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Abstract

We focus on a specific sub-model of the proposed family that we call the new half logistic-Fréchet. This sub-model stems
from a new generalisation of the half-logistic distribution which we call the new half-logistic-G. The novelty of proposing
this new family is that it does not include any additional parameters and instead relies on the baseline parameter. Standard
statistical formulas are used to show the forms of the density and failure rate functions, ordinary and incomplete moments
with generating functions, and random variate generation. The maximum likelihood estimation procedure is used to estimate
the set of parameters. We conduct a simulation analysis to ensure that our calculations are converging with lower mean square
error and biases. We use three real-life data sets to equate our model to well-established existing models. The proposed
model outperforms the well-established four parameters beta Fréchet and exponentiated generalized Fréchet for some real-
-life results, with three parameters such as half-logistic Fréchet, exponentiated Fréchet, Zografos–Balakrishnan gamma Fréchet,
Topp–Leonne Fréchet, and Marshall–Olkin Fréchet and two-parameter classical Fréchet distribution.
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1. Introduction

Modern distribution theory is still developing. Researchers often devise novel methods for generating uni-
variate probability distributions. Regardless of how complex the model is, a distribution with the fewest
possible parameters is generally preferred. The shift in approach is largely due to the introduction of
digital computers (particularly automatic differentiation and numerical integration), new machine learn-
ing techniques, and the use of computer software such as Mathematica, Matlab, Python, and R-language
to analyse large amounts of data. Furthermore, these methods have helped applied practitioners explore
some of their unique models, which can be applied to a variety of fields, including reliability engineering,
bioinformatics, hydrology, survival analysis, soil sciences, actuarial research, and others.
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Tahir et al. [20] suggested a new family of distributions, such as new flexible G-family, abbreviated
as NFGF for T ∈ (0, 1). For any baseline distribution with survival function (sf) as D̄(x; ς) or distri-
bution function (cdf) as D(x; ς) and density function (pdf) as d(x; ς), the new family’s cdf and pdf are,
respectively, denoted by

F (x; ς) = 1− D̄(x; ς)D(x; ς) (1)

and

f(x; ς) = d(x; ς) D̄(x; ς)D(x; ς)

(
D(x; ς)

D̄(x; ς)
− log D̄(x; ς)

)
The authors pioneered a flexible cdf in (1), which acts as a substitute to extend several well-known G-

classes of distribution. Some of the other existing prominent G-classes which were never deduced from a
preceding parent model, namely Marshall–Olkin-G [15], exponential-G (EG) with Lehmann alternative
of type-I (LA-1) [14] and Lehmann alternative of type-II (LA-2) [6], transmuted-G (TrG) [19] and
cubic rank transmuted-G (CrTRG) [9] are also mentioned.

This inspired and encouraged us to introduce a new family of naturally occurring distributions. We
propose a new generator W [R(x)] = − log[D̄(x; ς)]D(x; ς) with support over R+ to generalise half-
logistic distribution, i.e., New Half Logistic-G (NHLG for short)) class of distributions, based on the
premises of [20]. Further motivations for introducing the NHLG family of distributions include:

• the NHLG is constituted without any additional parameters;
• the proposed family has not been developed by an existing parent model;
• the link function W [R(x)] can be used further to develop other G-class with support T ∈ (−∞,+∞);
• the model is annotated with the view that it will attract a wider class of applied statisticians due to

its ability to significantly improve the quality of fit (GoFs) measures;
• the model offers greater flexibility and tractability in terms of its tail properties;
• various flexible shapes of pdf and hazard rate function (hf) can be extracted as a result of new special

models arising from NHLG.

The paper is organized as follows. In Section 2, we proposed a unique generator NHLG. In Section 3,
the mathematical foundation of the proposed generalization which includes distinctive special models
from NHLG, linear representation of distribution function, analytical shapes of density and hazard rate,
quantile function, moments and generating functions are established. Further, inference related to the
model parameters is also derived with explicit expressions. The Fréchet distribution as baseline distribu-
tion to define the new half-logistic Fréchet (NHLFr) from the postulated NHLG family is studied with
its properties in Section 3. Additionally, a simulation study has been conducted in order to show the con-
vergence of the model parameter. Section 4 comprises some concluding remarks and future possibilities
related to the defined model.

2. The proposed family

Let T follows half-logistic (HL) random variable (rv) with r(t) = 2e−λt(1 + e−λt)−2 be the pdf and
R(t) = (1− e−λt)(1 + e−λt)−1 be the cdf, with support 0 < ξ < ∞. Let us say K[D(x; ς)] serves as the
generator function of any baseline rv’s cdf R(t) so that K[D(x; ς)] meets the following criteria:
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a) K[D(x; ς)] ∈ [ξ],
b) K[D(x; ς)] is uniformly non-decreasing and differentiable,
c) K[D(x; ς)] → ξ as x → 0 and K[D(x; ς)] → ξ as x → +∞.

Then setting K[D(x)] = − log[D̄(x; ς)]D(x; ς) and using the conceptual framework referenced in [3]
by Alzaatreh’s et al., the cdf and pdf of NHLG family of distributions are defined as

F (x; ς) =

− log({D̄(x; ς)}D(x; ς))∫
a

2λe−λt
(
1 + e−λt

)−2
dt =

1− D̄(x; ς)λD(x; ς)

1 + D̄(x; ς)λD(x; ς)
, x > 0 (2)

where λ > 0 acts as a shape parameter and ς is the vector of baseline parameter.
The pdf corresponding to (2) is given by

f(x; ς) =
2λ d(x; ς)D̄(x; ς)λD(x; ς)−1(

1 + D̄(x; ς)λD(x; ς)
)2 (

{1 + log D̄(x; ς)}D(x; ς)− log D̄(x; ς)
)

(3)

where D̄ = 1 − D(x; ς) is the baseline sf and d(x; ς) is the baseline pdf. We can generate a new
half-logistic generalized class of distributions for each baseline, sometimes, by ignoring the dependence
on the vector ς of the parameters and simply write D(x) = D(x; ς) and d(x) = d(x; ς). Henceforth,
X ∼ NHLG(λ, ς) denotes a random variable having density (3).

The sf and the hf of X are, respectively, given by

F̄ (x) =
2 D̄(x)λD(x)

1 + D̄(x)λD(x)

and

ℸ(x) =
λd(x)

1 + D̄(x)λD(x)

(
{1 + log D̄(x)}D(x)− log D̄(x)

)
(4)

2.1. Unique models of NHLG

We consider below some unique distributions for different supports of rvs [(0, 1), (0,∞), (−∞,∞)],
namely, for Beta (B), Kumaraswamy (Kw), Weibull (W), Fréchet (Fr) and Gumbel (Gu) models:

A. If T ∼ B(a, b) has the cdf D(x) = Ix(a, b), x ∈ (0, 1) and pdf d(x) = [B(a, b)]−1 xa−1 (1−x)b−1

then the cdf and pdf of the new half-logistic beta (NHLB) model are, respectively, given by

FNHLB(x) =
1−

(
1− Ix(a, b)

)λIx(a, b)
1 +

(
1− Ix(a, b)

)λIx(a, b) , x ∈ (0, 1), a, b > 0

and

fNHLB(x) =2λxa−1 (1− x)b−1 (1− Ix(a, b)
)λIx(a, b)

× (1− Ix(a, b))
−1
(
1 +

{
1− Ix(a, b)

}λIx(a, b))−2

×
(
Ix(a, b) +

(
Ix(a, b)− 1

)
log 1− Ix(a, b)

)
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where

B(a, b) =

1∫
0

za−1 (1− z)b−1 dz, Bz(a, b) =

z∫
0

za−1 (1− z)b−1 dz

and

Ix(a, b) =
Bz(a, b)

B(a, b)
=
(
B(a, b)

)−1

z∫
0

za−1 (1− z)b−1 dz

are the beta function, incomplete beta function, and incomplete beta function ratio, respectively.
B. If T ∼ Kw(a, b) has the cdf D(x) = 1− (1− xa)b and pdf d(x) = a b xa−1 (1− xa)b−1, then the

cdf and pdf of the NHLKw model are, respectively, given by

FNHLKw(x) =
1−

(
(1− xa)b

)λ(1−(1−xa)b)

1 + ((1− xa)b)λ(1−(1−xa)b)
, x ∈ (0, 1), a, b > 0

and

fNHLKw(x) = 2abxa−1 (xa − 1)−1
(
(1− xa)b

)λ((1−xa)b+1) ((
(1− xa)−b − 1

)
− b log(1− xa)

)
×
(
(1− xa)b

(
log
(
(1− xa)b

)
+ 1
)
− 1
)((

(1− xa)b
)λ

+
(
(1− xa)b

)λ(1−xa)b
)−2

C. If T ∼ W(α, β) has the cdf D(x) = 1− e−αxβ

, x ∈ (0,∞) and pdf d(x) = αβ xβ−1 e−αxβ

, then
the cdf and pdf of the new half-logistic Weibull (NHLW) model are, respectively, given by

FNHLW(x) =
1−

(
e−αxβ

)λ[1−e−αxβ ]

1 +
(
e−αxβ

)λ[1−e−αxβ ]
, x ∈ (0,∞), α, β > 0

and

fNHLW(x) = 2αβλxβ−1
(
eα(−xβ)

)λ+λ−e
α(−xβ)+1 (

eαx
β − log

(
eα(−xβ)

)
− 1
)

×
((

eα(−xβ)
)λ−λe

α(−xβ)
+ 1
)−2

D. If T ∼ Fr(a, b) has the cdf D(x) = e−a x−b

, x ∈ (0,∞) and pdf d(x) = abx−b−1 e−a x−b

, then the cdf
and pdf of the new half-logistic Fréchet (NHLFr) model are, respectively, given by

FNHLFr(x) =
1−

(
1− e−a xb

)λ(e−a x−b
)

1 +
(
1− e−a x−b

)λ(e−a x−b )
, x ∈ (0,∞), a, b > 0
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and

fNHLFr(x) = 2abλx−b−1e−ax−b
(
1− e−ax−b

)λe−ax−b−1
((

1− e−ax−b
)λe−ax−b

+ 1

)−2

×
(
e−ax−b

(
log
(
1− e−ax−b

)
+ 1
)
− log

(
1− e−ax−b

))
E. If T ∼ Gu(µ, σ) has the cdf D(x) = e−e(x−µ)σ−1)

, x µ ∈ (−∞,∞) and pdf d(x) = σ−1 e(x−µ)σ−1

×e−e(x−µ)σ−1

, then the cdf and pdf of the new half-logistic Gumbel (NHLGu) model are, respectively,
given by

FNHLGu(x) =
1−

(
1− e−e−(x−µ/σ)

)e(−e−(x−µ/σ)
)

1 +
(
1− e−e−(x−µ/σ)

)e(−e−(x−µ/σ)

) , x , µ ∈ (−∞,∞), σ > 0

and

fNHLGu(x) =
2λ

σ
e−

−µ+σe
µ−x
σ +x

σ

(
1− e−e

µ−x
σ

)λe−e
µ−x
σ (

1− ee
µ−x
σ

)
(1− e−e

µ−x
σ

)λe−e
µ−x
σ

+ 1


−2((

ee
µ−x
σ − 1

)
log

(
1− e−e

µ−x
σ

)
− 1

)

Figures 1–5 show some plots of density and hazard rate functions for various parameter combinations
with different special models arising due to NHLG family. It is evident from these plots that the density of
the NHLG family is adaptable to model varying real-life phenomenons. Further, the hazard rate function
allows the risk evaluation of monotone and non-monotone failure rates.
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Figure 2. Plots for the NHLKw model for some parameter values: density (left) and hazard rate (right)
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Figure 5. Plots for the NHLGu model for some parameter values: density (left) and hazard rate (right)

2.2. Useful expansion of NHLG

In this section, we demonstrate that the density function of X is expressible as an infinite linear combina-
tion of exponential-G (exp-G) densities. This is accomplished by first extending (2) in terms of cdf of exp-
-G densities and then differentiating it. Consider an arbitrary baseline cdf D(x) with parameter m > 0, so
that Y ∼ exp-G (m) with pdf and cdf in the formats as Hm(x) = D(x)m and hm(x) = md(x)D(x)m−1,
respectively.

By using Mathematica on (2), the power series converges

F (x) =
∞∑
ȷ=2

ωȷD(x)ȷ (5)

where ω2 =
λ

2
, ω3 =

λ

4
, ω4 =

λ

6
and ω5 =

λ

8
, . . . , which can be expressed as

F (x) =
∞∑
ȷ=2

ωȷHȷ(x; ς) (6)

where Hȷ(x; ς) = D(x; ς)ȷ (for ȷ ≥ 2).
Differentiating (6), the resultant density of X takes the form

f(x) =
∞∑
ȷ=1

ωȷ+1 hȷ+1(x; ς) (7)

where hȷ+1 is the exp-G density with power parameter ȷ+ 1.
According to (7), the NHLG density function is a linear combination of exp-G densities. Hence, var-

ious mathematical properties of the NHLG can be determined directly from those of the exp-G distribu-
tions, which are known for several baseline distributions. For detailed discussion on exp-G distributions,
we refer e.g. to Mudholkar and Srivastava [16], Gupta and Kundu [10], Nadarajah and Kotz [18].
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2.3. Density and hazard rate shape

The shapes of the density and hrf can be described analytically. The critical points of the NHLG density
are the roots of (3)

λd(x) log D̄(x)+
d′(x)

d(x)
− d(x) (λD(x)− 1)

D̄(x)
+

d(x)
(
2 + log D̄(x)

)
− log D̄(x) +D(x)

(
1 + log D̄(x)

)
− 2λd(x)D̄(x)1+λD(x)

1 + D̄(x)λD(x)

(
− 1 + D̄(x)

(
1 + log D̄(x)

) )
= 0

(8)

The critical points of the NHLG hrf are obtained from (4)

d′(x)

d(x)
+

d(x)

D̄(x)
+

d(x)
(
2 + log D̄(x)

)
− log D̄(x) +D(x){1 + log D̄(x)}

− λd(x)D̄(x)1+λD(x)

1 + D̄(x)λD(x)

(
−1 + D̄(x)

(
1 + log D̄(x)

))
= 0

(9)

2.4. Quantile function

The inverse cdf is the most straightforward way of creating rvs. In the case of any chosen cdf, the quantile
function (qf) is defined as Q(u) = F−1(p) = min{x; F (x) ≥ p}. Inverting the NHLG’s qf in (2) and
solving two non-linear equations numerically. We can use the following procedure:

(i) set z = z(p) = 1− p

(ii) find w = w(p) numerically in w log(1− w) = log(z) using any Newton–Raphson algorithm;
(iii) numerical solution for x in D(x; ξ) = w gives the qf x = Q(p; ξ) of X .

2.5. Moments and generating function

The sth raw moment of X , say E(Xs), are expressed from (3) as

E(Xs) =
∞∑
ȷ=1

ωȷ+1 E(Y s
ȷ+1) =

∞∑
ȷ=1

(ȷ+ 1)ωȷ+1 τs,ȷ (10)

where

τs,ȷ =

∞∫
−∞

xs D(x; ς)ȷ d(x; ς)dx =

1∫
0

QD(u; ς)
s uȷdu, andQD(u; ς)

is the qf of the baseline distribution.
Some characteristics of a distribution can be specified using the first four moments. Equation (10) can

be helpful in determining the central moments and cumulants of X using well-established results.
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The sth lower incomplete moment of X , say ms(y) =

y∫
−∞

xs f(x)dx, is

ms(y) =
∞∑
ȷ=1

ωȷ+1

y∫
−∞

xs hȷ+1(x)dx =
∞∑
ȷ=1

(ȷ+ 1)ωȷ+1

D(y;ς)∫
0

QD(u; ς)
s uȷdu (11)

For most G distributions, the final two integrals can be computed numerically.The total deviations from
the mean and median are δ1 = 2µ′

1 F (µ′
1)− 2m1(µ

′
1) and δ2 = µ′

1 − 2m1(M), where F (µ′
1) comes from

(2). The moment generating function (mgf) M(t) = E(etX) of X follows from (3) as

M(t) =
∞∑
ȷ=1

ωȷ+1Mȷ+1(t) =
∞∑
ȷ=0

(ȷ+ 1)ωȷ+1 ρȷ(t), (12)

where Mȷ+1(t) is the mgf of Yȷ+1 and ρȷ(t) =

1∫
0

exp(tQD(u; ς))u
ȷdu. Hence, M(t) can be obtained

from the exp-G generating function.

2.6. Estimation

We now look at how to use the maximum likelihood method to estimate the unknown parameters of a new
distribution. Let x1, . . . , xn be n observations from the NHLG distribution given by (3) with parameter
vector Ξ = (λ, ς)⊤. The log-likelihood ℓ = ℓ(Ξ) for Ξ has the form

n log(2λ) +
n∑

i=1

(λD(xi; ς)− 1) log (1−D(xi; ς))− 2
n∑

i=1

log
(
1 + {1−D(xi; ς)}λD(xi;ς)

)

+
n∑

i=1

log d(xi; ς) +
n∑

i=1

log
(
− log (1−D(xi; ς)) +D(xi; ς) (1 + log (1−D(xi; ς)))

) (13)

The MLE Ξ̂ of Ξ can be evaluated by maximizing ℓ(Ξ). Several routines for numerical maximization of ℓ(Ξ)
are easily available in the SAS (PROC NLMIXED), R program (optim function), Ox (sub-routine MaxBFGS),
among others. We can also mitigate the nonlinear likelihood equations by differentiating the log-likelihood.

The consequent score components with respect to λ and ς are

∂l
∂λ

=
n

λ
+

n∑
i=1

logD(xi; ς)[1−D(xi; ς)]

− 2
n∑

i=1

− log[1−D(xi; ς)]D(xi; ς)[1−D(xi; ς)]
λD(xi;ς)

1 + [1−D(xi; ς)]−λD(xi;ς)
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∂l
∂ς

=
n∑

i=1

d(xi; ς)d
ς
i

(
λ log(1−D(xi))−

λD(xi)− 1

1−D(xi)

)
+

n∑
i=1

dςi
d(xi; ς)

+
n∑

i=1

dςid(xi; ς) (1 + {log[1−D(xi)]−D(xi)})
[1−D(xi)]

(
− log[1−D(xi)] +D(xi){1 + log[1−D(xi)]}

)

− 2
n∑

i=1

λdςid(xi; ς)(1−D(xi))
λD(xi) (log(1−D(xi)) +D(xi)(1−D(xi))

−1)

[1−D(xi)][1 + (1−D(xi))λD(xi)]

The MLEs of the model parameters are achieved by determining the score components to zero and
solving them all at the same time. The resulting equations cannot be solved analytically, but they can be
solved numerically using iterative Newton–Raphson type procedures in some statistical software.

For interval estimation and hypothesis tests on the model parameters, we can obtain the (v+1)×(v+1)

observed information matrix J(Ξ) numerically (v is the dimension of ς) since the expected information
matrix K(Ξ) is very complex and requires numerical integration.

Under standard regularity conditions, we have (Ξ̂Ξ)
a∼ Nv+2(0, K(Ξ)−1), where a∼ means approx-

imately distributed and K(Ξ) is the expected information matrix. The asymptotic behavior remains
valid if K(Ξ) is replaced by the observed information matrix J(Ξ) evaluated at Ξ̂, that is, J(Ξ̂). Ap-
proximate confidence intervals for model parameters can be constructed using the multivariate normal
Nv+2(0, J(Ξ̂)

−1) distribution.

3. New half logistic Fréchet (NHLFr) distribution

3.1. The model

We define the NHLFr distribution of Section 2 (case (iv)) with cdf and pdf

FNHLFr(x; a, b) =
1−

(
1− e−a xb

)λ(e−a x−b
)

1 +
(
1− e−a x−b

)λ(e−a x−b )
, x ∈ (0,∞), a, b > 0 (14)

and

fNHLFr(x; a, b) =2 abλx−b−1e−ax−b
(
1− e−ax−b

)λ(e−ax−b
)−1
((

1− e−ax−b
)λe−ax−b

+ 1

)−2

×
(
e−ax−b

(
log
(
1− e−ax−b

)
+ 1
)
− log

(
1− e−ax−b

)) (15)
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Let X be an rv having density given by (15). The sf and hrf of X have, respectively, the forms

SNHLFr(x; a, b) = 1−
1−

(
1− e−a xb

)λ(e−a x−b
)

1 +
(
1− e−a x−b

)λ(e−a x−b )

and

πNHLFr(x; a, b) =
abλx−b−1e−ax−b

((
eax

−b − 1
)
log
(
1− e−ax−b

)
− 1
)

1−
(
eax−b

)((
1− e−ax−b

)λe−ax−b

+ 1

)
3.2. Quantile

The qf of NHLFr distribution cannot be accessed directly. However, we can create NHLFr variates using
the Newton–Raphosn algorithm as follows:

1. Set the default values for n, a, b, λ and x0.

2. Create U∼Uniform(0, 1).

3. Employing Newton–Raphson’s algorithm given below, modify x0 each time as

x∗ = x0 −R(x0; a, b, λ),

where R(x0; a, b, λ) =
FNHLFr(x0; a, b, λ)

fNHLFr(x0; a, b, λ)
, and FNHLFr and fNHLFr are obtained from (14)

and (15), respectively.

4. If |x0 − x∗| ≤ ϵ, (ϵ > 0, very small tolerance limit), then store x0 = x∗ as a variate from the
NHLFr(a, b, λ) distribution.

5. If |x0 − x∗| > ϵ, then, set x0 = x∗ and move to step 3.

6. To generate x1, . . . , xn, steps (2)–(5) are repeated n times.

3.3. Mathematical properties

Following the result from (6), the linear representation of NHLFr is quite straightforward as

FNHLFr(x; a, b, λ) =
∞∑
ȷ=2

ωȷ

(
ea x

−b
)ȷ

, ȷ ≥ 2 (16)

By differentiating the last expression, we obtain the density of NHLFr as

fNHLFr(x; a, b, λ) =
∞∑
ȷ=1

ωȷΠ(x; aȷ, b) (17)

where Π(x; aȷ, b) denotes the Fréchet density with shape parameter b.
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Let W be an rv with density Π(x; aȷ, b), then we can extract several properties of X from those of W .
First, the sth ordinary moment of X takes the form

µ′
s =

∞∑
k=1

ωȷ
(a ȷ)2−s/b

Γ
(
1− s

b

) (18)

The cumulants (κn) of X can be determined recursively from (18) as κs = µ′
s−

s−1∑
k=1

(
s− 1

k − 1

)
κk µ

′
s−k,

respectively, where κ1 = µ′
1. Table 1 provides some numerical results for the central moments for NHLFr

distribution.

Table 1. Some moments of NHLFr (a, b, λ) distribution for chosen parameters

a b λ µ′
1 µ′

2 µ′
3 µ′

4 σ2 σ
0.2 0.5 1.5 0.964 3.648 21.432 150.901 2.719 1.649
0.2 1.5 1.5 0.724 2.837 17.002 120.839 2.312 1.521
0.2 2.3 1.5 0.832 0.882 1.711 33.652 0.190 0.436
0.2 3.8 1.5 0.875 0.822 0.850 1.031 0.057 0.238
0.1 1.5 1.35 0.588 1.302 79.651 1916.734 0.956 0.978
0.1 1.5 2.2 0.373 0.192 0.213 4.656 0.053 0.229
0.1 1.5 3.5 0.292 0.101 0.042 0.024 0.015 0.123
0.1 1.5 5.5 0.242 0.065 0.019 0.006 0.006 0.079

Second, the sth incomplete moments of X is ζs(y) =

y∫
0

xsfNHLFr(x; a, b)dx, which can easily be

calculated by applying standard transformations such as u−vΓ(v, ux) =

z∫
0

zv−1e−uxdz for each respec-

tive moment of W . The result thus obtained is as follows

ζs =
∞∑
k=1

ωȷ

(
(a ȷ)2−(s/b)

Γ
(
1− s

b

) −
Γ
(
1− s

b
, aW

)
a1−

s
b

)
(19)
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Figure 6. Plots of skewness and kurtosis for the NHLFr model
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The total deviations from the mean µ′
1 and median M of X have the forms δ1 = 2µ′

1 FNHLFr(µ
′
1)

− 2m1(µ
′
1) and δ2 = µ′

1 − 2m1(M), where M can be determined from FNHLFr(M) = 0.5 The first
incomplete moment m1(y) is also used to construct the Bonferroni and Lorenz curves (popular inequal-
ity measures in economics, reliability, demography and actuarial sciences). The Bonferroni and Lorenz
curves of X for a given probability π are given by B(π) = m1(q)/(πmu′

1) and L(π) = π B(π), re-
spectively, where q = Qπ is the qf of X discussed in Section 2.5. The skewness and kurtosis plots of
the NHLFr distribution are graphed in Figure 6. These plots reveal that the parameters a and b play a
significant role in enhancing the skewness and kurtosis behaviors of X .

3.4. Estimation

The log-likelihood ℓ = ℓ(Ξ) for Ξ has the form

ℓ(Ξ) =n log(2λ) +
n∑

i=1

(
λe−ax−b

i − 1
)
log
(
1− e−ax−b

i
)

− 2
n∑

i=1

log
((
1− e−ax−b

i
)λe−ax−b

i

+ 1
)
+

n∑
i=1

log
(
abx−b−1

i e−a x−b
i
)

+
n∑

i=1

log
(
e−ax−b

i
{
1 + log

(
1− e−ax−b

i
)}

− log
(
1− e−ax−b

i
))

(20)

The components of score vector U(Ξ) are

∂l
∂λ

=
n

λ
+ e−ax−b

i log
(
1− e−ax−b

i

)
−

2 e−ax−b
i

(
1− e−ax−b

i

)λe−ax−b
i

log
(
1− e−ax−b

i

)
(
1− e−ax−b

i

)λe−ax−b
i

+ 1

∂l
∂a

=
n

a
−

n∑
i=1

x−b
i

(
1 + λe−ax−b

i

)
+

n∑
i=1

x−b
i

(
1− λe−ax−b

i

)
1− eax

−b
i

+
n∑

i=1

x−b
i

(
log
(
1− e−ax−b

i

)
+ 2
)

(
eax

−b
i − 1

)
log
(
1− e−ax−b

i

)
− 1

+
2λx−b

i e−ax−b
i

(
1− e−ax−b

i

)λe−ax−b
i ((

eax
−b
i − 1

)
log
(
1− e−ax−b

i

)
− 1
)

(
eax

−b
i − 1

)((
1− e−ax−b

i

)λe−ax−b
i

+ 1

)
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∂l
∂b

=
n

b
−

n∑
i=1

log (xi)
(
1 + a x−b

i

)
+ aλ

n∑
i=1

x−b
i log (xi) e

−ax−b
i log

(
1− e−ax−b

i

)

+ a
n∑

i=1

x−b
i log (xi) e

−ax−b
i

(
eax

−b
i − λ

)
eax

−b
i − 1

+ a
n∑

i=1

x−b
i log (xi)

(
2 + log

(
1− e−ax−b

i

))
(
eax

−b
i − 1

)
log
(
1− e−ax−b

i

)
− 1

− 2 aλ
n∑

i=1

x−b
i log (xi) e

−ax−b
i

(
1− e−ax−b

i

)λe−ax−b
i ((

eax
−b
i − 1

)
log
(
1− e−ax−b

i

)
− 1
)

(
eax

−b
i − 1

)((
1− e−ax−b
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)λe−ax−b
i
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)

The observed information matrix for the parameter vector Ξ = (a, b, λ)⊤ is given by

J(Ξ) = − ∂2ℓ(Ξ)

∂ Ξ ∂ Ξ⊤ = −

 Jaa Jab Jaλ

� Jbb Jbλ

� � Jλλ


3.5. Simulation

In this subsection, a simulation study with varying sample sizes is performed. The aim is to assess the
performance of NHLFr model parameter vector (Ξ =α, β, λ) with their respective estimates (Ξ̂ = α̂, β̂, λ̂).
The parameters are estimated by maximizing the log-likelihood function in (20), following the method
of maximum likelihood estimation (MLEs) using the optim routine in R software. The defining criterion
includes the computation of average bias (Bias), mean squared errors (MSEs), coverage probability (CP),
average lower bounds (ALB)and average upper bounds (AUB) for the two-sided confidence intervals of
the model parameters. We considered the surety levels to be 90% and 95% by adopting the following
steps.

A. We generate 1000 random samples x1, x2, . . . , xn of given sizes n from the NHLFr distribution.
B. The considered sets of parameter values are: set I (α = 3.5, β = 3.8 and λ = 4.9), set II (α = 2.35,

β = 3.85 and λ = 2.9) and set III (α = 2.5, β = 4.1 and λ = 3.85).
C. The numerical results are calculated at the surety mentioned above levels.
The obtained results are given in Tables 2–4. The simulation findings clearly verify, in general, that

the biases and MSEs decrease as a result of an increase in sample size to true parameter values. The CP
of the confidence interval is quite close to the respective surety levels (90% and 95%) nominal level. The
average length of the confidence interval of each respective parameter also stabilizes with the increase in
sample size which confirms that these asymptotic results are useful in the estimation and construction of
confidence intervals. Further, plots of Biases and MSEs for the parameters a, b and λ at selective sample
sizes are displayed in Figures 7–9. The plots further ascertain that a drastic decrease in biases and MSEs
occurs with a certain increase in the sample size n. Thus, the MLEs perform well in estimating the
parameters of the NHLFr distribution.
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Table 2. Simulation results for set I

Ξ n Ξ̂ Bias MSEs CP90% ALB90% AUB90% CP95% ALB95% AUB95%

a 50 4.455 0.955 8.672 0.96 3.803 5.106 0.99 3.742 5.802
100 3.906 0.406 0.604 0.97 3.797 4.016 0.98 3.721 3.952
150 3.674 0.174 0.223 0.96 3.615 3.733 0.99 3.642 3.754
200 3.609 0.169 0.177 0.97 3.579 3.639 0.99 3.606 3.692
250 3.643 0.143 0.113 0.91 3.611 3.675 0.98 3.599 3.688
300 3.623 0.123 0.093 0.95 3.597 3.650 0.98 3.524 3.553
500 3.539 0.039 0.029 0.94 3.527 3.551 0.98 3.500 3.563
600 3.546 0.026 0.025 0.92 3.535 3.556 0.97 3.525 3.561

b 50 4.209 0.409 4.190 0.98 3.740 4.678 0.99 3.712 5.137
100 4.148 0.348 2.027 0.94 3.919 4.376 0.99 3.704 4.209
150 3.893 0.093 1.265 0.95 3.742 4.045 1.00 6.296 9.142
200 3.856 0.056 0.489 0.99 3.778 3.934 0.98 3.796 4.026
250 3.855 0.055 0.449 0.97 3.782 3.927 0.97 3.743 4.001
300 3.935 0.035 0.514 0.94 3.868 4.002 0.97 3.814 3.968
500 3.830 0.030 0.242 0.97 3.797 3.863 0.98 3.800 3.886
600 3.806 0.016 0.201 0.95 3.827 3.905 0.97 3.827 3.901

λ 50 37.561 32.661 22140.547 1.00 3.619 71.503 1.0 7.270 132.375
100 16.065 11.165 3217.455 0.99 6.871 25.260 1.0 6.741 11.956
150 11.755 6.855 1159.519 0.97 7.252 16.257 0.99 6.296 9.142
200 5.886 1.094 19.427 0.98 5.542 6.436 0.99 5.543 6.766
250 5.994 0.986 15.062 0.95 5.442 6.336 0.97 5.539 6.228
300 5.465 0.565 8.319 0.99 5.195 5.735 0.98 5.272 5.823
500 5.252 0.352 3.108 0.96 5.124 5.379 0.98 5.102 5.510
600 5.074 0.228 1.446 0.91 5.004 5.253 0.98 4.939 5.210

Table 3. Simulation results for set II

Ξ n Ξ̂ Bias MSEs CP90% ALB90% AUB90% CP95% ALB95% AUB95%

a 50 2.716 0.366 0.463 0.94 2.582 2.850 0.98 2.573 2.906
100 2.537 0.187 0.158 0.93 2.479 2.595 0.98 2.481 2.617
150 2.427 0.177 0.062 0.90 2.395 2.459 0.96 2.406 2.501
200 2.360 0.110 0.031 0.96 2.339 2.380 0.96 2.376 2.431
250 2.394 0.044 0.033 0.88 2.376 2.413 0.95 2.361 2.406
300 2.371 0.021 0.026 0.91 2.356 2.386 0.96 2.372 2.406
500 2.372 0.022 0.022 0.87 2.362 2.383 0.95 2.355 2.378
600 2.351 0.019 0.012 0.87 2.345 2.376 0.95 2.342 2.269

b 50 4.184 0.334 3.655 1.00 3.744 4.625 1.00 3.576 4.474
100 3.886 0.336 1.267 0.85 3.700 4.072 0.95 3.628 4.193
150 3.999 0.149 0.718 0.88 3.887 4.112 0.86 3.781 4.077
200 3.965 0.115 0.570 0.92 3.878 4.053 0.78 3.871 4.090
250 3.844 0.106 0.338 0.95 3.783 3.905 0.89 3.784 3.936
300 3.783 0.067 0.271 0.93 3.734 3.832 0.98 3.830 3.961
500 3.855 0.045 0.256 0.89 3.768 3.843 0.91 3.921 4.095
600 3.851 0.005 0.196 0.90 3.728 3.839 0.90 3.828 4.085

λ 50 10.542 7.652 1164.711 0.98 2.766 18.318 1.00 1.998 21.219
100 4.649 1.759 22.189 1.00 3.926 5.371 0.99 3.784 7.628
150 3.392 0.502 5.854 0.99 3.072 3.711 1.00 3.138 3.850
200 3.171 0.281 2.379 1.00 2.993 3.348 1.00 2.977 3.453
250 3.174 0.284 1.140 0.99 3.066 3.282 1.00 3.040 3.309
300 3.239 0.249 1.107 0.98 3.144 3.333 1.00 3.006 3.244
500 3.153 0.263 0.846 0.95 3.088 3.218 0.99 2.801 2.997
600 3.003 0.164 0.349 0.95 2.988 3.027 0.98 2.821 2.951
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Table 4. Simulation results for set III

Ξ n Ξ̂ Bias MSEs CP90% ALB90% AUB90% CP95% ALB95% AUB95%

a 50 5.030 2.180 249.886 0.96 1.370 8.691 0.98 2.063 6.915
100 3.121 0.271 0.295 0.96 3.043 3.199 0.96 3.011 3.232
150 2.984 0.134 0.133 0.92 2.938 3.030 0.96 2.946 3.043
200 2.947 0.097 0.091 0.89 2.914 2.981 0.96 2.971 3.035
250 2.906 0.056 0.041 0.94 2.885 2.926 0.96 2.916 2.973
300 2.897 0.047 0.042 0.88 2.878 2.916 0.97 2.893 2.939
500 2.781 0.025 0.029 0.90 2.867 2.895 0.95 2.887 2.919
600 2.657 0.022 0.026 0.90 2.842 2.895 0.95 2.880 2.909

b 50 5.022 0.972 14.163 0.95 4.172 5.872 0.99 3.466 5.270
100 4.089 0.039 1.571 0.97 3.882 4.297 0.98 3.849 4.427
150 4.193 0.143 1.042 0.86 4.056 4.329 0.99 3.967 4.253
200 4.139 0.089 0.772 0.85 4.037 4.241 0.96 3.972 4.220
250 4.127 0.077 0.552 0.77 4.049 4.204 0.87 4.106 4.284
300 4.063 0.013 0.445 0.98 3.999 4.126 0.84 4.006 4.166
500 3.990 0.009 0.261 0.92 3.889 3.971 0.81 3.963 4.095
600 3.977 0.007 0.204 0.92 3.819 3.979 0.91 3.959 4.821

λ 50 8.936 5.086 613.884 1.00 3.266 14.605 0.99 7.847 125.833
100 13.801 9.951 4188.593 0.99 3.228 24.373 0.99 5.825 11.575
150 5.053 1.203 27.910 0.99 4.359 5.748 0.98 4.430 5.552
200 4.800 0.950 18.149 1.00 4.315 5.286 0.99 4.599 5.465
250 4.446 0.596 7.480 0.97 4.167 4.725 1.00 3.975 4.488
300 4.329 0.479 2.840 0.97 4.175 4.483 0.98 3.988 4.665
500 4.151 0.411 2.271 0.99 4.037 4.565 0.96 3.376 4.824
600 3.952 0.237 1.950 0.99 3.577 4.005 0.95 3.369 4.117
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Figure 7. Plots of the Biases and MSEs for specific parameter values for set I
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Figure 8. Plots of the Biases and MSEs for specific parameter values for set II

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

B
ia

s

100 200 300 500 600

Bias(â)
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Figure 9. Plots of the Biases and MSEs for specific parameter values for set III
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3.6. Analysis of COVID-19 and cancer data

Even if numerous bounded distributions exist in the literature, no single distribution can be deemed the
best for describing all types of data. In this section, we apply the NHLFr lifetime model for the statistical
analysis of three real-life healthcare data sets. The first data set, denoted by cancer data, represents the
remission times (in months) of a random sample of 128 bladder cancer patients. The second data set,
denoted by Covid 1, signifies the daily confirmed cases of COVID-19 (per day) in Pakistan. The third
data reported by the World Health Organization (WHO), denoted by Covid 2, manifests the number of
deaths reported in the last 24 hours globally. In particular, we aim to compare the fits of the NHLFr model
with other generalizations of the Fréchet (Fr) models given in Table 5. The parameters are all positive
real numbers of these densities.

Table 5. The comparative fitted models

Distribution Authors
BFr Nadarajah and Gupta [17], Barreto and Souza ([4])
EGFr Cordiero et al. [6]
HLFr Cordiero et al. [5]
EFr Nadarajah and Kotz [11]
ZBGaFr Da Silva et al. [7]
TLIW Salman Abbas et al. [1]
MOFr Krishna et al. [12]
Fr Fréchet [8]

We use the method of maximum likelihood estimation to estimate the unknown parameters as pre-
sented in Section 3.4. For each dataset, we consider the following criteria when making a suitable
comparison: the minus log-likelihood (−̂ℓ) of the model taken at the corresponding MLEs, the Akaike
information criterion (AICs), Bayesian information criterion (BICs), Anderson–Darling (AD), Cramér–
von Mises (CvM) and Kolmogrov–Smirnov (KS) as well as the p-value (PV) of the related KS test. They
are, respectively, defined by

AIC =− 2ℓ̂+ 2p, BIC = −2ℓ̂+ p log(n)

AD =−
(
2.25

n2
+

0.75

n
+ 1

)(
n+

1

n

n∑
i=1

(2i− 1) (log yi + log(1− yn−i+1))
)

CvM =

(
0.5

n
+ 1

)( n∑
i=1

(
yi −

2i− 1

2n

)
+

1

12n

)
, KS = max

(
i

n
− yi, yi −

i− 1

n

)

and PV= (Dn ≥ KS) with Dn = supxϵR|Fn(x)− F̂(x)|, where p is the number of parameters of the con-
sidered model, x(1), . . . , x(n) are the ordered observations and yi = F̂ (x(i)) is the empirical cdf defined from
14. The required computations are carried out using the R script AdequacyModel which is easily available
from http://cran.rproject.org/web/packages/AdequacyModel/AdequacyModel.pdf. For each criterion (except
PV(K-S) with the highest value), the smallest values is gained by the NHLFr model, indicating that it pro-
vides the best fit. Finally, the asymptotic confidence intervals (CIs) of the NHLFr parameters at different
surety levels (95% and 99%) alongside the variance-covariance matrix, respectively, are also provided.
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3.6.1. Cancer data

The data set comprises the remission times (in months) of a random sample of 128 bladder cancer pa-
tients originally studied by [13]. Some descriptive statistics related to this data are given in Table 6. The
skewness and kurtosis are indicative of exponentially tailed data (reversed-J shape). The TTT plot along-
side the fitted hazard rate function is given in Figure 10. In particular, the TTT plot shows a possible
increasing-decreasing hrf permitting fitting NHLFr model on this data set. The MLEs (with SEs in paren-
thesis), AICs, BICs, AD, CvM and PV(K-S), are listed in Table 7. For a more visual view, the estimated
pdf, cdf, PP and Q-Q plots are displayed in Figure 11 of the NHLFr model. The figure shows nice fits for
the NHLFr model. Finally, the asymptotic confidence intervals of the NHLFr parameters are presented
in Table 8 with the levels 95% and 99%.

Table 6. The descriptive statistics of cancer data set

Sample size Mean Median SD Minimum Maximum Skewness Kurtosis
128 9.37 6.40 10.51 0.08 79.05 3.29 15.48
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Figure 10. TTT and estimated hazard rate plots for the cancer data set

Table 7. Estimates, the corresponding SEs (given in parentheses)
and the goodness of fit measures of the model parameter for the cancer data

Model Estimates AICs BICs CvM AD PV(K-S)
NHLFr 3.084 0.224 61.172 (–) 827.807 836.363 0.046 0.308 0.877
(a, b, λ) (0.623) (0.065) (8.095)
BFr 0.739 62.050 0.269 8.036 831.823 843.234 0.060 0.413 0.852
(α, β, a, b) (0.420) (47.844) (0.076) (2.169)
EGFr 39.797 0.769 7.353 0.294 832.926 844.334 0.068 0.473 0.829
(α, β, a, b) (24.294) (0.391) (1.770) (0.073)
HLFr 83.554 6.458 0.217 (–) 827.969 836.418 0.051 0.317 0.869
(λ, a, b) (10.822) (1.270) (0.065)
EFr 167.967 7.920 0.201 (–) 828.724 837.280 0.052 0.358 0.807
(θ, a, b) (83.203) (1.070) (0.041)
ZBGaFr 10.081 0.002 2.144 (–) 879.99 888.555 0.556 3.461 0.016
(θ, a, b) (0.335) (0.000) (0.120)
TLFr 0.769 4.128 0.617 (–) 868.189 876.745 0.485 2.888 0.072
(θ, a, b) (0.450) (1.968) (0.053)
MoFr 19.726 0.431 1.253 (–) 853.679 862.235 0.215 1.442 0.178
(α, a, b) (10.174) (0.167) (0.097)
Fr 2.432 0.752 (–) (–) 892.002 897.706 0.744 4.546 0.013
(a, b) (0.219) (0.042)
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Figure 11. Estimated density, cdf, PP-plot, and QQ-plot for the cancer data

Table 8. The confidence intervals of cancer data set

CI a b λ
95% [1.863 4.306] [0.097 0.351] [45.306 77.038]
99% [1.477 4.691] [0.056 0.392] [40.287 82.057]

The variance-covariance matrices of the MLEs of the NHLFr distribution for cancer data is 0.38801706 −0.037248478 9.020134

−0.03724848 0.004203568 −5.061557

9.02013423 −5.061556821 15.029424


3.6.2. Covid 1 data

Recently, Marzouki et al. [2] studied the daily confirmed cases of COVID-19 in Pakistan from March
to April 2020 (36 days). In order to maintain transparency, the data are: 2, 2, 3, 4, 26, 24, 25, 19, 4,
40, 87, 172, 38, 105, 155, 35, 264, 69, 283, 68, 199, 120, 67, 36, 102, 96, 90, 181, 190, 228, 111, 163,
204, 192, 627, 663. The descriptive statistics related to this data are given in Table 9. Specifically, in
Figure 12, the TTT plot is indicative of a decreasing hrf along with the estimated hrf of NHLFr. The
MLEs (with SEs in parenthesis), AICs, BICs, AD, CvM and PV(K-S) are listed in Table 10 while the CI
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are given in Table 11. By far, GoF metrics indicate that the NHLFr model is superior to its competitors.
The estimated pdf, cdf, PP and Q-Q plots are displayed in Figure 13 of the NHLFr model.

Table 9. The descriptive statistics of the Covid 1 data

Sample size Mean Median SD Minimum Maximum Skewness Kurtosis
36 130.39 93 149.70 2 663 2.27 5.46
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Figure 12. TTT and estimated hazard rate plots for the Covid 1 data

Table 10. Estimates, the respective SEs (given in parentheses)
and the goodness of fit statistical measures of the model parameters for the Covid 1 data

Model Estimates AIC BIC CvM AD PV(K-S)
NHLFr 4.396 0.161 83.735 (–) 428.632 433.382 0.094 0.662 0.78
(a, b, λ) (0.723) (0.048) (16.962)
BFr 0.262 76.639 0.294 25.207 430.891 437.225 0.113 0.773 0.49
(α, β, a, b) (0.202) (24.821) (0.102) (17.063)
EGFr 119.959 0.301 22.186 0.272 430.544 436.878 0.105 0.726 0.54
(α, β, a, b) (88.936) (0.191) (11.611) (0.102)
HLFr 8.843 0.161 91.797 (–) 429.869 434.619 0.105 0.693 0.72
(λ, a, b) (1.408) (0.049) (24.633)
EFr 76.638 9.755 0.173 (–) 430.964 435.714 0.138 0.931 0.51
(θ, a, b) (44.282) (1.331) (0.041)
ZBGaFr 15.330 0.003 2.276 (–) 440.435 445.185 0.314 1.970 0.14
(θ, a, b) (1.853) (0.002) (0.377)
TLFr 0.407 17.291 0.502 (–) 441.393 446.143 0.326 2.039 0.15
(θ, a, b) (0.216) (7.654) (0.083)
MoFr 150.492 1.149 1.200 (–) 433.552 438.303 0.164 1.093 0.75
(α, a, b) (87.382) (0.412) (0.178)
Fr 7.145 0.593 (–) (–) 445.051 448.218 0.418 2.540 0.14
(a, b) (1.702) (0.070)

The variance-covariance matrix of the MLEs of the NHLFr distribution for Covid 1 data is 0.37670404 −0.00392489 −2.600704

−0.00392489 0.001313201 35.891992

−2.60070362 35.89199242 56.790262
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Figure 13. Estimated density, cdf, PP-plot, and QQ-plot for the Covid 1 data

Table 11. The confidence intervals of the Covid 1 data

CI a b λ
95% [2.979 5.813] [0.067 0.255] [50.489 116.981]
99% [2.538 6.254] [0.038 0.284] [40.143 127.327]

3.6.3. Covid 2 data

As of October 27, 2021, the World Health Organization (WHO) received reports of 244,385,444 con-
firmed cases of COVID-19, with 4,961,489 deaths. A total of 6,697,607,393 vaccine doses indeed were
transmitted as of October 24, 2021. This resulted in a decline in the daily number of reported deaths, glob-
ally. The third data set incorporates the worldwide deaths reported in the last 24 hours. The countries
who reported no deaths were excluded. The data was accessed on October 26, 2021 and is specifically
given as: 356, 187, 38, 110, 6, 232, 38, 140, 3, 3, 35, 30, 128, 35, 93, 9, 734, 149, 92, 33, 6, 32, 66, 7, 8,
16, 523, 6, 1, 5, 9, 62, 5, 34, 9, 9, 65, 14, 44, 11, 15, 1, 54, 6, 43, 6, 94, 15, 243, 2, 21, 3, 22, 1, 18, 8,
30, 10, 32, 2, 19, 15, 22, 38, 48, 57, 3, 32, 28, 4, 27, 1, 11, 6, 8, 3, 6, 3, 14, 1, 11, 3, 6, 4, 3, 4, 1, 2, 9,
11, 4, 4, 3, 3, 13, 1, 1, 6, 7, 1, 1, 4, 1,10. Ukraine reported the highest number of deaths in a day. Further,
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the descriptive statistics related to Covid 2 data are given in Table 12. In particular, the decreasing TTT
plot is well-matched with the estimated hrf of NHLFr in Figure 14. The MLEs (with SEs in parenthesis),
AICs, BICs, AD, CvM and PV(K-S), are listed in Table 13 while the CI are given in Table 14. The GoF
measures enforce the superiority of NHLFr model over its competitors. Graphically, the estimated pdf,
cdf, PP and Q-Q plots are displayed in Figure 15 of the NHLFr model.

Table 12. The descriptive statistics of the Covid 2 data

Sample size Mean Median SD Minimum Maximum Skewness Kurtosis
104 94.64 10 538.86 1 734 9.61 93.08
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Figure 14. TTT and estimated hazard rate plots for the Covid 2 data

Table 13. Estimates along with the respective SEs (given in parentheses) of the model parameters
for the Covid 2 data and the goodness of fit statistical measures

Model Estimates AICs BICs CvM AD PV(K-S)
NHLFr 1.488 0.629 1.224 (–) 936.506 944.46 0.526 0.053 0.692
(a, b, λ) (0.204) (0.174) (0.521)
BFr 0.109 1.725 0.634 31.791 937.733 948.349 0.558 0.058 0.671
(α, β, a, b) (0.176) (0.764) (0.101) (5.098)
EGFr 3.222 7.600 1.295 0.304 938.450 949.116 0.536 0.059 0.667
(α, β, a, b) (1.074) (5.135) (0.264) (0.098)
HLFr 1.143 2.883 0.760 (–) 943.709 945.671 0.591 0.056 0.661
(λ, a, b) (0.614) (0.505) (0.264)
EFr 3.954 0.523 1.831 (–) 938.514 945.538 0.685 0.067 0.680
(θ, a, b) (0.536) (0.153) (1.052)
ZBGaFr 7.293 0.043 1.631 (–) 953.546 958.507 0.562 0.058 0.637
(θ, a, b) (4.273) (0.128) (0.537)
TLFr 0.154 22.460 0.617 (–) 937.837 945.120 0.569 0.057 0.686
(θ, a, b) (0.088) (14.567) (0.117)
MoFr 3.188 2.301 0.896 (–) 939.382 948.601 0.602 0.060 0.665
(α, a, b) (2.363) (0.864) (0.121)
Fr 3.552 0.717 (–) (–) 938.565 945.873 0.801 0.080 0.577
(a, b) (0.411) (0.054)
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Figure 15. Estimated (a) density (b) cdf (c) PP-plot, and (d) QQ-plot for the Covid 2 data

Table 14. The confidence intervals of the Covid 2 data

CI a b λ
95% [0.288 0.970] [1.088 1.888] [0.203 2.245]
99% [0.179 1.078] [0.962 2.014] [0 2.568]

The variance-covariance matrices of the MLEs of the NHLFr distribution for Covid 2 data is 0.04161658 −0.01236045 0.05468762

−0.01236045 0.03033496 −0.08736272

0.05468762 −0.08736272 0.27149359



4. Concluding remarks
The NHLG class of distribution is presented and studied with some mathematical properties such as ordinary
and incomplete moments, mean deviations and generating functions. The model parameters are estimated us-
ing the greatest likelihood method. To ensure that the projections have asymptotic characteristics, simulations
are run. Three applications to real data sets are offered to highlight the potential of the proposed models. The
presented models are considered an effective tool in a range of sectors, particularly in bioinformatics.
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