ai,1
... ai, j

... ai,n
...

...
. . .

...
. . .

...
Sm am,1 · · · am,j · · · am,n

n – number of alternatives, m – number of
scenarios, ai, j – payoff obtained if option Aj

is selected and scenario Si occurs.

Equation (1) is designed for criteria which are maximized. Equation (2) can be applied to minimized
criteria.

b(n)k, j =
bk, j −minj bk, j

maxj bk, j −minj bk, j
(1)

b(n)k, j =
maxj bk, j − bk, j

maxj bk, j −minj bk, j
(2)

In the case of 1-DMU, the problem is related to one criterion. Thus, the normalization is useless.
However, some similarities between both issues (M-DMC and 1-DMU) are also very visible [15, 16, 18].
The construction of both payoff matrices is extremely similar. In both cases, there is a set of potential
options. The set of significant objectives in M-DMC can correspond to the set of possible scenarios
in 1-DMU. Another analogy is related to the final step of the decision-making process. The decision
maker, in both decision problems, can select and execute only one option (so-called pure strategy) or a
combination of several options (mixed strategy). Mixed strategies are especially common in portfolio
construction and cultivation of different plants [10, 29, 37]. Of course, in some decision situations, only
pure strategies can be considered (e.g., choice of a place to organize the wedding – it would be rather
inconvenient to have a wedding in 5 countries simultaneously). Due to the investigated problem (ranking
creation), we focus on pure strategies.

3. From the modified Laplace rule
to a modification of the SAW method

The Laplace rule (Bayes rule) is one of the classical decision rules developed for 1-DMU. It is also
called the principle of insufficient reason, the principle of indifference or the Bernoulli rule. It consists in
computing the arithmetical average of all the payoffs. Thus, within this approach, the same probability
is assigned to each scenario, because it is assumed that the DM does not have sufficient knowledge to
estimate the probability of occurrence of particular scenarios [40].

Note that a very similar method has been created for M-DMC. It is the SAW method. This proce-
dure also takes into account each payoff connected with a given option and, just like the Laplace rule, it
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consists in calculating the sum of products of all the outcomes multiplied by some weights. The only dif-
ference is that in the case of the Laplace rule the weights are equal, while in the case of the SAW method,
the weights may be diverse for particular criteria because they represent the subjective importance of sub-
sequent attributes and they are declared by the decision maker. The SAW is a very popular method and
it has been extended by numerous researchers. Here are some examples. Salehi and Izadikhah [43] de-
veloped the SAW technique for the case with input data stated in intervals. The original version of SAW
has been modified by Niroomand et al. [35] to cope with interval values. Gündoğdu and Yörükoğlu
[21] applied spherical fuzzy sets to create the fuzzy version of SAW. Roszkowska and Kacprzak [41]
used ordered fuzzy numbers for the SAW fuzzy version. Piasecki et al. [38] equipped the SAW method
with a fuzzy ranking of evaluated alternatives. Irvanizam et al. [26] used triangular fuzzy numbers to
facilitate fuzzy multiple-attribute decision making. All these examples are not directly relevant to our re-
search (here we concentrate on multi-criteria decision making under certainty). Nevertheless, it is worth
emphasizing that the SAW procedure is consistently adjusted to new needs or circumstances.

The Laplace rule is a very simple procedure but one of its main drawbacks results from the fact that
it only focuses on the average of payoffs. Other disadvantages are discussed in [14], but they are not
significant for the SAW method.

Table 3. Payoff matrix: Laplace (Bayes) rule
1-DMU (Example 1)

Scenario Alternative
A1 A2 A3 A4 A5

S1 –9 13 53 -1000 10
S2 12 14 0 -5000 60
S3 100 12 0 4000 60
S4 –50 14 0 2053 –77
Lj 13.25 13.25 13.25 13.25 13.25

Table 3 presents fictitious data for 4 potential scenarios and 5 considered alternatives (investment
projects). The last row shows the Laplace (Bayes) index computed for each decision variant. Hence, the
values of the applied measure are equal for all the options, which means that when creating a ranking,
each option would obtain the same position - all the courses of action would be treated as equivalent.
This phenomenon is undoubtedly alarming, because if the decision maker does not analyze the payoff
matrix very carefully, he or she may really think that the projects are equally attractive. The DM will not
notice that the dispersion of outcomes for particular variants is totally different (for A1 from –50 to 100,
for A2 from 12 to 14, for A3 from 0 to 53, for A4 from –5000 to 4000, and for A5 from –77 to 60).

We are certainly aware of the fact that cases, where different sets of data are characterized by equal
index levels, occur in other domains as well. For example [2] has found Anscombe’s quartet, i.e., four
data sets for which numerical calculations (means of the independent variable data, means of the de-
pendent variable data, variances, correlation between variables, parameters of the linear regression line,
coefficient of determination) were exact, but the graphical representation was essentially distinct!

In Table 4, we also can compare 5 alternatives based on the Laplace index. This time, each option
receives a different rank in the ranking, but can we state that A4 is better than A2? The Laplace index is
lower for A2 but this alternative, regardless of the real scenario, does never lead to losses which could be
very severe.
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Table 4. Payoff matrix: Laplace (Bayes) rule
1-DMU (Example 2)

Scenario Alternative
A1 A2 A3 A4 A5

S2 12 14 0 -5000 60
S3 103 12 0 4000 62
S4 -50 14 0 2060 -77
Lj 14.00 13.25 13.50 15.00 13.75

The above analysis demonstrates that the use of one measure to create the ranking is unsatisfactory.
That is why, [25] suggests using the standard deviation as an auxiliary decision making tool. This tool
allows controlling the payoff dispersion. Additionally, [12] recommends applying the difference between
extreme values and even their levels (i.e., the maximal payoff and the minimal one). Thanks to the
aforementioned supplementary measures the DM has got the chance to make the final decision more
reasonably.

Now, let us look at the SAW method. This time particular outcomes can be multiplied by criteria
weights since the decision maker has the opportunity to declare the importance of each criterion. Accord-
ing to the fictitious data given in Table 5 (we assume that all the criteria are expressed in different units
and scales, so the normalization is necessary), the SAW procedure may treat many options as equivalent
even if the dispersion of the normalized outcomes connected with subsequent alternatives is different. If
we examine each payoff more carefully, we will observe for instance that option A3 is theoretically as
attractive as A5 but the first one has two values equal to 0 (which means that its performance degrees are
the worst for two criteria) while the second one is never (i.e., for any criterion) the weakest. Thus, if the
decision maker tends to select a variant that performs each objective at a decent level, he or she ought to
consider a supplementary measure to assess the various options properly.

Table 5. Payoff matrix: SAW method
M-DMC (Example 3)

Criterion Alternative
A1 A2 A3 A4 A5

C1 (0.2) 0.45 1.00 0.00 0.30 0.80
C2 (0.3) 1.00 0.00 0.30 0.80 0.30
C3 (0.1) 1.00 1.00 0.00 0.30 1.00
C4 (0.4) 0.00 0.475 1.00 0.40 0.35
SAWj 0.49 0.49 0.49 0.49 0.49

We notice that the DM using the original version of the SAW approach in M-DMC is exposed to
a similar danger as the DM using the original version of the Laplace rule in 1-DMU. Therefore, the
improvement of the SAW method seems to be necessary and the use of the standard deviation sounds
reasonable. When a variant has a relatively small standard deviation, it means that it contains few extreme
performance degrees, i.e., both very high and very low degrees. We have two possibilities. The first one
assumes the use of the same measure, i.e., the standard deviation. According to the second concept, we
should not directly apply the modification suggested for the Laplace rule, since in the case of the SAW
procedure particular payoffs have different weights. In connection with that difference, the use of the
weighted standard deviation might be more appropriate:



How can one improve SAW. . . 137

swj =

√√√√ p∑
k=1

wk (bk, j − SAWj)
2, j = 1, . . . , n (3)

The suggested modified SAW technique based on the weighted standard deviation contains the fol-
lowing steps (see also Figure 1):

1. Define the set of options, the set of criteria, their weights (they should add up to one) and the payoff
matrix.

2. Normalize initial payoffs based on Equations (1) and (2).
3. For each option, calculate the SAWj indices.
4. Divide the options into separate sets containing decision variants with the same (or almost the same)

SAW values. The equivalence of two or more courses of action depends on the DM’s preferences.
5. Compute the weighted standard deviation (Equation 3) for each option belonging to a set with more

than one element.
6. If each option from a given set has a weighted standard deviation different enough, generate the

ranking (list options in descending order of SAWj values and then, within each set defined in step
4, rank options in ascending order of swj values). Otherwise, go to step 7.

7. If there are variants with very similar SAWj and swj values within a given set (the similarity of two
courses of action depends on the DM’s preferences), the DM may analyze additional factors (e.g.,
the maximal value, the minimal value or the difference between extreme values) in order to diversify
the position of particular options in the ranking.

Figure 1. Modified SAW technique based on the weighted standard deviation

In example 3, all the variants certainly belong to the same set (step 4). The weighted standard devi-
ations are as follows: sw1 = 0.44766, sw2 = 0.38749, sw3 = 0.43232, sw4 = 0.20712, sw5 = 0.25278 (step 5).
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We see that for alternatives A1 and A3 the weighted standard deviation is almost the same (step 7). That
is why, before generating the final ranking, the DM may want to compare the aforementioned options
based on a third decision tool, e.g., the minimal performance degree, the maximal performance degree,
the difference between them or the arithmetical average of payoffs. For the first three measures alterna-
tives A1 and A3 obtain the same values, but the arithmetical average of payoffs is lower in the case of A3
(0.3250<0.6125). Therefore, A1 can be treated as slightly better than A3. The final ranking is as follows:

1. A4 (the lowest standard deviation)
2. A5
3. A2
4. A1
5. A3

In our example, the alternatives achieving the highest places (i.e., A4 and A5) perform each criterion
at a level equal to at least 30%.

The use of the weighted standard deviation (instead of the standard deviation) in the modified SAW
technique requires an additional justification. Such a measure is commonly applied to descriptive statis-
tics when the probabilities (frequencies) of particular results are varied. In such a case each value is
compared with the weighted average (not the arithmetical one). Nevertheless, in deterministic multi-
criteria issues (which are investigated in this paper) the application of the weighted standard deviation
has a different background because scenarios are replaced here with criteria. These circumstances sig-
nificantly change the interpretation of the weighted standard deviation. This time, each performance
degree is compared with the SAW index which is a weighted average of partial utilities. Hence SAWj

represents a synthetic measure for each option where payoffs connected with the most important criteria
have the greatest impact on the value of this index. By applying different weights for each performance
degree in equation (3) we favour options which are characterized by small deviations between payoffs
related to the most vital factors and the synthetic measure. As we can see sjw has a more informative
value than the standard deviation. If we applied the first concept (standard deviation), alternatives with
critical performance degrees being very far from the synthetic index could be considered promising, but
this would be against the assumptions made in this research. By referring to the weighted standard devi-
ation the measure still represents the outcome dispersion (the more differentiated payoffs are, the higher
the deviation is), but not strictly in a statistical sense. However, the use of a special variety of standard
deviations in the SAW method allows taking into account the criteria importance.

4. From the modified Wald rule
to a modification of the max-min rule

The Wald rule [50] is also one of the classical decision rules developed for 1-DMU. It is also named
the max-min rule and it consists of defining the security level (i.e., the worst possible outcome, wj) for
each alternative and choosing the option with the maximal security level. This rule represents extreme
prudence.

It is worth stressing (because this observation has not yet been revealed in the literature) that a max-
min rule for M-DMC also exists! It is described for instance in [45]. Its goal is to indicate the worst
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performance degree for each option and show which criterion is performed the worst by particular
variants. Then, the ranking of options is generated according to the decreasing level of the minimal
performance degree. Within the max-min rule for M-DMC it is assumed that each criterion has the
same weight.

The Wald rule has numerous drawbacks [14] but the disadvantages which are essential from the point
of view of the max-min rule for M-DMC are as follows. First, the Wald rule does not distinguish between
alternatives with the same security level. Second, the Wald rule discriminates options with even very high
outcomes if at least one of their payoffs is lower than the lowest values connected with the remaining
variants. Table 6 presents fictitious data for 4 potential scenarios and 5 considered projects. The last row
shows the Wald index computed for each decision variant.

Table 6. Payoff matrix: Wald rule
1-DMU (Example 4)

Scenario Project
P1 P2 P3 P4 P5

S1 5 7 5 4 25,000
S2 2000 8 5 10,000 4
S3 3000 8 5 10,000 30,000
S4 4000 5 10 20,000 45,000
Wj 5 5 5 4 4

When assessing the alternatives based on the Wald rule, we obtain a ranking: I. P1, P2, P3, II. P4, P5.
The first three projects are treated as equivalent due to the same security level (5) but even if the decision
maker is an extreme pessimist, he or she would rather prefer project P1 to P2 or P3, since the remaining
outcomes related to the first one are much more attractive than the remaining outcomes connected with
P2 or P3. Data given in Table 6 indicate that the Wald rule does not distinguish between decision variants
with the same minimal payoff (first drawback) but they also demonstrate that this procedure has discrim-
inated projects P4 and P5 (second drawback). Although their outcomes are remarkable in comparison
with payoffs related to projects P1, P2, and P3, they obtain the second rank because their security level
(4) is lower.

To overcome the first deficiency, the literature offers the lexicographic max-min (lex-min) rule which
compares the 2nd-worst outcomes (3rd-worst, 4th-worst, ect., if necessary) of the options with the same
level wj and recommends the one with the highest value [44]. However, thanks to the lex-min rule
the second deficiency can also be, at least partially, avoided since if security levels are not the same,
but relatively close to each other, they may be treated as equivalent and then the 2nd-worst outcome
comparison will be also recommended. If the DM treats payoffs 5 and 4 as almost the same, the use of
the lex-min rule is going to lead us to the conclusion that project P5 is the most attractive (ranking: I. P5,
II. P4, III. P1, IV. P2, V. P3).

Now, let us investigate the max-min rule for M-DMC. Due to a very similar construction, this proce-
dure is criticised for almost the same analogical reasons as the Wald rule is. Thus, the max-min rule for
M-DMC does not distinguish between alternatives with the same minimal performance degree. Second,
it discriminates options with even very high-performance degrees if at least one of their results is lower
than the lowest values connected with the remaining variants.
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The suggested modified max-min rule for M-DMC contains the following steps (see also Figure 2):

1. Define the set of options, the set of criteria and the payoff matrix.
2. Normalize initial payoffs based on equations (1) and (2).
3. For each option, find the minimal performance degree.
4. Generate the ranking according to the 1st-worst performance degree. If for some options the mini-

mal performance degrees are equal or almost the same (the equivalence of two or more courses of
action depends on the DM’s preferences), go to step 5. Otherwise, stop the procedure.

5. Find the 2nd-worst performance degree for the aforementioned subset of variants. Diversify the
ranks of the options belonging to the subset based on the 2nd-worst performance degree. If for
some alternatives from the subset the 2nd-worst performance degrees are equal or almost the same,
continue the procedure by finding the 3rd-worst results for those options and modifying the ranking.
Repeat the step until the kth-worst performance degrees are different (k denotes the level of the
worst results). If two alternatives have the same sets of values, they should obtain the same rank.

Figure 2. Modified max-min rule for M-DMC

Let us analyze the suggested technique by referring to data given in table 5. If we apply this method,
we will see that alternatives A4 and A5 have the first rank and the remaining options occupy the second
place. However, it is desired to look at the 2nd-worst performance degree, because A3 is the worst option
for two criteria while A1 and A2 – for one criterion only. After applying step 5, we obtain the following
sequence:
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1. A5
2. A4
3. A2
4. A1
5. A3

On the one hand, the modified max-min rule for M-DMC may extend the computation time, which
is certainly unfavourable for the decision maker. On the other hand, the novel procedure is not computa-
tionally complex and enables better control of a given decision-making situation.

5. Example. Ranking for UE countries

In this section, we analyze a larger problem. We assume that the goal is to assess the quality of life in
the European Union countries for an average inhabitant. Ten factors have been selected for the research:
F1 – GDP per capita (USD, maximized), F2 – remaining life expectancy (years, maximized), F3 – quan-
tity of fuel that can be bought with an average payment (litres, maximized), F4 – number of months the
inhabitant is supposed to work in order to acquire Renault Clio (minimized), F5 – ratio of the average net
salary to the gross salary (%, maximized), F6 – average number of years spent in retirement (maximized),
F7 – average Internet speed (Mbps, maximized), F8 – average flat area (square metres, maximized), F9 –
number of non-working days within a year (maximized), F10 – ratio of the number of dead people due
to SARS coronavirus to the number of infected people (%, minimized).

For factor F3, the fuel price (PB95) comes from 07.11.2019. The Renault Clio purchase prices (F4)
relate to 2019. Factor F6 is computed as the difference between the life expectancy and the pensionable
age. The data related to F7, F8 and F10 come from the end of 2019, the end of 2018 and 3.05.2020,
respectively. The data for the rest of factors (F1, F2, F3 – salary, F4 – salary, F5, F6) refer to the first
quarter of 2020.

The data have been collected from the following websites:

• International Monetary Fund
• populationof.net
• www.e-petrol.pl
• Renault websites
• List of European countries by average wage (wikipedia)
• https://biqdata.wyborcza.pl
• https://www.cable.co.uk/broadband/speed/worldwide-speed-league
• https://www.locja.pl
• dniwolne.eu
• https://www.worldometers.info/coronavirus

The choice of the criteria aforementioned was not random. The aim of the research was to include
factors covering diverse areas (e.g., healh, earnings, technology) and to take into consideration at least
several indicators which are not usually applied when generating rankings (e.g., number of non-working
days).
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Table 7 presents the data related to subsequent UE countries. To apply the modified version of SAW,
criteria weights are needed. Therefore, a small survey was arranged amongst 100 respondents from
Poland in March 2020 (22 respondents from age brackets [15, 25], 28 from [26, 35], 19 from [36, 45],
17 from [46, 55] and 14 from [56,∞)). The respondents were supposed to declare criteria weights in the
following way. They had to assign a value from the set {1, 2, 3, 4, 5} to each factor where 1 meant that
a given criterion was irrelevant and 5 that this criterion was extremely significant. The average criteria
weights were as follows: w1 = 3.25, w2 = 3.21, w3 = 3.36, w4 = 3.43, w5 = 3.46, w6 = 3.24,
w7 = 3.30, w8 = 3.14, w9 = 3.19, w10 = 3.19. We can observe that they are very similar, which means
that the set of potential criteria has been aptly selected. In the research, we apply transformed weights,
i.e., weights that do total 1 (100%).

Table 7. Data concerning UE countries

Country Criterion
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Austria 53764 38.90 38929 2.82 67.7 19.7 19.33 99.7 13 3.83
Belgium 51237 40.10 31982 3.83 63.8 14.7 35.69 124.3 12 15.72
Bulgaria 9810 31.40 7789 6.33 77.5 10.2 16.95 73.0 13 4.47
Croatia 15533 34.80 10651 9.98 74.4 14.7 17.22 81.6 13 3.69
Cyprus 30520 42.50 23350 6.01 83.2 16.1 11.00 141.4 13 1.74
Czech Republic 26113 36.80 19215 5.47 75.1 15.2 23.27 78.0 12 3.16
Denmark 66195 39.50 36311 3.99 63.0 15.3 49.19 118.1 10 5.05
Estonia 25560 35.30 17660 6.04 85.4 14.9 31.55 66.7 11 3.24
Finland 54869 39.30 35728 3.94 74.2 19.0 29.34 88.6 12 4.38
France 46793 41.40 28235 3.98 75.2 21.1 30.44 93.7 12 14.70
Germany 53275 36.70 33254 3.22 60.8 16.6 24.64 94.3 14 4.13
Greece 22077 37.70 12184 8.96 84.0 14.9 13.41 88.6 9 5.46
Hungary 17717 33.50 14066 7.54 68.4 12.3 31.10 75.6 12 11.34
Ireland 84826 43.90 52949 2.64 77.7 16.1 23.87 80.8 9 6.07
Italy 37231 37.90 21463 5.11 72.4 16.6 17.30 93.6 12 13.72
Latvia 19923 31.60 14088 7.28 74.1 11.9 32.74 62.5 11 1.82
Lithuania 21242 32.40 16432 6.83 63.1 12.5 30.66 63.2 12 3.26
Luxembourg 125364 42.70 94555 1.51 67.9 17.4 41.69 131.1 10 2.41
Malta 33952 39.10 21794 5.17 74.0 18.4 18.16 150.0 14 0.84
Netherlands 57902 40.20 29776 3.94 75.4 16.4 40.21 106.7 11 12.39
Poland 17130 36.20 13389 8.53 72.1 15.6 24.38 75.2 12 4.95
Portugal 25439 37.10 14573 8.15 81.3 15.9 22.75 106.4 13 4.06
Romania 13664 33.60 10661 10.05 61.1 12.9 21.80 43.9 10 5.93
Slovakia 22031 36.30 14993 5.90 75.2 15.2 29.45 87.4 15 1.70
Slovenia 29303 38.00 20883 4.95 65.4 16.5 27.83 80.3 14 6.67
Spain 34281 39.70 23685 4.17 80.5 18.6 36.06 99.1 14 10.22
Sweden 60436 41.70 37466 3.50 77.0 18.1 55.18 103.3 10 12.09

The use of SAW requires criteria normalization – performance degrees are gathered in Table 8 (the
column with SAWj indices includes values expressed to four decimal places to facilitate the comparison
of the results). This table shows the initial ranking. Let us assume that if the difference between two
SAW indices is less than 0,005 (0,5%) the evaluated countries are regarded as equivalent.

Thus, we can distinguish sets Cyprus, Sweden, Ireland, Finland, Denmark, France, Slovenia, Belgium,
Greece, Croatia and compute the weighted standard deviation for at least those states. We notice that for
some couples of countries, the suggested modified SAW technique requires a priority change. In the final
ranking: Sweden will overtake Cyprus; Finland will overtake Ireland; and Croatia will overtake Greece
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(see arrows in the first column, of the table). According to the applied procedure, Luxembourg is the best
country in which to live and Romania is the worst one.

Table 8. Initial ranking (SAW) and revisions (modified SAW)

Country Criterion
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 SAWj sjw

Luxembourg 1.000 0.904 1.000 1.000 0.289 0.661 0.695 0.822 0.167 0.894 0.7427 0.284
Malta 0.209 0.616 0.161 0.753 0.537 0.752 0.162 1.000 0.833 1.000 0.5981 0.309
Cyprus ↓ 0.179 0.888 0.179 0.696 0.911 0.541 0.000 0.919 0.667 0.940 0.5901 0.336
Sweden ↑ 0.438 0.824 0.342 0.866 0.659 0.725 1.000 0.560 0.167 0.244 0.5854 0.265
Spain 0.212 0.664 0.183 0.821 0.801 0.771 0.567 0.520 0.833 0.370 0.5755 0.237
Ireland ↓ 0.649 1.000 0.520 0.924 0.687 0.541 0.291 0.348 0.000 0.649 0.5642 0.280
Finland ↑ 0.390 0.632 0.322 0.836 0.545 0.807 0.415 0.421 0.500 0.762 0.5635 0.177
Austria 0.380 0.600 0.359 0.912 0.280 0.872 0.189 0.526 0.667 0.799 0.5566 0.243
Denmark 0.488 0.648 0.329 0.833 0.089 0.468 0.864 0.699 0.167 0.717 0.5285 0.258
France 0.320 0.800 0.236 0.833 0.585 1.000 0.440 0.469 0.500 0.069 0.5268 0.272
The Netherlands 0.416 0.704 0.253 0.836 0.593 0.569 0.661 0.592 0.333 0.224 0.5202 0.193
Slovakia 0.106 0.392 0.083 0.704 0.585 0.459 0.418 0.410 1.000 0.942 0.5086 0.291
Germany 0.376 0.424 0.293 0.885 0.000 0.587 0.309 0.475 0.833 0.779 0.4931 0.267
Portugal 0.135 0.456 0.078 0.552 0.833 0.523 0.266 0.589 0.667 0.784 0.4880 0.246
Estonia 0.136 0.312 0.114 0.694 1.000 0.431 0.465 0.215 0.333 0.839 0.4582 0.288
Slovenia 0.169 0.528 0.151 0.768 0.187 0.578 0.381 0.343 0.833 0.608 0.4527 0.235
Belgium 0.359 0.696 0.279 0.843 0.122 0.413 0.559 0,758 0.500 0.000 0.4519 0.260
Czech Republic 0.141 0.432 0.132 0.733 0.581 0.459 0.278 0.321 0.500 0.844 0.4428 0.224
Italy 0.237 0.520 0.158 0.757 0.472 0.587 0.143 0.468 0.500 0.134 0.3987 0.206
Poland 0.063 0.384 0.065 0.526 0.459 0.495 0.303 0.295 0.500 0.724 0.3810 0.196
Greece ↓ 0.106 0.504 0.051 0.497 0.943 0.431 0.055 0.421 0.000 0.690 0.3723 0.299
Croatia ↑ 0.050 0.272 0.033 0.428 0.553 0.413 0.141 0.355 0.667 0.808 0.3708 0.244
Latvia 0.088 0.016 0.073 0.611 0.541 0.156 0.492 0.175 0.333 0.934 0.3438 0.280
Lithuania 0.099 0.080 0.100 0.641 0.093 0.211 0.445 0.182 0.500 0.837 0.3181 0.256
Hungary 0.068 0.168 0.072 0.593 0.309 0.193 0.455 0.299 0.500 0.294 0.2962 0.170
Bulgaria 0.000 0.000 0.000 0.000 0.679 0.000 0.135 0.274 0.667 0.756 0.2500 0.307
Romania 0.033 0.176 0.033 0.424 0.012 0.248 0.244 0.000 0.167 0.658 0.1990 0.199
Weight 0.099 0.098 0.103 0.105 0.106 0.099 0.101 0.096 0.097 0.097 − −

Now, let us try to generate the ranking for the case where people treat all the criteria as equivalent and
tend to maximize the minimal performance degree. The modified max-min rule for M-DMC consists in
finding the worst result for each country (Table 9) and ranking states according to the decreasing worst
payoff. However, if the difference between two minimal performance degrees is less than for instance
0,005 (0,5%), the evaluated countries may be regarded as equivalent. Therefore, we must distinguish
sets Luxembourg, Sweden, Slovakia, Lithuania, Portugal, France, Hungary, Cyprus, Ireland, Germany,
Belgium, Greece, Bulgaria, Romania and find the 2nd-worst result for at least those states.

For some countries the suggested modified max-min technique requires a priority change. In the
final ranking: Portugal will overtake Slovakia and Lithuania (see arrows in the first column, Table 9).
Additionally, in the last 7-element set the difference between the 2nd-worst performance degrees for
Ireland and Germany is less than for instance 0.005 (0.5%). That is why the 3rd-worst results have to
be found for those states. They are equal to 0.348 and 0.309, respectively, which means that Germany
will not overtake Ireland. The subranking in the set aforementioned is as follows: Ireland, Germany,
Cyprus, Belgium, Greece, Romania, and Bulgaria. According to the applied procedure, Finland is the
best country to live in and Bulgaria is the worst one.
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Table 9. Initial ranking (max-min rule) and revisions (modified max-min rule)

Country Criterion
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 min(1) min(2)

Finland 0.390 0.632 0.322 0.836 0.545 0.807 0.415 0.421 0.500 0.762 0.322 0.390
The Netherlands 0.416 0.704 0.253 0.836 0.593 0.569 0.661 0.592 0.333 0.224 0.224 0.253
Austria 0.380 0.600 0.359 0.912 0.280 0.872 0.189 0.526 0.667 0.799 0.189 0.280
Spain 0.212 0.664 0.183 0.821 0.801 0.771 0.567 0.520 0.833 0.370 0.183 0.212
Luxembourg 1.000 0.904 1.000 1.000 0.289 0.661 0.695 0.822 0.167 0.894 0.167 0.289
Sweden 0.438 0.824 0.342 0.866 0.659 0.725 1.000 0.560 0.167 0.244 0.167 0.244
Malta 0.209 0.616 0.161 0.753 0.537 0.752 0.162 1.000 0.833 1.000 0.161 0.162
Slovenia 0.169 0.528 0.151 0.768 0.187 0.578 0.381 0.343 0.833 0.608 0.151 0.169
Italy 0.237 0.520 0.158 0.757 0.472 0.587 0.143 0.468 0.500 0.134 0.134 0.143
Czech Republic 0.141 0.432 0.132 0.733 0.581 0.459 0.278 0.321 0.500 0.844 0.132 0.141
Estonia 0.136 0.312 0.114 0.694 1.000 0.431 0.465 0.215 0.333 0.839 0.114 0.136
Denmark 0.488 0.648 0.329 0.833 0.089 0.468 0.864 0.699 0.167 0.717 0.089 0.167
Slovakia ↓ 0.106 0.392 0.083 0.704 0.585 0.459 0.418 0.410 1.000 0.942 0.083 0.106
Lithuania ↓ 0.099 0.080 0.100 0.641 0. 093 0.211 0.445 0.182 0.500 0.837 0.080 0.093
Portugal. ↑ ↑ 0.135 0.456 0.078 0.552 0.833 0.523 0.266 0.589 0.667 0.784 0.078 0.135
France 0.320 0.800 0.236 0.833 0.585 1.000 0.440 0.469 0.500 0.069 0.069 0.236
Hungary 0.068 0.168 0.072 0.593 0.309 0.193 0.455 0.299 0.500 0.294 0.068 0.072
Poland 0.063 0.384 0.065 0.526 0.459 0.495 0.303 0.295 0.500 0.724 0.063 0.065
Croatia 0.050 0.272 0.033 0.428 0.553 0.413 0.141 0.355 0.667 0.808 0.033 0.050
Latvia 0.088 0.016 0.073 0.611 0.541 0.156 0.492 0.175 0.333 0.934 0.016 0.073
Cyprus ↓ ↓ 0.179 0.888 0.179 0.696 0.911 0.541 0.000 0.919 0.667 0.940 0.000 0.179
Ireland ↑ 0.649 1.000 0.520 0.924 0.687 0.541 0.291 0.348 0.000 0.649 0.000 0.291
Germany ↑ 0.376 0.424 0.293 0.885 0.000 0.587 0.309 0.475 0.833 0.779 0.000 0.293
Belgium 0.359 0.696 0.279 0.843 0.122 0.413 0.559 0.758 0.500 0.000 0.000 0.122
Greece 0.106 0.504 0.051 0.497 0.943 0.431 0.055 0.421 0.000 0.690 0.000 0.051
Bulgaria ↓ 0.000 0.000 0.000 0.000 0.679 0.000 0.135 0.274 0.667 0.756 0.000 0.000
Romania ↑ 0.033 0.176 0.033 0.424 0.012 0.248 0.244 0.000 0.167 0.658 0.000 0.012

6. Discussion and conclusions

In this section, some issues will be discussed in detail.

• We have shown that the construction of the simple additive weighting method and the max-min
rule for multi-criteria optimization under certainty ought to be improved due to their drawbacks.
We have also underlined that both methods may be modified by using the same amendments that
were applied to the Laplace rule and the Wald rule. Although these procedures are designed for
a different domain, i.e., one-criterion optimization under uncertainty, both issues (M-DMC and
1-DMU) have a lot in common. The paper investigates only the discrete version of M-DMC since
the research focuses on the possibility of creating rankings. Nevertheless, SAW and the max-min
rule may also be used in the continuous version of multi-criteria decision making to find the op-
timal mixed strategy. That is why, in the future, it would be desirable to explore that area and
check whether analogical modifications are necessary and possible to implement in the methods
aforementioned.

• The SAW technique and the max-min rule are theoretically designed for maximized and minimized
criteria, but the performance degree for neutral criteria (in such a case the DM tends to reach a
specific value, not the highest/lowest one) can also be computed, which means that these methods
have a wider range of applications.
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• In the previous section, the use of the modified procedures has been illustrated using an example
concerning UE countries. We are aware of the fact that the generated rankings are very sensitive to
numerous factors. As for data related to the pandemic situation (F10), we must recognize that they
are partially affected by error since not everyone has been subjected to tests. Furthermore, in the
case of SAW the sequence of countries depends on criteria weights. In our research, the weights
were very similar, which may be indicative of a proper initial selection of criteria. However, if the
questionnaire had been addressed to more people, the weights could have significantly changed,
which would have influenced the ranking. It is also worth emphasizing that the structure of the
ranking depends on the period during which the study is carried out because the majority of data is
systematically changing. The set of criteria applied to the procedures has also an essential impact
on the final results. Notwithstanding the foregoing (i.e., the huge ranking sensitivity), the main goal
of section 5 was to explain the suggested methods in detail.

• A lot of factors can affect the ranking. One of them is the choice of the method applied to estimate
criteria weights. In our research, weights were set based on questionnaire results. Nevertheless, it is
not the only possible way. SAW allows the decision maker to use other procedures, e.g., entropy or
variance method. Within entropy, the weights of different indicators are determined according to the
degree of dispersion [54]. The statistical variance procedure is described for instance in [36]. Both
approaches are objective weighting methods. However, we focus on tools enabling us to deal with
the multiple solutions case. Hence, the choice of the weighting method is of secondary importance
in this investigation.

• It is worth stressing that UE countries’ rankings generated based on the modified SAW technique
and the modified max-min rule are quite different, which might appear as somewhat surprising.
Cyprus and Ireland are in the top 10 countries in the modified SAW ranking while in the modified
max-min ranking they are ranked at the bottom of the list. Nevertheless, such a situation is possible,
since the investigated methods have different assumptions. Within the modified SAW technique the
ranking depends on each performance degree, while within the modified max-min rule the sequence
is dependent on the worst and quasi-worst results since the second approach is designed for DMs
who do not intend to select an option with at least one relatively low minimal value.

• In the modified SAW method, the use of the weighted standard deviation has been suggested al-
though the analogical amended Laplace rule is based on the standard deviation. Such a novelty has
been introduced to take the criteria’ importance into account. But the standard deviation without
weights would also be justified.

• The suggested amendments are particularly crucial in the multiple solutions case, i.e., when some
options in the ranking have identical or similar indices. The original procedures do not take into
consideration such situations and treat variants as equivalent, but the novel approaches allow the
decision makers to explore the problem more deeply and diversify the ranks. It is a significant
advantage.

• SAW and the max-min rule are rather designed for quantitative criteria, but there is a possibility to
express numerous qualitative factors numerically, so the methods aforementioned are quite universal.

• As mentioned in the paper, there are numerous methods allowing generating the ranking. They
can be divided into the following groups: additive methods (e.g., SAW, SMART), analytical hierar-
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chy methods (e.g., AHP), verbal methods (e.g., ZAPROS), outranking methods (e.g., ELECTRE),
methods based on reference points (e.g., VIKOR) and interactive methods (e.g., INSDECM). It is
quite difficult to compare the modified SAW procedure and the modified max-min approach with
techniques representing other groups, because in each category decision maker’s preferences are
declared in a different way and particular rules are designed for different purposes. Nevertheless,
the existence of so many varieties gives the possibility to adjust the choice of method to our needs.
Another possible way to improve the original versions of SAW and max-min in the multiple solu-
tions case could consist in combining them with ELECTRE. Then, if more than one option obtains
the same synthetic value (according to SAW or max-min), the aforementioned procedure could be
applied to decide which one is better.

• The modified SAW and max-min techniques can only be applied under certainty, which may be
regarded as their limitation. However, there are no obstacles to developing a hybrid enabling to
handle both uncertainty and multiple criteria. Such procedures already exist (e.g., [27]), but they do
not take the multiple solutions case and scenario planning into account.

• In connection with the fact that some analogies between multi-criteria optimization under certainty
and one-criterion optimization under uncertainty have been revealed in this article, possible future
research directions could be connected with other potential adjustments of existing procedures for-
mulated for one area to the second, analogical one.
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