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Abstract

Previous studies show that processes related to traditional pretests to prove the perfect fulfillment of assumptions in com-
parison means tests lead to severe alterations in the overall Type I error probability and power. These problems seem to be
overcome when pretests based on an equivalence approach are used. The paper proposes a lack of fit tests based on equiva-
lence to pretest normality on homoscedastic samples with measurable departures from normality. The Type I error probability
and power produced by this equivalence pretest are compared with two traditional goodness of fit pretests and with the direct
use of the t-Student and Wilcoxon test of means comparison. Furthermore, since the irrelevance limit for the lack of fit test
is an arbitrary value, we propose a non-subjective methodology to find it. Results show that this proposed equivalence test
controls the overall Type I Error Probability and produces adequate power; therefore, its use is recommended.
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1. Introduction

Traditionally, the t-Student [22] or the Welch test [24] (if homoscedasticity is not proved) to find sig-
nificant differences between means is conditioned to prove normality assumption using goodness of fit
pretests such as Pearson’s chi-square [16] or Shapiro–Wilk [21]. When normality cannot be established,
the null hypothesis of perfect normality is rejected, and a non-parametric test (Wilcoxon–Mann Whit-
ney test [14, 26]) to compare means is used. Although these procedures are common, several studies
[12, 20] show that pretesting normality and homoscedasticity assumptions alter the Type I error probabil-
ity (TIEP), so performing this procedure could lead to severe mistakes in the inference process.

Zimmerman [27] proved that, especially for low and unbalanced sample sizes, the overall TIEP of a
means comparison test is highly inflated when homoscedasticity is pretested. This inflation is inversely
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proportional to the significance level but TIEP begins to deflate from the non-practical α = 0.20 value;
the author recommends not pretesting homoscedasticity, instead using Welch’s test directly (without
pretesting) seems to be a good idea since it keeps the TIEP close to the significance level.

Rasch et al. [18] pretested normality and homoscedasticity assumptions simultaneously for the two-
sample t-test, concluding that this procedure “does not pay off”, for it carries unknown risks in the overall
Types I and II error probabilities, instead using Welch’s test without pretesting is a suitable procedure
since it produces acceptable TIEP and power. Authors recommend using the Welch test as a standard
option to be implemented in books and statistical software, avoiding using Wilcoxon’s and t-Student’s
tests.

The traditional pretests establish in their null hypothesis the perfect fulfillment of the assumption (i.e.,
perfect normality or homoscedasticity). Regarding this, we would like to mention George Box’s: the
statistician knows, for example, that in nature there never was a normal distribution, there never was a
straight line, yet with normal and linear assumptions, known to be false, he can often derive results which
match, to a useful approximation, those found in the real world [4]. So, there will always be uncertainty
about whether it is appropriate or not to prove perfect normality (or homoscedasticity). In addition, the
following inconsistency seems to reinforce the theory that the traditional approach is not adequate to
test the assumptions described. Note that the fulfillment of assumptions is always in the null hypothesis,
and as we know, it is not possible to make a decision related to H0, for example, the phrase “we accept
H0” is statistical nonsense, so when the null hypothesis is not rejected, we only can conclude that there
is no evidence to prove non-normality (or heteroscedasticity), which is no necessary evidence to prove
assumption fulfillment, or as argue by Altman and Bland: [1] Absence of evidence is not evidence of
absence. It follows that this kind of test is only used to prove significant differences and not equalities.
Henceforth for practical purposes, we will call these inconsistencies mentioned in this paragraph logical
difficulties.

Likely, an equivalence approach instead of the traditional one explained above solves these logical dif-
ficulties, understanding equivalence as equality except for an irrelevant deviation given by a threshold or
equivalence/irrelevance limit [25]. In a previous study, it was shown that when an equivalence approach
(specifically the dispersion test of two Gaussian distributions) is used to pretest homoscedasticity when
testing means difference, the results are as well as those obtained for the Welch test directly applied with-
out pretest, for the TIEP is adequately controlled around the significance level [9]. In this previous study,

using appropriate irrelevance limits (ω2
1, ω

2
2), the equivalence hypothesis test H0 :

σ2
1

σ2
2

≤ ω2
1 ∨

σ2
1

σ2
2

≥ ω2
2

vs. H1 : ω2
1 <

σ2
1

σ2
2

< ω2
2 (irrelevant homoscedasticity) instead H∗

0 :
σ2
1

σ2
2

= 0 (perfect homoscedasticity)

vs. H∗
1 :

σ2
1

σ2
2
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alternative hypothesis H1 and conclude irrelevant (not perfect) homoscedasticity, so when the objective
is not to prove significant differences but to find a certain similarity between compared parameters, an
equivalence approach is better than the traditional one. Some researchers have oriented their results by
preferring equivalence instead of traditional tests [11, 19].

Regarding the effectiveness of hypothesis tests, another point to consider is the robustness and sensitiv-
ity of the means comparison tests against alterations or contamination of normality and homoscedasticity
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assumptions since this could also influence the TIEP alterations above mentioned. Referring to normality,
studies prove that t-Student and Welch’s test remain robust against normality contamination. In contrast,
its non-parametric alternative (the Wilcoxon test) is sensitive against these same deviations [17, 23]. On
the other hand, the t-Student is a very sensitive test against homoscedasticity deviations, while the Welch
test seems to remain robust against these same contaminations [10, 15].

As a continuation of the work shown in the above paragraph [9], from normal and non-normal ho-
moscedastic samples, we propose an equivalence approach ( lack of fit tests) to pretest normality when
testing means difference; this process is compared with two traditional goodness of fit pretests in terms
of their TIEP and their Power. We have chosen the Chi-Square traditional pretest since, theoretically, it
is easy to contrast it with the lack of equivalence pretest, and the Shapiro–Wilk pretest was selected since
it is a suitable alternative to prove normality when there are deviations of this distribution [8]. Section
2 introduces some essential concepts about lack and goodness of fit tests. Section 3 describes the algo-
rithm built to determine a non-arbitrary irrelevance limit in the lack of fit test. Section 4 describes the
simulation methodology to achieve the proposed goal, Section 5 shows the obtained results, and finally,
in Section 6, the main conclusions are discussed.

2. Goodness and lack of fit tests for normality

2.1. Goodness of fit tests

Both goodness-of-fit tests (Chi-square and Shapiro–Wilk) used in this manuscript to prove normality
have the same statistical logic. Still, with the aim that the reader can relate and compare a goodness-of-fit
test with a lack of fit, in this section, we will exclusively develop the Chi-square test.

Given a sample from a continuous variable X grouped in k intervals, its true distribution can be repre-
sented by the probability vector π = (π1, π2, . . . , πk), while its reference distribution to which the true
one is asserted to fit (target distribution) is given by the theoretical probabilities π0 = (π0

1, π
0
2, . . . , π

0
k)

obtained from a normal distribution. Using this notation, a goodness of fit test to prove normality is
represented by equation

H∗
0 : π = π0 perfect normality

H∗
1 : π ̸= π0 non-normality

(1)

Specifically, the chi-square goodness of fit test, establishes the statistic
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X2 follows aχ2 distribution with k − c− 1 degrees of freedom, c is the number of parameters for the
target distribution. In the case of normal, it has two parameters (c = 2) but if parameters µ, σ2 are known,
degrees of freedom for chi-square is reduced to k − 1, thus X2 ∼ χ2

k−1 d.f.

As mentioned in Section 1, the goodness of fit test proposed in equation 1 seems to be inappropriate
for testing normality. Not rejecting H∗

0 is not proof of the assumption fulfillment; it only proves that
there is no evidence to conclude that distribution is different from a normal, which does not necessarily
implies normality. On the other hand, rejecting H∗

0 might simply indicate an irrelevant departure from
perfect normality. Precisely the same thing happens if we consider the Shapiro–Wilk test.

2.2. Lack of fit test

This test is based on an equivalence approach where the null hypothesis H0 states a lack of fit instead of
goodness of fit, while the alternative hypothesis H1 states equivalence, i.e., perfect fit to normal except
irrelevant deviations [25, p. 265]. In brief, this test may be described as follows:

Using the square Euclidean distance d2(π, π0) =
k∑
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i )

2 as a measure of the dissimilarity

degree between the true and target distribution, for the hypothesis:

H0 : d
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H1 : d
2(π, π0) < ϵ2 irrelevant normality

(2)

By Theorem 14.3-4 of the book Discrete Multivariate Analysis. Theory and Practice" [2, p. 470], we
know that normalized vector

√
n(π̂1−π1, . . . , π̂k−πk) of relative frequencies converges asymptotically

in law to a random variable with a k-dimensional normal distribution, with mean 0 and covariance matrix
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Given that π 7→ d2(π, π0) is differentiable in the parameter space Π with gradient vector ▽d2(π, π0)

= 2(π, π0), it implies that we can use the δ-method to find the asymptotic distribution of the estimated
square Euclidean distance d2(π̂, π0) [6].

Thus based on
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we may conclude that
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Since π̂i is a consistent estimator for πi (i = 1, . . . k), the asymptotic variance is consistently estimated
by replacing each probability πi with the homologous relative frequency π̂i. Denoting this estimated
variance by v2n(π̂, π

0), we have:
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Given this consistency of v2n(π̂, π
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and unknown expected value θ. Thus:
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From these results, we can obtain the upper limit bound for a confidence interval of d2(π̂, π0) as
lupp = d2(π̂, π0) + Zαv

2
n(π̂, π

0) with Zα = Φ−1 the correspondence quantile for a normal distribution
using a confidence level α.

Finally, we can take the following decision in the hypothesis test of equation (2). Reject null hy-
pothesis H0 and conclude normality if lupp < ϵ2. Results for this equivalence test to detect normality
can be computed with the normequiv function from equivNorm R-Package available as supplementary
material.

3. Irrelevance limits for the lack of fit test

In the lack of fit test proposed in equation (2), ϵ2 is a fundamental value to detect normality; however,
there are no technical criteria to establish this irrelevance limit adequately. The author of this approach
says that this value can be obtained based on the researcher’s experience or using common statistical
sense. To find a non-subjective or non-arbitrary irrelevance limit, we propose an algorithm where samples
far from normality are simulated using the Fleishman method [7], which is explained as follows: From a
normal standard Z ∼ N (µ = 0, σ = 1, γ1 = 0, γ2 = 0), where µ is the mean, σ is the standard deviation,
γ1 is the skewness and γ2 is the kurtosis. Fleishman method contaminates this normality by altering its
third γ1 and fourth γ2 moments through the linear combination Y = a + bZ + cZ2 + dZ3, for instance,
(a = 0, b = 1, c = 0, d = 0) returns again the same perfect standard normal Z, and this becomes
contaminated as the coefficients (a, c, d) and b move away from zero and one respectively; so, variable
X = µ+ σY follows an unknown distribution with parameters (µ, σ, γ1, γ2). fleishman.coef function
from BinNonNor R-Package [13] computes the Fleishman coeficientes (a, b, c, d) from γ1, γ2 values
given by the user. In addition, rnonorm function from equivNorm R-Package available as supplementary
material allows to one obtain random non-normal numbers with departures from normality depending on
Fleishman coefficients.

Besides, as discussed in Section 1, there is no perfect normality, but some models known to be false
often produce useful approximate results, so what matters is not if populations are normal but if the ap-
proximation of a model is good enough to be useful. In this work, the approximation will be considered
good or not based on how close the TIEP is to the significance level α. In this regard, Cochran suggested
that a distance of 20% of the true TIEP from the nominal significance level α is an acceptable approxi-
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mation [5], i.e., the TIEP should be within the interval α ± 0.2α. This authoritative criterion known as
Cochran’s criterion, is the default in algorithms implementing the proposed method in this manuscript.

From these considerations, here is the procedure to obtain irrelevance limit ϵ building an iterative
algorithm of simulation: With Fleishman’s method, we simulate nSim pairs of independent non-normal
samples (from the lowest possible contamination) of size n1, n2 with the same theoretical mean µ and
variance σ2; these samples are tested with a t-Student to obtain an estimate of the TIEP, which is com-
puted as the proportion of null hypothesis (H0 : µ1 − µ2 = 0) rejections when it is true. Next, a confi-
dence interval for this TIEP is compared with the interval suggested by the Cochran criteria to consider
a model acceptable. This process will be repeated iteratively until the confidence interval for the TIEP
falls outside the Cochran criteria or until the highest possible normal contamination is reached to obtain
the smallest upper bound above which one can be sure to declare irrelevant normality in really normal
samples. Finally, the square root of this upper limit (which grows as the normal is contaminated) is used
as the epsilon value we seek.

epsilon function from equivNorm R-Package available as supplementary material computes this
irrelevance limit ϵ for a given number of simulations, sample sizes n1, n2, and confidence level α. Table 1
shows the results of ϵ values found with epsilon using nSim = 100,000 simulation replicates, different
n1, n2 andα. We can observe that large and unbalanced samples have higher irrelevance limits, i.e.,
a wider irrelevance. In addition, with some exceptions, it seems that the irrelevance limit increases as the
level of significance increases.

Table 1. Irrelevance limits for a lack of fit test

n1, n2 α = 0.01 α = 0.05 α = 0.10
5, 5 0.4120446 0.4915836 0.5289253
3, 7 0.4739120 0.5424760 0.5289253
7, 3 0.4739120 0.6113572 0.5289253
10, 10 0.3497503 0.4210272 0.4670088
6, 14 0.2737383 0.4924864 0.4670088
14, 6 0.2737383 0.4210272 0.4670088
5, 10 0.3099487 0.4592030 0.4399581
10, 5 0.2775543 0.4592030 0.4399581

4. Simulation methodology

Using samples from normal and unknown non-normal distributions (different measurable departures with
Fleishman), overall TIEP and power for means comparison tests are estimated as rejections proportion
of null hypothesis of means equality in five cases:

1) applying directly (without pretest) t-Student,
2) applying its non-parametric alternative directly, i.e., Wilcoxon,
3) pretesting normality with chi-square goodness of fit test before deciding t-Student or Wilcoxon as

the best alternative,
4) the same last process but using the Shapiro–Wilk goodness of fit test,
5) pretesting normality by equivalence/lack of fit approach to decide t-Student or Wilcoxon as the best

alternative.
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rejectH0 function from equivNorm R-package computes this TIEP estimation depending on the sim-
ulation replicates number, sample size n1, n2, irrelevance limit ϵ, theoretical means difference, Fleishman
coefficients, and significance level α given by the user. Note that when the theoretical means difference is
zero, the function computes rejections proportions of H0 : µ1 − µ2 = 0 when true, i.e., TIEP. In contrast,
if theoretical means is different from zero function, computes rejections proportions of H0 : µ1 − µ2 = 0

when it is false, i.e., power.

Table 2. Skewness, kurtosis and Fleishman’s coefficients
for different degrees of normality contamination

Contamination Skewness Kurtosis Fleishman coefficients
degree γ1 γ2 a b c d

No contamination (0) 0 0 0 1 0 0
Low (1) 0.25 0.70 -0.0368 0.9334 0.0368 0.0213
Mild (2) 0.75 1 -0.1191 0.9559 0.1191 0.0098
High (3) 1.3 2 -0.2491 0.9843 0.2491 -0.0164
Severe (4) 2 6 -0.3137 0.8263 0.3137 0.0227
Extreme (5) 3 15 -0.3457 0.5883 0.3457 0.0861

Skewness γ1 and kurtosis γ2 defining the departure levels from normality were chosen based on a
study [3] which shows that in terms of absolute value, the cut-off of skewness and kurtosis are between
0.25 to 0.75 for low contamination, between 0.75 to 1.25 for mild contamination, between 1.25 to 1.75

for high contamination, between 1.75 to 2.25 for very high contamination, and although it is not very
common greater than 2.25 for severe and extreme contamination. Fleishman coefficients for these γ1 and
γ2 values were computed by BinNonNor R-package, and these results are shown in Table 2. In addition,
density plots for the different departure from normality are in Figure 1; this graphic shows the skewness
and kurtosis alterations concerning normal density.

Figure 1. Density curve corresponding to different departures from normality,
compared with the non-contaminated, perfect, normal distribution

5. Results

Figure 2 shows the Type I error probability (TIEP) estimation for five different contamination degrees
given in Table 2 using a significance level of α = 0.05, and the irrelevance limits stated in Table 1 for the
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eqivalence pretest. Applying Wilcoxon directly without a pretest is the worst option of all since its TIEP
is outside the Cochran criterion represented by the shaded area (in this case, for α = 0.05, the Cochran
criterion is α± 0.2α = [0.04, 0.06]). The other four options seem to be adequate since they remain inside
this Cochran acceptation interval, especially for large sample sizes and low normal contamination. To
apply directly t-Student is the best option since its TIEP is closer to the significance level than the other
options. This reinforces the conclusions of works presented in Section 1 about the robustness of t-Student
facing non-normality. On the contrary, the poor results in the Wilcoxon test confirm the sensitivity of this
test against departures from normality.

Figure 2. Overall TIEP estimation when t-Student and Wilcoxon test are applied directly and when they are used
depending on the result of chi-square, Shapiro–Wilk and equivalence pretests to detect normality; α = 0.05

Regarding pretesting strategies, both approaches (traditional and equivalence) generate a very sim-
ilar TIEP, the three pretests (equivalence, Chi-square, and Shapiro–Wilk) produce a TIEP inside the
Cochran criteria, but with slight exceptions for extreme normal contamination, which we know is not
very common in the real world. These strategies have similar behavior for the different sample sizes and
contamination degrees.

Figure 3. Overall Power estimation when t-Student and Wilcoxon test are applied directly and when they are used
depending on the result of chi-square, Shapiro–Wilk, and equivalence pretests to detect normality; α = 0.05

Figure 3 shows high estimated power values for large and balanced sample sizes; normality contami-
nation does not influence much except for the smallest and unbalanced samples. If we compare only the
pretesting processes, the equivalence approach (lack of fit test) produces higher power than the chi-square
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(goodness of fit test). Still, in some cases, the Shapiro–Wilk pretest produces the highest power. On the
other hand, applying the t-Student test directly leads to the highest power of all, and using the Wilcoxon
test shows the lowest power of all, which is principally evident for low sample sizes.

6. Conclusions and discussion

Analyzing the lack of fit test independently, it is concluded that pretesting the normality assumption under
this equivalence approach for a mean difference test is a good alternative since the overall TIEP remains
stable around the significance level (inside the Cochran criterion) and the power is relatively large. Re-
minding that this lack of fit test rejects its null hypothesis to prove normality when the upper bound of the
confidence interval for d2(π, π0) is less than irrelevance limit ϵ2, choosing an inappropriate ϵ could lead
to wrong conclusions, for instance, an epsilon smaller than it should be would make the test unable of
testing for normality, even for samples from a normal distribution, or conversely, an epsilon larger than
it should be would declare any sample as coming from a normal distribution, including samples that do
not. So, our proposed methodology in Section 3 to find non-arbitrary irrelevance ϵ value is valuable to
obtain good results in this paper.

On the other hand, although we would like to reinforce the works in Section 1 concluding that the
pretesting process is the cause of TIEP alterations when differences of means are tested, this paper shows
that both pretesting methods (traditional and equivalence approaches) produce acceptable results. Pretest-
ing with the chi-square and Shapiro–Wilk goodness of fit tests appears to have almost the same results
as the lack of fit pretest for normality. We do not say that logical difficulties discussed in Sections 1 and
2, such as the misstatement of traditional tests or trying to prove perfect normality are false; in fact, we
believe that they exist and that equivalence tests overcome them; however, it seems that these logical
difficulties are not the only cause of the TIEP alterations in the pretesting process, but the robustness or
sensitivity of comparison means tests influence too in these alterations.

Although the studies presented in Section 1 show that pretesting the assumptions of normality and
homoscedasticity alters the TIEP and that performing this procedure could lead to severe errors in the
inference process [12, 20], the present study provides a broader perspective of what is happening in the
pretesting process, demonstrating that not only this process, including the logical difficulties of using
traditional tests, are causing alterations, but also the robustness of the different means comparison tests
against deviations of their assumptions have an essential role in controlling the TIEP and obtaining high
power. Thus, in those previous studies where the assumptions of normality and homoscedasticity were
pretested, it was never taken into account that in addition to the traditional process of pretesting, the sen-
sitivity of the t-Student to deviations from homoscedasticity and the robustness of the Welch test to these
same deviations are factors that determined the alterations or control of the TIEP. Furthermore, the study
that determines that the equivalence test to prove homoscedasticity controls the TIEP [9] does not take
into account that this control could be because, unlike the traditional test, it detects non-homoscedasticity
(when it exists) and leads most cases to the Welch test (robust to deviations from homoscedasticity) in-
stead to the t-Student (sensitive to departures from homoscedasticity). In the same way, in the case of
normality presented in this manuscript, although the equivalence test proposed here produces good re-
sults, this is since, in most cases, irrelevant normality is detected, which leads to using a Student’s t-test,
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which is robust to deviations from normality, instead of a Wilcoxon test that is sensitive to these same
deviations, as shown in Figure 2.

Based on these arguments, we finally recommend that when testing means difference: i) if homo-
scedasticity can be assumed, one must pretest normality using any of both approaches, although if we
focus on the logical difficulties presented in this paper, the equivalence approach would be more rec-
ommendable, ii) when normality can be assumed, one must pretest homoscedasticity exclusively with
an equivalence approach and iii) when it is necessary to pretest both assumptions (normality and ho-
moscedasticity), one exclusively must use the equivalence approach to pretest both cases. In this last
scenario, one might think that for the case of normality, it is possible to replace the traditional approach
with the equivalence, since both produce similar results. However, the logical difficulties discussed in
this paper should not be left aside, which, as we saw, are overcome with the equivalence approach. In
addition, it is well known that, in reality, normality or homoscedasticity cannot be assumed in a data set,
and it is necessary to pretest these two assumptions simultaneously and unlikely the two pretests work
well if they have different approaches.

Supplementary remark

All the results contained in this paper were computed with informatics functions built by authors in R
software. To make these functions available to any user who wants to replicate the results of this paper or
wants to take some advantage of them, we have compiled these functions in the equivNorm R-package
available on GitHub https://github.com/pablof1988/equivNorm. Although all the open source,
help, examples, and other details about the use of the equivNorm package are available on GitHub,
a brief guide explaining the overall use of the package is available in Appendix A
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A. Appendix

A brief introduction about equivnorm R-Package

This R package implements methods to prove normality (or even another distribution) using an equiva-
lence approach. Simulation functions can be used to measure the effectiveness (in terms of Type 1 error
probability and power) of the pretest to prove normality when testing means difference, in addition, the
robustness of t-Student and Wilcoxon text can be obtained.

equivNorm must be installed with a working R version (> = 4.2.0). Installation could take a few
minutes on a regular desktop or laptop. Package can be installed from devtools package, then it needs to
be loaded using library(equivNorm), or from Github using the code:
devtools::install_github("pablof1988/equivNorm").

equivNorm package provides the following functions

• LackFitTest proves if a sample comes from a target distribution through an equivalence approach.
• Normequiv provse if a sample comes from a normal distribution through an equivalence approach.
• Rnonorm generates random numbers from non-normal distributions using Fleishman’s coefficients.
• Epsilon computes a non-arbitrary epsilon value of irrelevance for an equivalence normality test of

lack of fit.
• RejectH0 is a simulation function to estimate the Type I error probability and power of hypothesis

tests.
• Both Tests and tiepT are complementary simulation functions whose main purpose is to help to the

rejectH0 function.
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