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Abstract

A speed-density model can be utilised to efficiently flow pedestrians in a network. However, how each model measures and
optimises the performance of the network is rarely reported. Thus, this paper analyses and optimises the flow in a topological
network using various speed-density models. Each model was first used to obtain the optimal arrival rates to all individual
networks. The optimal value of each network was then set as a flow constraint in a network flow model. The network flow
model was solved to find the optimal arrival rates to the source networks. The optimal values were then used to measure their
effects on the performance of each available network. The performance results of the model were then compared with that
of other speed-density models. The analysis of the results can help decision-makers understand how arrival rates propagate
through traffic and determine the level of the network throughputs.

Keywords: topological network, speed-density models, optimal arrival rates, network flow model, pedestrian flow

1. Introduction

A transportation problem deals with the best strategy to distribute items from several sources to several
sinks or destinations. Each source (e.g., a factory) typically has a capacity of supply, while each desti-
nation (e.g., a warehouse) has a requirement of demand. Using the supply and demand information, the
transportation cost per unit item from the sources to the destinations is minimized. This problem can be
solved using a specialized algorithm or a linear program [11, 31]. Similarly, a linear program can also
be formulated to efficiently flow pedestrians from several sources to several destinations in a topological
network.

Analysing and optimising pedestrian flow can help decision-makers provide effective solutions for
planning and managing pedestrian movement and paths in public buildings and spaces, such as shopping
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malls, sport stadiums, railway stations and airport terminals. Optimising the flow requires us to study
the characteristics of pedestrian movement in each available network. This type of study is important
to understand how a shockwave (a discontinuity or an interruption) propagates through the traffic flow
and to measure the level of service determining how well a transportation facility is operating [27, 33].
In real life, the study and analysis can assist us in identifying potential bottlenecks in particular areas of
networks or testing the impacts of potential operational evacuation strategies. The strategies can then be
used for planning relevant actions during emergency cases or properly designing buildings or facilities
before real construction take place.

Flowing pedestrians through a topological network should consider various factors affecting their flow,
e.g., the number of pedestrians moving in a unit of time, density, speed, space size and different routing
patterns. The speed of pedestrians, which is the inverse of their density, was first established in 1937 [22].
Other literature reviews, e.g., [7, 10, 18–20], also show that the average speed of pedestrians through a
constrained space, either unidirectional or bidirectional movement, is determined by their density in the
space. The relationship between the density and speed describing the average behavior of pedestrians
moving through space has also been modelled and analysed based on a secondary dataset of pedestrian
speed. The plotted figures show the relationship between density and speed to be nonlinear. Examples
of models based on a nonlinear speed-density relationship include the M/G/C/C [14, 15, 24, 25, 30],
Underwood [29] and Greenberg [8] models.

The density of pedestrians in a topological network can practically be controlled by routing them to
relevant downstream and sink networks. To avoid under-utilization or over-utilization of the networks,
the density can further be controlled by regulating the pedestrians’ arrival rates to the source networks
using available speed-density models. By adjusting these two variables, the flow in all networks can be
optimised. However, how each speed-density model analyses and optimises the performance of a topo-
logical network, especially in terms of its throughput, has rarely been reported. Thus, this paper analyses
and optimises the performance of a topological network using various speed-density models. The per-
formance was optimised by deriving the optimal arrival rates of pedestrians to all source networks and
appropriately channelling their movement paths to downstream networks. The generated results can help
decision-makers understand the impacts of arrival rates on traffic flow, compare the network performance
using various speed-density models and justify the appropriate actions to best flow pedestrians out of a fa-
cility.

This paper extends the work of Khalid et al. [16] where some speed-density models have been used to
verify strategies to flow pedestrians in a facility. However, they did not derive the mathematical forms that
optimise the density and flow of various speed-density models. Additionally, they did not discuss some
of the properties of the speed-density models. The paper is divided into several sections. Section 2 briefly
reviews literature related to speed-density models and explains their properties and shortcomings. Taking
a speed model as an example, Section 3 derives its optimal density and flow. The speed-density and flow-
density relationships of various speed-density models are then plotted. This section also describes how
to measure the performance of a constrained space and optimise the throughput of a topological network
using the speed-density models and network flow programming. Based on the methodology, Section 4
analyses the performance of a topological network, considering a university hall as a case study. Section 5
discusses the limitations of this study based on different assumptions. Section 6 concludes the paper.
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2. Literature review

The speed and density relationship in a constrained space has long been modelled. The well-known
relation in the traffic flow theory, q = ρ v, where q is flow, ρ density and v speed was verified by a study
conducted by Predtechenskii and Milinskii between 1946 and 1948 [22]. The study also established
a graphical approach to studying pedestrian traffic flow in time–space diagrams. The relationship among
flow, speed and density of pedestrian flow in selected facilities, considering the socio-economic situations
of certain countries, has also been available. For example, Hankin and Wright [10] and Oeding [19]
considered uni-directional pedestrian flow, while Older [20], Navin and Wheeler [18], and Fruin [7]
considered bi-directional or mixed pedestrian flow in relevant facilities.

Table 1. Various pairwise speed-density models

Model Function Optimal ρ Optimal q

Greenshields [8] v(ρ) = vf
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ρm

)
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ρm
2
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4
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e
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e

ln e
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)
M/G/C/C linear [2] v(ρ) =

vf
ρm

(ρm + 1− ρ) ρopt =
ρm + 1

2
qopt =

vf
4ρm

(ρm + 1)2

The first pairwise speed-density model was developed by Greenshields [9] based on the data collected
in a lane of a two-way rural road. He simply associated speed and density as a linear relationship (see
Table 1), where speed approaches free flow speed, vf when density, ρ approaches zero. Since the linear
relationship is hardly found in many real-world processes, the validity of the model is, however, ques-
tionable. As a result, nonlinear speed-density models were then proposed.

The first nonlinear speed-density model was developed by Greenberg [8]. He related the decrement
of speed as density increases using a logarithmic function. However, the speed in the model increases to
infinity when the density approaches zero. As a result, the model cannot predict speed at lower densities.
To overcome the limitation, Underwood [29] developed an exponential speed-density model. However,
the speed in this model becomes zero only when the density reaches infinity. Thus, the model cannot be
used to predict speed at high densities.

To cater for the problem, other models for modelling a speed-density relationship were then proposed.
They include Drake (also known as the Northwestern) [4], Pipes–Munjal [21] and Drew [5] models. The
Pipe–Munjal and Drew models are basically varied versions of the Greenshields model. Thus, they still
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inherit the Greenshields model’s shortcomings (cf. Table 1). The Greenberg model is undefined when
the density is zero since the speed approaches infinity when the density approaches zero.

A speed-density model relationship was also modelled by Yuhaski and Smith [34] through their
M/G/C/C linear ( Table 1) and exponential models. The exponential model is given as follows:

Vn = Vf exp

(
−
(
n− 1

β

)γ)
(1)

where

β =
a− 1(

ln

(
Vf

Va

))1/γ
=

b− 1(
ln

(
Vf

Vb

))1/γ
, γ =

ln

ln
Va

Vf

ln
Vb

Vf

ln
a− 1

b− 1

where γ, β are the shape and scale parameters for the exponential model, respectively, Vn – walking speed
for n pedestrians in a space, Va – walking speed when the density is 2 pedestrians/m2 (0.64 m/s), Vb –
walking speed when density is 4 pedestrians/m2 (0.25 m/s), Vf – walking speed for a single pedestrian
(1.5 m/s), n – number of pedestrians in a space, a = 2lw, b = 4lw, c = 5lw, l, m, m – space length, and
width, respectively.

As in the Greenberg model, the M/G/C/C exponential is also undefined for n < 1. This can be shown

as follows. Notice that ln
(
a− 1

b− 1

)
is only defined if Z=

a− 1

b− 1
=
2lw − 1

4lw − 1
> 0. Since lw > 0, then

lw =
Z − 1

4Z − 2
> 0. To satisfy this inequality, the values of Z must either be 0 < Z < 0.5 or Z > 1.

Z > 1 occurs only when 0 < lw < 0.25, which is for a very small space size, lw. For these values of lw,
γ = {γ : γ > 0}. 0 < Z < 0.5 occurs when lw > 0.25. This means that when a space is getting bigger
(i.e., lw → ∞), Z → 0.5. 0 < Z < 0.5 yields

γ =

γ : 0 < γ < ln

ln
Va

Vf

ln
Vb

Vf

× 1

ln 0.5

 = {γ : 0 < γ < 1.0729}

Since the values of γ are restricted in this range and β < 0,
(
n− 1

β

)γ

is undefined for n < 1. This

is the reason why Vn is undefined for n < 1 (cf. Figure 2).
All the models are called a single regime since a single function is used to model free flow and density.

To improve such an over-simplified relationship, multi-regime models, providing different equations for
free flow and congested regimes under different conditions, have been proposed. Examples of multi-
regime models include the Edie model [6] and two- and three-regime models [17]. Since multi-regime
models are complex and difficult to apply, this paper only employs single-regime traffic speed-density
models to analyse and optimize pedestrian flow through a topological network.
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3. Materials and method

3.1. Method

Figure 1 shows the method for measuring the performance of a topological network and optimising its
throughput using speed-density models and a network flow model. In brief, this study first collected and
reviewed available speed-density models to understand their properties and derive their optimal densities
and flow. Using a particular speed-density model, the optimal arrival rates for all the individual networks
in a topological network were derived. Each of these optimal arrival rates was then set as a flow constraint
in a network flow model. The objective function of the network flow model is to optimise the flow in all
the networks.

Figure 1. The methodology of the study

The model was then solved using linear programming software to obtain the optimal arrival rates
to the source networks. The optimal arrival rates were used to measure its effect on the performance
of each of the available networks, especially in terms of its throughput and blocking probability. The
performance results were then compared with the performance results generated when the same arrival
rates were imposed on all source corridors and when the shortest route policy was implemented in the
topological network.

3.2. Deriving the optimal density and flow of a speed-density model

Based on a speed-density model, its optimal density and flow can be derived. For example, the Under-
wood model relates the speed-density as

v(ρ) = vfe
− ρ

ρm (2)

where v is the average traffic speed, vf is the free flow (maximum) speed (the speed of a single pedestrian
or vehicle), ρ is the traffic density (the number of pedestrians or vehicles per unit area) and ρm is the
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maximum (critical) density at which a traffic jam occurs and the speed is near to zero. Any increase in
traffic density will decrease the average flow speed in a space (e.g., a corridor or a road). This decreasing
rate may differ for different populations. In the case of pedestrian population, the density is the number
of pedestrians divided by the area of space (i.e., the product of its length and width). The number
of pedestrians is thus expressed in their density in a 1m2 space. For example, consider a space of
10 × 3m 2 in which the current number of pedestrians is 60. The traffic density (in pedestrians per
second, i.e., peds/s) for the space can then be calculated as ρ = 60/(10× 3) = 2. If we further consider
that vf = 1.5 m/s and ρm = 5 peds/m2, the current speed of the pedestrians is v(2) = 1.5e−0.4 = 1.00548 m/s.

Using the same approach, if there are 120 pedestrians, ρ =
120

10× 3
= 4 peds/m2 and v(4) = 1.5e−0.4 =

0.67399 m/s. The pedestrian flow through the space, q, is given by

q = ρv = ρvfe
− ρ

ρm (3)

The pedestrian flow refers to the number of pedestrians crossing a section of a space in a unit of time.
The usual unit for flow is peds/m/s (pedestrians per meter width per second). Thus, the pedestrian flow
q through the 10 × 3 m2 space with 60 pedestrians is 2 × 1.5e−0.4 = 2.01096 peds/m/s, while with 120
pedestrians it is 2.69596 peds/m/s.

To get the density for the minimum or maximum flow, we find
dq

dρ
, and then set it 0. Taking u = ρvf

and v = e−
ρ

ρm and using the quotient rule [26], we obtain

dq

dρ
= vfe

− ρ
ρm − ρvfe

− ρ
ρm

ρm
= 0

1− ρ

ρm
= 0

ρ = ρm

(4)

To show that ρ = ρm maximizes the flow, we have to find
d2q

dρ2
, and check its value
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Since

ρ

ρm
≤ 1 and

vf
ρm

e−
ρ

ρm > 0, then
d 2q

dρ2
< 0. The value of

d 2q

dρ2
< 0 ∀ρ proves that q is maximized

at ρ = ρm. To get the optimal flow, qopt, for the Underwood model, we substitute ρ = ρm to equation (3)

qopt = ρmvfe
− ρm

ρm = ρmvfe
−1 =

ρmvf
e

(5)

Thus, the optimal flow for the 10 × 3 m2 space is qopt=
5× 1.5

e
= 2.7591 peds/m/s.
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Figure 2. Graphical speed-density relationships

Using the same approach, the optimal density and flow for the other speed-density models can be
derived. The equation, the optimal density and the flow for each of the speed-density models are given
in Table 1. The graphical speed-density relationships for the models are plotted in Figure 2. Based on
the plot, the speed of Greenberg and M/G/C/C exponential models approaches infinity when the density
approaches zero causing the models undefined when the density is zero.

Figure 3. Graphical flow-density relationships

The flow-density relationships for the models are shown in Figure 3. The flow is initially zero since
the density is zero, i.e., no pedestrians are in a space. The density then continually increases which also
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increases the flow until it reaches a relevant point of density maximizing the flow. After this optimal
density, any increase in the density will decrease the flow until the flow becomes zero at a critical density,
called jam density. At this stage, no movement of pedestrians can be seen.

Figure 4. The values of the optimal density and flow

The optimal density and flow values for each model are shown in Figure 4. Note that the values
of the optimal density and flow for the Pipes–Munjal and Drew models are based on n = 2 and n = 1,
respectively. The value of n is set arbitrarily to provide a sample of the shape of each of the speed-density
and flow-density curves and to derive the optimal density and flow. The scalar parameter n is the shape
parameter describing how the speed-density curves are stretched out over the whole density range [3].

3.3. Measuring the performance of a constrained space

The speed and flow of pedestrians in a constrained space are dependent on their density. This density
can be managed by controlling the pedestrians’ arrival rate to the space. Using the arrival rate, various
performances of the space, e.g., its throughput and blocking probability, can be measured. The following
equation for blocking probabilities was developed by Yuhaski and Smith [34]:

Pn =
(λE(S))n

n!f(n)f(n− 1)...f(2)f(1)
P0, n = 1, 2, 3, . . . , c (6)

where

P−1
0 = 1 +

C∑
n=1

(
λE(S)

)i
i!f(i)f(i− 1)...f(2)f(1)

Pn is the probability when there are n pedestrians in the space, λ is the arrival rate to constrained space,
E(S) is the expected service time of a single pedestrian in the space, P0 is the probability when no

pedestrians are present in the space, and f(n) =
Vn

Vf

is the service rate, and c is the capacity of the space.

A full-capacity space will block any incoming pedestrians. The probability of such blocking (Pbalk)
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equals Pn where n equals c. Based on the equation, Cheah and Smith [2] developed various performance
measures of the space which can be computed as:

θ = λ(1− Pbalk), E(N) =
c∑

n=1

nPn and E(T ) =
E(N)

θ
(7)

θ is the throughput of the space, peds/s, E(N) is the expected number of pedestrians in the space, peds/s,
and E(T ) is the expected service time, s.

Figure 5. Throughput versus arrival rate for various models

The throughputs of a 10 × 3 m2 space based on a series of arrival rates for various speed-density
models are plotted in Figure 5. The throughput for each speed-density model initially increases with the
increase of its arrival rate, then the throughput reaches its maximum point. Then, the throughput is no
longer improved and starts to decrease because the blockage is now being established. The throughput
of a space can be optimized by finding its optimal arrival rate. The equation which finds the optimal λ,
λopt is given by [13]:

λopt =

 (P−1
0 )2

(λE(S))c

c!f(c)f(c− 1)...f(2)f(1)

(
(c+ 1)(P−1

0 )−
c∑

i=1

(
i (λE(S))i

i!f(i)f(i− 1)...f(2)f(1)

))


1/c

(8)

Equation (8) can be used to obtain the optimal arrival rate to a space based on whatever speed-density

model since it incorporates f(n) =
Vn

Vf

, i.e., the service rate given by the ratio of the average walking

speed for n pedestrians in the space over its average walking speed for a single pedestrian. The optimal
λ and its effects on the performance measures for 10 × 3 m2 is shown in Table 2.
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Table 2. Optimal λ and its effects on the performance measures for a 10× 3 m2 space

Model λ θ PC E(N) E(T )
Greenshields [8] 2.9011 2.8782 0.0079 24.0813 8.3667
M/G/C/C exponential [2] 3.2513 3.2219 0.0090 40.3966 12.5380
M/G/C/C linear [2] 3.7082 3.6769 0.0084 32.3958 8.8106
Greenberg [7] 4.0231 3.9943 0.0072 11.3167 2.8332
Pipes–Munjal [20] (n = 2) 4.5753 4.5365 0.0085 33.1325 7.3035
Drew [4] (n = 1) 5.1810 5.1357 0.0087 36.6559 7.1375
Underwood [29] 9.3470 8.2555 0.1168 142.7203 17.2879
Drake/Northwestern [3] 15.6341 13.5953 0.1304 143.6363 10.5652

3.4. Optimising the throughput of a topological network

A number of connected spaces will form a topological network. The network’s throughput can be opti-
mized by setting the optimal arrival rate of each available space as a flow constraint in a network flow
model [12]. The mathematical formulation of a network flow model [1, 13, 16, 32] is given as:

Maximize xT→S: flow from super-sink node T back to super-source node S

subject to:∑
j

xi→j −
(∑

i

xj→i − xT→S

)
= 0: outflow of node i equals its inflow for node i = S

∑
j

xi→j −
(∑

i

xj→i − xS→i

)
= 0: outflow of source node i equals its inflow for every node i ̸= s, t∑

j

xi→j −
∑
i

xj→i = 0: outflow of node i equals its inflow for every node i ≠ s, t(∑
j

xi→j + xi→T

)
−
∑
i

xj→i = 0: outflow of sink node i(∑
j

xi→j + xT→S

)
−
∑
i

xj→i = 0: outflow of node i equals its inflow for node i = T∑
i

xi→j ≤ cj: flow capacity for every edge i→ j is smaller or equal to the optimal arrival rate to node j

xi→j ≥ 0: minimum flow for every edge i → j

where i is an index for origin node (vertex) i, j is an index for destination node j,xi → j is the flow from
origin node i to destination node j.

A node represents a space, while an edge represents the link between two spaces. Since there may be
a number of source (s1, s2, . . . , sn) and sink (t1, t2, . . . , tn) spaces in the network, a fictitious super-source
S and a fictitious super-sink T should be introduced.

The network flow model will generate the optimal arrival rates to the source spaces. These arrival rates
will then be used to measure their impacts on all the downstream spaces in terms of their throughputs,
blocking probabilities, the expected number of pedestrians and the expected service time.
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4. Results and discussion

4.1. A university hall as a case study

As a case study, we used a university hall [13]. Its structure in terms of available corridors (constrained
spaces) is presented in Figure 6.

Figure 6. The structures of a considered hall

Table 3. Dimensions [m] and the optimal arrival rates based on speed-density models

No. Dimensions Optimal arrival rate, λopt

Length Width
M/G/C/C

expo [8] [7] [29] [3] [20] [4]
M/G/C/C

linear
1 6.45 1.88 1.9972 1.3897 1.9604 6.7352 11.4096 2.1588 2.4289 2.4393
2 6.00 1.65 1.7633 1.0754 1.5241 6.0861 10.3516 1.6634 1.8683 2.1384
3 8.40 3.30 3.5565 3.1746 4.4074 10.4553 17.5016 5.0019 5.6615 4.1255
4 6.00 1.65 1.7633 1.0754 1.5241 6.0861 10.351 1.6634 1.8683 2.1384
5 5.48 5.90 4.1237 3.4274 4.7818 12.5132 21.0195 5.3767 6.0745 4.8180
6 8.98 1.88 2.0188 1.5607 2.1869 6.3051 10.6251 2.4389 2.7509 2.3729
7 8.98 1.88 2.0188 1.5607 2.1869 6.3051 10.6251 2.4389 2.7509 2.3729
8 11.55 1.88 2.0179 1.7057 2.3781 6.1338 10.2983 2.6775 3.0257 2.3700
9 11.55 1.88 2.0179 1.7057 2.3781 6.1338 10.2983 2.6775 3.0257 2.3700
10 8.98 1.88 2.0188 1.5607 2.1869 6.3051 10.6251 2.4389 2.7509 2.3729
11 8.98 1.88 2.0188 1.5607 2.1869 6.3051 10.6251 2.4389 2.7509 2.3729
B’ 3.60 4.00 4.3045 3.0917 4.3475 13.662 23.0839 4.8167 5.4259 5.0435
C’ 10.00 3.00 3.2513 2.9011 4.0231 9.3470 15.6341 4.5753 5.181 3.7082

The dimensions of the corridors are shown in Table 3. The occupants exit the hall using the available
source corridors 1–11. Each source corridor has its door denoted as A to I . The occupants use the doors
to enter the source corridors and then travel to the downstream corridors. They then exit the hall either
through an exit door A′ or exit corridors through B′ and C ′.
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4.2. The performance of the hall utilizing all available routes

Table 3 presents also the optimal arrival rates to each available corridor using the considered speed-
density models. Each of the optimal arrival rates generates the optimal throughput with the smallest
blocking probability.

Table 4. The network flow model for the hall using the Greenshields model

Maximize xT→S

!flow out of a super source node equals to its flow in;
xT→S = xs→1 + xs→3 + xs→5 + xs→6 + xs→7 + xs→8 + xs→9 + xs→10 + xs→11

!flow out of each node equals its flow in; xS→1 = x1→2

x1→2 = x2→3

xs→3 + x2→3 = x3→4

x3→4 = x4→5

xS→5 + x4→5 = x5→T

xS→6 = x6→BBar

xS→7 + x8→7 = x7→BBar

xS→8 = x8→7

xS→9 = x9→10

xS→10 + x9→10 = x10→CBar

xS→11 = x11→CBar

x6→BBar + x7→BBar = xBBar→T

x11→CBar + x10→CBar = xCBar→T

!flow out of a super sink node equals its flow in; x5→T + xBBat→T + xCBat→T = xT→S

xS→1 <= 1.3897
x1→2 <= 1.0754
xS→3 + x2→3 <= 3.1746
x3→4 <= 1.0754
xS→5 + x4→5 <= 3.4274
xS→6 <= 1.5607
xS→7 + x8→7 <= 1.5607
xS→8 <= 1.7057
xS→9 <= 1.7057
xS→10 + x9→10 <= 1.5607
xS→11 <= 1.5607
x6→BBar + x7→BBar <= 3.0917
x11→CBar + x10→CBar <= 2.9011

Table 5. The performance of the topological network using the Greenshields model

Corridor λ θ Blocking E(N) E(T )
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000 0.0000
5 3.4274 3.3898 0.0110 15.7371 4.6424
6 1.5607 1.5396 0.0135 11.8907 7.7231
7 1.5310 1.5260 0.0033 10.8898 7.1363
8 1.5310 1.5310 0.0000 13.6200 8.8962
9 1.5607 1.5607 0.0000 13.9306 8.9259
10 1.5607 1.5396 0.0135 11.8905 7.7230
11 1.3404 1.3404 0.0000 9.1273 6.8094
B’ 3.0656 3.0372 0.0093 9.0854 2.9913
C’ 2.8800 2.8710 0.0031 23.2745 8.1068

Total throughput of the network: 9.2981 peds/s
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How the optimal arrival rates were used in a network flow model to optimize the flow in the hall based
on the Greenshields model is shown in Table 4. Solving the network flow model using any optimiza-
tion modelling tools, e.g., Lingo (https://www.lindo.com/), will generate the optimal arrival rates to
source corridors. In this case, Lingo reported that for the Greenshields model, λS→5 = 3.4274, λS→6 =
1.5607, λS→7 or λS→8 = 1.5310, λS→9 or λS→10 = 1.5607, λS→11 = 1.3403 (Table 5) would optimize the
flow in the hall. The generated optimal rate was then used to measure their impact on the whole network.
The performance of the whole network based on the Greenshields model is presented in Table 5. Notice
that the final throughput of the network was calculated based on the total throughput of A′, B′ and C ′.
Thus, the throughput based on the Greenshields model was 3.3898 + 3.0372 + 2.8710 = 9.2981 peds/s.

Table 6 shows the strategies to optimize the throughput of the hall using various speed-density models.
The throughputs are sorted from lower to higher values. As observed, the speed-density models generated
their own optimized throughputs. The lowest throughput was 9.2981 peds/s, while the highest throughput
was 47.5782 peds/s generated by the Greenshields and Drake models, respectively. Compared to the other
models, the Greenshields model generated the lowest overall throughput since it generated the lowest
optimal arrival rate for each available corridor (see Figure 5 and Table 2) whose values were then used
in the network flow model to find the optimal flow in the hall. For the same reason, the Drake model
generated the highest throughput since it generated the highest optimal arrival rate value for each corridor.
The second lowest throughput (11.2493 peds/s) was generated by the M/G/C/C exponential model. This
model suggests that the occupants should exit the hall using corridor 5 with λS→5 = 4.1237, corridor 6
with λS→6 = 2.0188, corridor 7 with λS→7 = 2.0188), corridor 10 with λS→10 = 2.0188 and corridor 11
with λS→11 = 1.2325 to optimize the flow in the hall.

Table 6. The strategies to optimize the throughput using various speed-density models

Model Strategy Total θ Total θ1

Greenshields
λS→5 = 3.4274, λS→6 = 1.5607, λS→7 or λS→8 = 1.5310,
λS→9 or λS→10 =1.5607, λS→11 = 1.3403 9.2981 3.0000

M/G/C/C
exponential

λS→5 = 4.1237, λS→6 = 2.0188, λS→7 or λS→8= 2.0188,
λS→9 or λS→10 = 2.0188, λS→11 = 1.2325 11.2493 8.3809

Greenberg
λS→5 = 4.7818, λS→6 = 2.1869, λS→7 or λS→8 = 2.1606,
λS→9 or λS→10 = 2.1869, λS→11 = 1.8362 12.9932 7.0002

M/G/C/C
linear

λS→5 = 4.818, λS→6 = 2.3729,λS→7 or λS→8 = 2.3729,
λS→9 or λS→10 = 2.3729,λS→11 = 1.3353 13.0965 8.9962

Pipes–Munjal (n = 2)
λS→5 = 5.3767, λS→6 = 2.4389, λS→7 or λS→8 = 2.3778,
λS→9 or λS→10 = 2.4389, λS→11 = 2.1364 14.5664 7.0333

Drew (n = 1)
λS→5 = 6.0745, λS→6 = 2.7509, λS→7 or λS→8 = 2.675,
λS→9 or λS→10 = 2.7509, λS→11 = 2.4301 16.4476 8.4026

Underwood
λS→5 = 12.5132, λS→6 = 6.3051, λS→7 or λS→8 = 6.3051,
λS→9 or λS→10 = 6.3051, λS→11 = 3.0419 28.9877 9.0000

Drake
λS→5 = 21.0195, λS→6 = 10.6251, λS→7 or λS→8 = 10.6251,
λS→9 or λS→10 = 10.6251, λS→11 = 5.009 47.5782 9.0000

1 Arrival rates to all source corridors set to 1.

[h]

Table 6 also shows the performance of the hall if the arrival rates to all source corridors were set
to 1, i.e., λS→1 = λS→3 = λS→5 = λS→6 = λS→7 = λS→8 = λS→9 = λS→10 = λS→11 = 1. As observed,

https://www.lindo.com/
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this strategy generated much smaller throughputs compared to their optimized strategies in all the speed-
density models. For example, this strategy only generated 7.0002 peds/s compared to the optimized
strategy which could generate 12.9932 peds/s in the Greenberg model.

4.3. The performance of the hall utilizing only a single route

The performance of the hall can also be analyzed if the occupants are forced to only use a single exit route
to exit the hall. As mentioned earlier, there are three exit corridors. Thus, three strategies are available to
flow out the occupants. Using the data on the corridor dimensions in Table 3, the shortest route is through
exit A′ (5.48 m), followed by C ′ (11.88 m) and B′ (12.58 m). For more complex topologies, the shortest
route [23, 28] can be retrieved using:

minZ =
∑
i

∑
j

ci→jxi→j

subject to ∑
j

xi→j −
∑
k

xk→i =


1 if i = S

−1 if i = T ,

0 otherwise

xi→j ≥ 0

where ci→jis= the distance from node i to node j xi→j equal to the flow from node i to node j.

Table 7. The strategies to optimize the throughput using a single exit

Model Only exit through A′ Only exit through B′ Only exit through C ′

Strategy θ Strategy θ Strategy θ

Greenshields λS→5 = 3.4274 3.3898
λS→6 = 1.5607,
λS→7 = 1.5310 3.0372

λS→10 = 1.5607,
λS→11 = 1.3404 2.8710

M/G/C/C
exponential λS→5 = 4.1237 4.0704

λS→6 = 2.0188,
λS→7 = 2.0188 3.97015

λS→10 = 2.0188,
λS→11 = 1.2325 3.2088

Greenberg λS→5 = 4.7818 4.7337
λS→6 = 2.1869,
λS→7 = 2.1606 4.2747

λS→10 = 2.1869,
λS→11 = 1.8362 3.9847

M/G/C/C
linear λS→5 = 4.8180 4.7603

λS→6 = 2.3729,
λS→7 = 2.3729 4.6735

λS→10 = 2.3729,
λS→11 = 1.3353 3.6627

Pipes–Munjal (n = 2) λS→5 = 5.3767 5.3138
λS→6 = 2.4389,
λS→7 = 2.3778 4.7279

λS→10 = 2.4389,
λS→11 = 2.1364 4.5247

Drew (n = 1) λS→5 = 6.0745 6.0015
λS→6 = 2.7509,
λS→7 = 2.6750 5.3239

λS→10 = 2.7509,
λS→11 = 2.4301 5.1222

Underwood λS→5 = 12.5132 10.6409
λS→6 = 6.3051,
λS→7 = 1.3403 6.3051

λS→10 = 6.3051,
λS→11 = 3.0419 8.0760

Drake λS→5 = 21.0195 17.5202
λS→6 = 10.6251,
λS→7 = 10.6251 16.8160

λS→10 = 10.6251,
λS→11 = 5.009 13.2420

Table 7 shows the strategies to optimize the throughput of the hall using a single exit route. Exit
route A′ should be used to flow the occupants since it generates better throughputs compared to other
exit routes in all speed-density models. For example, the M/G/C/C exponential model recommends that
the occupants should have flowed with 4.1237 peds/s to achieve the optimal throughput of 4.0704 peds/s.
However, for all speed-density models, this strategy produces a much smaller throughput compared to
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flowing the occupants using all available routes.

4.4. The best model for optimising pedestrian flow
in a topological network

This paper considers and compares seven different speed-density models for optimising pedestrian flow
in a topological network. The question is which model is the best for the purpose. To answer this question,
we should evaluate the density of occupants/pedestrians in a considered facility or topological network.
If the facility/topological network has a high density of occupants/pedestrians, models that predict speed
at a higher density should be used. Examples are the Greenshields, M/G/C/C, Greenberg, Pipes–Munjal
and Drew models. Under this situation, the Underwood and Drake models are ineffective since neither
can correctly predict speed at a high density. If the facility/topological network has a low number of
occupants/pedestrians, models that predict speed at a lower density should be employed. Examples are
Greenshields, Pipes–Munjal and Drew, Underwood and Drake models. In this case, the M/G/C/C and
Greenberg models are unsuitable. Since the network flow model attempts to derive the optimal density
in each available network, the Greenshields, Pipe–Munjal and Drew models are the best models for
optimising pedestrian movement across a topological network.

5. The limitations of the study

This study has two main limitations. The first limitation is that this study only examined the interaction
between speed and crowd density under a normal or typical situation. Under this condition, the optimal
arrival rates to source networks were then derived to maximise the flow across a topological network. In
emergency situations, such simulations and evaluations may be inaccurate since pedestrian behavior is
unpredictable and complex to model. The behavior (such as panic, confusion and stampede) will slow
down pedestrian movement which may result in a reduction in overall throughput.

The second limitation is that our methodology is primarily concerned with determining the optimal
arrival rates to the source networks under a stability condition, in which the network flow is smooth with
little blocking to ensure that pedestrians do not overflow in each available network. It is not intended
to be used to analyse arrival rates that are higher than the optimal arrival rates, since this may cause the
networks to explode and cause blocking in downstream networks.

6. Conclusion

Pedestrians’ speed and flow in a network, affected by their density, can be calculated using speed-density
models. The models can additionally be utilised to optimally control pedestrians’ density by regulating
their arrival rates. This paper optimises the arrival rates to the source networks of a topological network
and analyses their effects on the performance of each available network using the speed-density models
and network flow program. The results show that the optimal arrival rates generate the smoothest flow in
the whole network and maximises its throughput.

The analysis can help decision-makers get insight into how to manage traffic flow in public facilities
and building networks. In whatever cases, flowing pedestrians out of a facility using a single shortest
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route would not produce good throughput as flowing pedestrians using all available routes. To help
decision-makers visualise the pedestrians’ real behaviour, it is recommended that future research can
animate the pedestrians’ movement in the topological network based on the optimised strategy and other
considered strategies using simulation tools.
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