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Abstract

A new model four-parameter model called the odd generalized exponential power hazard rate (OGE-PHR) distribution has
been introduced. Some statistical properties for OGE-PHR are obtained. The moments, quantile, mode, reliability, and
order statistics are discussed. Estimation of parameters, maximum likelihood technique is employed. Two real data sets are
discussed with applications.
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1. Introduction

Statistical distributions are very useful in describing and predicting real phenomena. Therefore, many
distributions have been used and developed in various branches of applied science (engineering, finances,
medicine, etc.) to fit different types of real natural phenomena. This has motivated researchers to seek and
develop new and more flexible distribution. Therefore, attention has, recently, been paid to improving
existing distributions or suggesting new flexible distributions which can fit any kind of data with any
degree of complexity.

A generalization of the exponential distribution (GED) proposed Gupta and Kundu [6] as follows

F (x, ν, κ) = (1− exp{−νx})κ , ν, κ > 0, x ≥ 0 (1)

the shape and scale parameters are κ, ν, respectively.
Based on the GED and a baseline distribution Taher et al. [24] proposed an odd generalized exponen-

tial family (OGE) as follows.
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Let G(x, δ), G(x, δ) be the cumulative distribution function (CDF) and survival function (SF) of the
baseline distribution, (δ is a vector of p(≥ 1) parameters), then OGE-family has the following CDF

F (x, ν, κ, δ) =

(
1− e

−ν
G(x,δ)

G(x,δ)

)κ

, ν, κ > 0, x ≥ 0 (2)

The probability density function (PDF) to (2), is

f(x; ν, κ, δ) = κν
h0(x; δ)

G(x; δ)
e
−ν

G(x,δ)

G(x;δ)

(
1− e

−ν
G(x;δ)

G(x;δ)

)κ−1

(3)

where h0(x; δ) is a hazard rate function (HRF) of a bassline distribution. The OGE family has p + 2

unknown parameters.
The proposed family was applied when the baseline distribution is Weibull, Fréchet, and normal dis-

tribution to suggest OGE-Weibull (OGE-W), OGE-Fréchet (OGE-Fr), and OGE-normal (OGE-N) distri-
butions [24]. Luguterah [14] introduced the OGE-Rayleigh (OGE-R) distribution and showed some of
its statistical properties. Rosaiah et al. [21] developed the OGE-log logistic (OGE-LL) distribution while
Damcese [2] developed and studied the OGE-Gompertz (OGE-G) distribution. Mustafa et al. [19] used
the flexible Weibull distribution as a baseline to obtain the odd generalized exponential flexible Weibull
(OGE-FW) distribution. Sarhan and Mustafa [22] applied the odd generalized exponential technique
on the two-parameter bathtub hazard-shaped distribution to obtain a new distribution. They introduced
some statistical properties, estimated the parameters for this extension by using Maximum likelihood and
Bayes’ techniques, and discussed some applications.

Mugdadi [17] proposed a new two-parameter distribution called the power hazard rate distribution
(PHRD). It is an alternative to the Weibull, Rayleigh, and exponential distributions. The PDF, CDF,
reliability function (RF), and HRF, for the PHR distribution are given as

g(x;ω, γ) = ωxγe−
ω

γ+1
xγ+1

, x ≥ 0 (4)

G(x;ω, γ) = 1− e−
ω

γ+1
xγ+1

(5)

G(x;ω, γ) = e−
ω

γ+1
xγ+1

(6)

h0(x;ω, γ) = ωxγ (7)

where ω > 0, γ > −1 are the scale and shape parameters.
The PHRD has monotonic HRF: (i) PHRD has increasing HRF, when γ > 0, (ii) for −1 < γ < 0,

PHRD has decreasing HRF and (iii) for γ = 0, PHRD has constant HRF. So, this distribution has been
set out to be handy for modeling the data in engineering, medical and many more. Also, PHRD is very
adjustable, it contains some special models: (i) when ω = 1/γ2 and γ = 1, PHRD refers to Rayleigh (γ),
(ii) when γ = ω−1, PHRD reduces to Weibull (ω, 1), (iii) when γ = 0, PHRD is exponential distribution
with 1/ω.

Several authors studied PHRD. Kinaci [12] discussed the stress-strength reliability model for PHRD.
The estimation of parameters of a distribution has a power hazard function discussed by Ismail [7], the
Bayes estimation of PHRD based on complete and Type II censored samples studied by Mugdadi and
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Min [18]. El-Sagheer [4] introduced the estimations of the parameters for PHRD based on a progressive
Type II censoring scheme while the parameter estimation based on record data from PHRD explained
by Tarvirdizade and Nematollahi [25]. The inference on P (X > Y ) based on record values from PHR
distribution introduced by Tarvirdizade and Nematollahi [26]. Bayesian and non-Bayesian approaches
to the lifetime performance index with the Type II progressive censored sample of PHRD studied by
Al-Saghir et al. [5]. A Type II adaptive progressive censored scheme was used to study the estimation of
shape and scale parameters, RF, HRF for PHRD, by Al-Morshedy et al. [3].

Khan [10] derived the recurrence relations for single and product moments of generalized order statis-
tics from the PHFD. Khan and Mustafa [9] obtained the weighted power hazard rate distribution with
applications and derived some properties of this generalization. Khan and Mustafa [11] introduced an-
other extension form PHRD. This extension called the transmuted PHRD and discussed its properties
and some applications. Mustafa and Khan [20] introduced another extension from the PHRD, called the
length-biased PHRD. They studied some properties and applications.

In this article, an odd generalized exponential power hazard rate (OGE-PHR) distribution is presented.
It is organized as follows: The characteristics of the OGE-PHR distribution are presented in Section 2.
Some statistical measures and properties are discussed in Section 3. The distribution of the order statistics
is embodied in Section 4. The parameters of the proposed model are estimated in Section 5. Two real
data sets are considered for comparison with existing distributions in Section 6. Finally, a conclusion is
introduced in Section 7.

2. The OGE-PHR distribution

In this section, the four parameters OGE-PHR(ν, ω, γ, κ) distribution is studied. From (2) using (5) and
(6), the CDF of OGE-PHR is obtained as follows

F (x, ξ) =

(
1− e

−ν

(
e

ω
γ+1xγ+1

−1

))κ

, ν, ω, κ > 0, γ > −1, x ≥ 0 (8)

The corresponding PDF, SF, and HRF can be derived as

f(x, ξ) = κνωxγe
ω

γ+1
xγ+1

e
−ν

(
e

ω
γ+1xγ+1

−1

)(
1− e−ν

(
e

ω
γ+1xγ+1

−1
))κ−1

(9)

F (x, ξ) = 1−

(
1− e

−ν

(
e

ω
γ+1xγ+1

−1

))κ

(10)

h(x, ξ) =

κνωxγe
ω

γ+1
xγ+1

e
−ν

(
e

ω
γ+1xγ+1

−1

)(
1− e

−ν

(
e

ω
γ+1xγ+1

−1

))κ−1

1−

(
1− e

−ν

(
e

ω
γ+1xγ+1

−1

))κ . (11)

where ω, γ are two additional shape parameters.
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The plots for PDF and HRF of OGE-PHRD are displayed in Figures 1 and 2. We can extract that the
PDF is heavily skewed (left/right) and near symmetric while HRF is increasing or bathtub-shaped. These
properties will allow OGE-PHRD to be suitable for fitting different types of data sets.

Figure 1. The PDF of OGE-PHR (ν, ω, γ, κ) for ν = 0.3, ω = 0.6 and different κ
when γ = −0.6 < 0 (left panel) and γ = 0.4 > 0 (right panel)

Figure 2. The HRF of OGE-PHR (ν, ω, γ, κ) for ν = 0.3, ω = 0.6 and different κ
when γ = −0.6 < 0 (left panel) and γ = 0.4 > 0 (right panel)

Linear combination (9) can be expressed as an odd exponential PHRD. For κ > 0,

(1− u)κ−1 =
∞∑
ℓ=0

(−1)ℓΓ(κ)

Γ(κ− ℓ)ℓ!
uℓ (12)

Γ(.) is the gamma function. Using (9), that can easily be verified

S0(x; ν, ω, γ) = e−ν
(
e

ω
γ+1xγ+1

−1
)
< 1

Applying (12), we get

f(x; ξ) = κ
∞∑
ℓ=0

(−1)ℓΓ(κ)

Γ(κ− ℓ)ℓ!
f0(x; (ℓ+ 1)ν, ω, γ) (13)

where f0(x; ν, ω, γ) and S0(x; ν, ω, γ) are PDF and SF of OE-PHRD.
The properties of the OGE-PHRD can be obtained depending on the OE-PHRD by equation (13).



Extended power hazard rate. . . 197

Reliability interpretation. If there are κ independent and identical items each with a distribution of
OE-PHR connected in a parallel system. The lifetime of this system can be interpreted as OGE-PHR,
when κ is an integer.

3. Statistical properties

In this section, we discuss some important statistical and mathematical properties of the OGE-PHR dis-
tribution such as ordinary moments, mode, quantiles, skewness and kurtosis, and order statistics.

3.1. Moments

Moments are used to understand various characteristics of a frequency distribution. These have been
applied to obtain a mean, variance, in addition to some measures, such as skewness and kurtosis.

The rth moments, µ′
r, of OGE-PHRD can be represented as a linear combination of the moments of

OE-PHRD, µ′
r,OE-PHR(ν, ω, γ), by using (13)

µ′
r = κ

∞∑
ℓ=0

(−1)ℓΓ(κ)

Γ(κ− ℓ)ℓ!
µ′
r,OE-PHR(ν, ω, γ), ℓ ≤ κ, r = 0, 1, 2, · · · (14)

Equation (14) has no closed-form solutions, therefore, this relation is not best used for OGE-PHRD
moments.

3.2. The mode

The mode can be obtained by solving f ′(x) = 0 concerning x

ωγκνxγ−1e
ω

γ+1
xγ+1

e
−ν

(
e

ω
γ+1xγ+1

−1

)(
1− e

−ν

(
e

ω
γ+1xγ+1

−1

))κ−1

+ ω2(κ− 1)κν2x2γe
2ω
γ+1

xγ+1

e
−2ν

(
e

ω
γ+1xγ+1

−1

)(
1− e

−ν

(
e

ω
γ+1xγ+1

−1

))κ−2

+ ω2κνx2γe
ω

γ+1
xγ+1

(
1− νe

ω
γ+1

xγ+1
)
e
−ν

(
e

ω
γ+1xγ+1

−1

)

(
1− e

−ν

(
e

ω
γ+1xγ+1

−1

))κ−1

= 0

(15)

Equation (15) can be solved analytically in x to obtain the mode. A quick graphical test can be
provided by plotting its left-hand side (Figure 3). The distribution does not have a mode when κ < 2.
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Figure 3. The f ′(x) of the OGE-PHR (0.3, 0.6, γ, κ)
when γ = −0.6 < 0 (left) and γ = 0.4 > 0 (right) at different values of κ

3.3. The quantiles

The quantiles of OGE-PHRD can easily be calculated in a simple and explicit form. Let xq, 0 < q < 1,
be the quantile of the OGE-PHR(ξ) distribution. By using (8), xq can be obtained as follows

xq =

((
γ + 1

ω

)
ln
(
1− 1

ν
ln
(
1− q1/κ

) ))1/(γ+1)

(16)

From (16), some statistical measures for OGE-PHR distribution can be obtained as (i) by setting
q = 0.25 in (16), the 1st quartile can be obtained, (ii) by setting q = 0.5, the median can be obtained,
(iii) by setting q = 0.75, the 3rd quartiles can be obtained.

3.4. Skewness and kurtosis

Different approaches are available in the literature to obtain the skewness, sk, and kurtosis, ku, of a
certain distribution. By using the moments, the sk and ku can be obtained as follows

sk =
µ3

µ
3/2
2

(17)

ku =
µ4

µ2
2

(18)

where µk be the kth moments about the mean

µk = E(X − µ)k =
k∑

r=0

(
k

r

)
µ′
rµ

′k−r

1 , k = 1, 2, · · ·

where µ′
r is defined in (14).

There is an alternative technique to calculate sk and ku based on the quantiles. This technique is
applied when a distribution has first moment only, as follows.

The Bowely’s skewness [8] is

sk =
x0.75 − 2x0.50 + x0.25

x0.75 − x0.25

(19)
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The Moors kurtosis [16] is

ku =
x0.875 − x0.625 + x0.375 − x0.125

x0.75 − x0.25

. (20)

Table 1 displays the basic statistical measures of OGE-PHRD. One can observe that the OGE-PHRD
takes different shapes depending on its parameters.

Table 1. Basic statistics for OGE-PHRD at different values of ξ

ξ = (ν, ω, γ, κ) µ′
1 µ′

2 Variance Median sk ku
(0.3, 0.6, –0.6, 0.6) 0.649 1.339 0.917799 0.218 2.26630 9.214773
(0.3, 0.6, –0.6, 0.9) 0.888 1.928 1.139456 0.484 1.822111 6.924865
(0.3, 0.6, –0.6, 2.0) 1.511 3.76 1.476879 1.227 1.213787 4.677336
(0.3, 0.6, –0.6, 5.0) 2.386 7.254 1.561004 2.200 0.854139 3.903683
(0.3, 0.6, –0.6, 7.0) 2.722 8.932 1.522716 2.555 0.791604 3.825030
(0.3, 0.6, –0.6, 9.0) 2.972 10.315 1.482216 2.815 0.757271 3.803921

(0.3, 0.6, 0.4, 0.6) 1.609 3.562 0.973119 1.584 0.179431 2.083920
(0.3, 0.6, 0.4, 0.9) 1.947 4.626 0.835191 1.989 –0.07475 2.224691
(0.3, 0.6, 0.4, 2.0) 2.542 6.953 0.491236 2.594 –0.3194 2.748601
(0.3, 0.6, 0.4, 5.0) 3.044 9.506 0.240064 3.065 –0.29564 3.441356
(0.3, 0.6, 0.4, 7.0) 3.187 10.342 0.185031 3.199 –0.06711 1.721865
(0.3, 0.6, 0.4 9.0) 3.282 10.929 0.157476 3.289 –0.20243 4.347283

3.5. Data simulation

A random sample from OGE-PHRD can be generated by using the following algorithm

1. Choose an appropriate value of m.
2. Select the parameter values ξ = (ν, ω, γ, κ).
3. Generate ui ∼ U(0, 1), i = 1, 2, dots,m.
4. Use the following relation to get xi, i = 1, 2, · · · ,m from OGE-PHR (ν, ω, γ, κ)

xi =

((
γ + 1

ω

)
ln

(
1− 1

ν
ln
(
1− u

1/κ
i

)))1/(γ+1)

, i = 1, 2, · · · ,m. (21)

By applying the above algorithm with m = 1000, the random sample from OGE-PHR(0.3, 0.6, 0.4, 7)
can be generated. Using ξ = (0.3, 0.6, 0.4, 7), the actual PDF, CDF can be obtained. The estimated
non-parametric PDF, CDF are calculated by using the generated sample.

Figure 4. The PDF, CDF functions for exact and non-parametric estimation
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Table 2. Some statistical measures

x x0.01 x0.25 x0.50 x0.75 x0.99 Mean Variance
Exact 2.626000 2.903 3.199 3.484 4.13600 3.187 0.185031
Estimation 2.192562 2.944 3.218 3.489 4.08429 3.207 0.174180

Table 2 contains some numerical results, while Figure 4 displays the plots. There is a high agreement
between estimated and exact measures and curves, therefore, the random number generation works well.

4. Order statistics

The ordered statistics play an important role in many areas of statistical theory. LetX(1) ≤ X(2) ≤ · · · ≤ X(m)

denote the order statistics for a random sample with size m from a population with CDF FX(x; ξ) and
PDF, fX(x; ξ). The PDF of X(i) is given by

f(i)(x; ξ) =
1

B(k,m− i+ 1)
(F (x; ξ))i−1 (1− F (x; ξ))m−i f(x; ξ) (22)

where B(., .) is the beta function.
Order statistics has an application in reliability theory, economics and finance. The order statistics

X(1), X(m) are the lifetimes for the series and parallel systems with m components, respectively.
Since 0 < F (x; ξ) < 1 for x > 0, then

(1− F (x; ξ))m−i =
m−i∑
ℓ=0

(
m− i

ℓ

)
(−1)ℓ (F (x; ξ))ℓ

Equation (22) can be rewritten as follows

f(i)(x; ξ) =
m−i∑
ℓ=0

(−1)ℓm!

i!(i− 1)!(m− i− ℓ)!
f(x; ξ) [F (x; ξ)]ℓ+i−1 (23)

The PDF for the order statistics of OGE-PHRD can be obtained by substituting (8) and (9) into (23).

5. Maximum likelihood estimation

The maximum likelihood method is used to estimate the unknown parameters for OGE-PHRD. The
likelihood function based on a complete random sample, x1, x2, · · · , xm, with size m from OGE-PHRD,
can be obtained as

L(ξ) =
m∏
ℓ=1

κνωxγ
ℓ e

ω
γ+1

xγ+1
ℓ e

−ν

(
e

ω
γ+1x

γ+1
ℓ −1

)(
1− e

−ν

(
e

ω
γ+1x

γ+1
ℓ −1

))κ−1
 (24)
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The log-likelihood function is

L(ξ) = m ln(κνω)+γ

m∑
ℓ=1

ln(xℓ) +
ω

γ + 1

m∑
ℓ=1

xγ+1
ℓ − ν

m∑
ℓ=1

(
e

ω
γ+1

xγ+1
ℓ − 1

)

+(κ− 1)
m∑
ℓ=1

ln

(
1− e

−ν

(
e

ω
γ+1x

γ+1
ℓ −1

)) (25)

The first derivatives (score functions) with respect to ν, ω, γ and κ can be obtained, respectively, as

∂L
∂ν

=
m

ν
−

m∑
ℓ=1

(
e

ω
γ+1

xγ+1
ℓ − 1

)
+ (κ− 1)

m∑
ℓ=1

 e
ω

γ+1
xγ+1
ℓ − 1

e
ν

(
e

ω
γ+1x

γ+1
ℓ −1

)
− 1

 (26)

∂L
∂ω

=
m

ω
+

1

γ + 1

m∑
ℓ=1

xγ+1
ℓ − ν

γ + 1

m∑
ℓ=1

xγ+1
ℓ e

ω
γ+1

xγ+1
ℓ +

ν(κ− 1)

γ + 1

m∑
ℓ=1

 xγ+1
ℓ e

ω
γ+1

xγ+1
ℓ

e
ν

(
e

ω
γ+1x

γ+1
ℓ −1

)
− 1

 (27)

∂L
∂γ

=
m∑
ℓ=1

ln(xℓ) +
ω

(γ + 1)2

m∑
ℓ=1

xγ+1
ℓ (−1 + (γ + 1) ln(xℓ))−

ων

(γ + 1)2

m∑
ℓ=1

xγ+1
ℓ e

ω
γ+1

xγ+1
ℓ

× (−1 + (γ + 1) ln(xℓ)) +
(κ− 1)νω

(γ + 1)2

m∑
ℓ=1

xγ+1
ℓ (−1 + (γ + 1) ln(xℓ)) e

ω
γ+1

xγ+1
ℓ

e
ν

(
e

ω
γ+1x

γ+1
ℓ −1

)
− 1

 (28)

∂L
∂κ

=
m

κ
+

m∑
ℓ=1

ln

(
1− e

−ν

(
e

ω
γ+1x

γ+1
ℓ −1

))
(29)

We obtain a system of non-linear equations by setting each of the equations (26)–(29) to zero. This
system does not have an analytic solution. Some numerical programs can be used to solve it numerically.

Since the MLEs cannot be obtained analytically, the actual distributions cannot be obtained to find
the exact confidence intervals for the parameters. For large sample sizes, the MLE estimators have
asymptotically multivariate normal distribution given by

(ν̂, ω̂, γ̂, κ̂) ∼ N4(ξ,VVV )

where VVV is the variance-covariance matrix [13].

VVV =



−∂2L
∂ν2

− ∂2L
∂ω∂ν

− ∂2L
∂γ∂ν

− ∂2L
∂κ∂ν

− ∂2L
∂ν∂ω

−∂2L
∂ω2

− ∂2L
∂γ∂ω

− ∂2L
∂κ∂ω

− ∂2L
∂ν∂γ

− ∂2L
∂ω∂γ

−∂2L
∂γ2

− ∂2L
∂κ∂γ

− ∂2L
∂ν∂κ

− ∂2L
∂ω∂κ

− ∂2L
∂γ∂κ

−∂2L
∂κ2



−1

ξ=ξ̂
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where

∂2L
∂ν2

= −m

ν2
− (κ− 1)

m∑
ℓ=1

e
ν

(
e

ω
γ+1x

γ+1
ℓ −1

)
Φ2(xℓ, ξ)

∂2L
∂ω∂ν

=− 1

γ + 1

m∑
ℓ=1

xγ+1
ℓ e

ω
γ+1

xγ+1
ℓ +

(κ− 1)

γ + 1

m∑
ℓ=1

Ψ1(xℓ, ξ)−
(κ− 1)ν

γ + 1

×
m∑
ℓ=1

(
e

ω
γ+1

xγ+1
ℓ − 1

)
e
ν

(
e

ω
γ+1x

γ+1
ℓ −1

)
Ψ2(xℓ, ξ)

∂2L
∂γ∂ν

=− ω

(γ + 1)2

m∑
ℓ=1

xγ+1
ℓ

(
− 1 + (γ + 1) ln(xℓ)

)
e

ω
γ+1

xγ+1
ℓ

+
(κ− 1)ω

(γ + 1)2

m∑
ℓ=1

(
− 1 + (γ + 1) ln(xℓ)

)
Ψ1(xℓ, ξ)−

(κ− 1)ων

(γ + 1)2

×
m∑
ℓ=1

(
− 1 + (γ + 1) ln(xℓ)

) (
e

ω
γ+1

xγ+1
ℓ − 1

)
e
ν

(
e

ω
γ+1x

γ+1
ℓ −1

)
Ψ2(xℓ, ξ)

∂2L
∂κ∂ν

=
m∑
ℓ=1

Φ(xℓ, ξ)

∂2L
∂ω2

=− m

ω2
− ν

(γ + 1)2

m∑
ℓ=1

x
2(γ+1)
ℓ e

ω
γ+1

xγ+1
ℓ +

(κ− 1)ν

(γ + 1)2

m∑
ℓ=1

xγ+1
ℓ Ψ1(xℓ, ξ)

− (κ− 1)ν2

(γ + 1)2

m∑
ℓ=1

xγ+1
i e

ω
γ+1

xγ+1
ℓ e

ν

(
e

ω
γ+1x

γ+1
ℓ −1

)
Ψ2(xℓ, ξ)

∂2L
∂γ∂ω

=
1

(γ + 1)2

m∑
ℓ=1

(
− 1 + (γ + 1) ln(xℓ)

)
xγ+1
ℓ − ν

(γ + 1)3

×
m∑
ℓ=1

(
− 1 + (γ + 1) ln(xℓ)

)
(γ + 1 + ωxγ+1

ℓ )xγ+1
ℓ e

ω
γ+1

xγ+1
ℓ +

(κ− 1)ν

(γ + 1)2

×
m∑
ℓ=1

(
− 1 + (γ + 1) ln(xℓ)

)
Ψ1(xℓ, ξ)−

(κ− 1)ων2

(γ + 1)3

×
m∑
ℓ=1

(
− 1 + (γ + 1) ln(xℓ)

)
xγ+1
ℓ e

ω
γ+1

xγ+1
ℓ e

ν

(
e

ω
γ+1x

γ+1
ℓ −1

)
Ψ2(xℓ, ξ)

+
(κ− 1)ων

(γ + 1)3

m∑
ℓ=1

(
− 1 + (γ + 1) ln(xℓ)

)
xγ+1
ℓ Ψ1(xℓ, ξ)
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∂2L
∂κ∂ω

=
ν

γ + 1

m∑
ℓ=1

Ψ1(xℓ, ξ)

∂2L
∂γ2

=− 2ω

(γ + 1)3

m∑
ℓ=1

(
− 1 + (γ + 1) ln(xℓ)

)
xγ+1
ℓ +

ω

γ + 1

m∑
ℓ=1

(
ln(xℓ)

)2
xγ+1
ℓ

− νω2

(γ + 1)4

m∑
ℓ=1

(
− 1 + (γ + 1) ln(xℓ)

)2
x
2(γ+1)
ℓ e

ω
γ+1

xγ+1
ℓ

− νω

(γ + 1)3

m∑
ℓ=1

xγ+1
ℓ e

ω
γ+1

xγ+1
ℓ
(
2− 2(γ + 1) ln(xℓ) + (γ + 1)2 ln(xℓ)

2
)

− (κ− 1)ω2ν2

(γ + 1)4

m∑
ℓ=1

(
− 1 + ln(xℓ))

2e
ν

(
e

ω
γ+1x

γ+1
ℓ −1

)
Ψ2

1(xℓ, ξ)

+
(κ− 1)ων

(γ + 1)3

m∑
ℓ=1

(
2− 2(γ + 1) ln(xℓ) + (γ + 1)2 ln(xℓ)

2)Ψ1(xℓ, ξ)

+
(κ− 1)νω2

(γ + 1)4

m∑
ℓ=1

xγ+1
ℓ

(
− 1 + (γ + 1) ln(xℓ))

2
(
1− e

ω
γ+1

xγ+1
ℓ

)
Ψ1(xℓ, ξ),

∂2L
∂κ∂γ

=
ων

(γ + 1)2

m∑
ℓ=1

(
− 1 + (γ + 1) ln(xℓ)

)
Ψ1(xℓ, ξ),

∂2L
∂κ2

= −m

κ2

and

Ψj(xℓ, ξ) = xγ+1
ℓ e

ω
γ+1

xγ+1
ℓ

(
e
ν

(
e

ω
γ+1x

γ+1
ℓ −1

)
− 1

)−j

, j = 1, 2

Φ(xℓ, ξ) =
(
e

ω
γ+1

xγ+1
ℓ − 1

)(
e
ν

(
e

ω
γ+1x

γ+1
ℓ

)
−1

− 1

)−1

A 100(1− α)% confidence interval for ξ = (ν, ω, γ, κ), can be approximated by

ν̂ ± zα
2

√
var(ν̂), ω̂ ± zα

2

√
var(ω̂), γ̂ ± zα

2

√
var(γ̂), and κ̂± zα

2

√
var(κ̂)

where zα
2

is the upper 100
α

2
th percentile of N(0, 1), and var(ξ̂i) is the diagonal ith element in VVV .

6. Numerical applications

In this section, two real data sets using the OGE-PHR (ν, ω, γ, κ)model will be analyzed and compared
with PHRD. Some criteria are chosen, these are K-S, R2, RMSE, AIC, AICC, BIC and, HQIC [1, 23].



204 A. Mustafa

• K-S – the Kolmogorov-Smirnov test

K − S = sup
x

|Fm(x)− F̂ (x)|

• R2 – the determination coefficient

R2 =

m∑
ℓ=1

(
F̂ (xℓ)− F

)2
m∑
ℓ=1

(
F̂ (xℓ)− F

)2
+

m∑
ℓ=1

(
Fm(xℓ)− F̂ (xℓ)

)2
• RMSE – the root mean square error

RMSE =

(
1

m

m∑
ℓ=1

(
Fm(xℓ)− F̂ (xℓ)

)2)1/2

• AIC – the Akaike information criterion

AIC = 2k − 2L

• AICC – the Akaike information criterion with correction

AAIC = AIC +
2k(k + 1)

(m− k + 1)

• BIC – the Bayesian information criterion

BIC = k − 2L+ ln(m)

• HQIC – the Hannan-Quinn information criterion

HQIC = −2L+ 2k ln(ln(m))

F̂ (x), Fm(x) are estimated and empirical CDF, and k,m are the number of parameters and values of
data, respectively.

F (x) =
1

m

m∑
ℓ=1

F̂ (xℓ), Fm(x) =
1

m

m∑
ℓ=1

I(x(ℓ) ≤ x)

and

I(x(ℓ) ≤ x) =

{
1, if x(ℓ) ≤ x

0, otherwise

If the data have (i) larger values of R2 and p-value, and (ii) lower values of criteria and K-S and RMSE,
our model is best for the data.

Example 6.1. The data set below is taken from [15]. The data comprises 100 observations on the
breaking stress of carbon fibers. Table 3 gives MLEs of parameters, K-S, and corresponding p-value for OGE-
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0.920 1.196 1.244 1.351 1.477 1.544 1.616 1.777 1.944 2.046
0.928 1.213 1.259 1.359 1.48 1.552 1.617 1.794 1.972 2.059
0.997 1.215 1.261 1.388 1.489 1.556 1.628 1.799 1.984 2.111
0.997 1.212 1.263 1.408 1.501 1.562 1.684 1.806 1.987 2.165
1.061 1.220 1.276 1.449 1.507 1.566 1.711 1.814 2.020 2.686
1.117 1.224 1.310 1.449 1.515 1.585 1.718 1.816 2.030 2.778
1.162 1.225 1.321 1.450 1.530 1.586 1.733 1.828 2.029 2.972
1.183 1.228 1.329 1.459 1.530 1.599 1.738 1.830 2.035 3.504
1.187 1.237 1.331 1.471 1.533 1.602 1.743 1.884 2.037 3.863
1.192 1.240 1.337 1.475 1.544 1.614 1.759 1.892 2.043 5.306

PHR, PHR, and some of the OGE-distributions. Table 4 contains the values of L, some values of proposal
criteria. Based on Tables 3 and 4, we can conclude that OGE-PHRD suggests a better fit to the data.

Table 3. MLEs of ν, ω, γ, κ, K-S and p-value

Model ν̂ ω̂ γ̂ ĉ κ̂ K-S p-value
OGE-PHR 9.926 0.174 0.025 – 15.892 0.1254222 0.0798707
PHR – 0.521 1.632 – – 0.1951352 0.0008231
OGE-RD 0.024 1.51 – – 0.236 0.4663114 0.000
OGE-W(ν) 0.024 0.84 – – 1.415 0.8845954 0.000
OGE-E 6.475 0.246 – – 15.915 0.1255142 0.0772553
OGE-W 0.057 3.143 0.354 – 6.94 0.1615050 0.0095914
OGE-G 0.00112 2.766 – -0.206 0.129 0.5535101 0.000
OGE-FW 7.28 0.124 4.974 – 0.680 0.2221729 0.000

Table 4. The L, AIC, AICC, BIC, RMSE and R2.

Model L AIC AICC BIC HQIC RMSE R2

OGE-PHR –64.5178 137.0356 137.4566 147.4563 141.2530 0.0041972 0.937793
PHR –90.1492 184.2984 184.4221 189.5088 186.4072 0.1095762 0.768124
OGE-RD –195.6188 397.2375 397.4875 405.0530 400.4006 0.0620341 0.139852
OGE-W(ν) –109.0921 224.1842 224.4342 231.9997 227.3473 0.2864156 0.017589
OGE-E –66.8960 139.7920 140.0420 147.6080 142.9550 0.0042795 0.937644
OGE-W –74.4591 156.9182 157.3392 167.3389 161.1356 0.0079095 0.872042
OGE-G –184.4214 376.8427 377.2638 387.2634 381.0602 0.0784983 0.077269
OGE-FW –87.2450 182.4899 182.9110 192.9106 186.7074 0.0134347 0.746835

The corresponding VVV matrix is

VVV =


29.952 −0.424 0.582 −5.748

−0.424 6.133 · 10−3 −8.695 · 10−3 0.133

0.582 −8.695 · 10−3 0.023 −0.571

−5.748 0.133 −0.571 30.848


Then the 95% confidence interval for ν, ω, γ and κ for OGE-PHR distribution are (0, 20.65317),

(0.02096, 0.32795), (–0.26929, 0.32023), and (5.0063, 26.77834), respectively. Figures 5 and 6 show
that the likelihood function has a unique solution. For ν̂ = 9.926, ω̂ = 0.174, γ̂ = 0.025, and κ̂ = 15.892,
the OGE-PHRD is right skewed (sk = 0.09543 > 0) and approximately symmetric. It is a platykurtic or
short-tailed distribution (ku = 1.2533 < 3).
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Figure 5. The log-likelihood function of ν and ω

Figure 6. The log-likelihood function of γ and κ

Example 6.2. The following simulated data set is taken from [15]

1.014 1.271 1.292 1.409 1.501 1.579 1.684 1.757 1.916
1.081 1.272 1.304 1.426 1.506 1.581 1.691 1.800 1.972
1.082 1.275 1.306 1.459 1.524 1.591 1.704 1.806 2.012
1.185 1.276 1.355 1.460 1.526 1.593 1.731 1.867 2.592
1.223 1.278 1.361 1.476 1.535 1.602 1.735 1.876 3.197
1.248 1.286 1.364 1.481 1.541 1.666 1.747 1.878 4.121
1.267 1.288 1.379 1.484 1.568 1.670 1.748 1.910 2.456

The MLEs of ν, ω, γ, κ, K-S and p-value for OGE-PHR, PHR and some OGE-distributions are given
in Table 5. Table 6 shows the numerical values of L, AIC, AICC, BIC, HQIC, RMSE, and R2.

Table 5. The MLEs of ν, ω, γ, κ, K-S and p-value

Model ν̂ ω̂ γ̂ ĉ κ̂ K-S p-value
OGE-PHR 17.2733 0.1168 0.3478 – 13.6484 0.1314074 0.21174254
PHR – 0.5171 2.062 – – 0.2051130 0.00841414
OGE-RD 0.0239 1.1978 – – 0.2942 0.4765220 0.000
OGE-W(ν) 0.0239 1.0291 – – 0.8037 0.7189660 0.000
OGE-E 0.9711 0.7229 – – 6.0645 0.2028970 0.009463885
OGE-W 0.0293 3.7838 0.3475 – 7.8523 0.1545998 0.089370279
OGE-G 0.000524 1.7983 – 0.1077 0.0929 0.5841869 0.000
OGE-FW 5.3382 0.3036 5.7944 – 0.487 0.2771419 0.000
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Table 6. The L, AIC, AICC, BIC, RMSE and R2

Model L AIC AICC BIC HQIC RMSE R2

OGE-PHR -28.9737 65.9474 66.6371 74.520 69.3191 0.00533555 0.91907098
PHR -46.3669 96.7338 96.9338 101.020 98.4196 0.11953744 0.72326318
OGE-RD -105.529 217.0581 217.464 223.4875 219.5868 0.06505871 0.17522668
OGE-W(ν) -68.9706 143.9413 144.3481 150.3707 146.470 0.17540187 0.06630705
OGE-E -40.9001 87.8001 88.2069 94.2295 90.3288 0.01382935 0.78986324
OGE-W -34.4322 76.8645 77.5541 85.437 80.2361 0.00792246 0.86915008
OGE-G -129.0352 266.0704 266.7601 274.643 269.4421 0.08237886 0.05252965
OGE-FW -53.7568 115.5136 116.2033 124.0861 118.8852 0.02340996 0.55943517

From the results contained in Tables 5 and 6, it can be concluded that OGE-PHRD provides a better
fit of the data.

Therefore, the matrix VVV is

VVV =


123.324 −0.742 1.242 −6.723

−0.742 4.612 · 10−3 −8.505 · 10−3 0.1

1.242 −8.505 · 10−3 0.041 −0.788

−6.723 0.1 −0.788 31.845


Then the 95% confidence interval for ν, ω, γ and κ for OGE-PHR distribution are and (0, 39.03937),

(0, 0.24994), (-0.04803, 0.74368) and (2.58794, 24.70888), respectively.

Figure 7. The log-likelihood function of ν and ω

Figure 8. The log-likelihood function of γ and κ
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Figures 7 and 8 show that the likelihood function has a unique solution. For ν̂ = 17.2733,

ω̂ = 0.1168, γ̂ = 0.3478 and κ̂ = 13.6484, the OGE-PHRD is right skewed (Sk = 0.07992 > 0)
and approximately symmetric. It is a platykurtic or short-tailed distribution (Ku = 1.24823 < 3).

7. Conclusions

The generalized continuous distributions have been widely studied in the literature. In this article,
we have studied a new probability distribution with four parameters called odds generalized exponen-
tial–power hazard rate distribution. The proposed distribution contains some special distributions. The
study of the characteristics of this distribution includes the study of these cases. We examined some
properties of the proposal distribution. Various statistical properties of the new distribution such as mo-
ments, mode, quantity, skewness, kurtosis, and order statistics were derived. The parameters of the new
distribution were estimated by the method of maximum likelihood.

A real data set was used to compare the distribution of OGE-PHR with the sub-models, PHR, OGE-
RD, OGE-W(ν), OGE-E based on some statistical criteria such as K-S, AIC, AICC, BIC, HQIC, RMSE
and R2. It was shown that the new distribution can be used very effectively to provide the best fit
compared to the sub-models. Also, we compared the OGE-PHR with other known odd generalized
exponential distributions such as OGE-W, OGE-G and OGE-FW. Applications on the real data showed
that the OGE-PHR was the best distribution for fitting these data sets compared with OGE-W, OGE-
G and OGE-FW distributions. We conclude that this model provides consistently better fits than other
special models. We hope that this generalization will include more applications in various fields of life.
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