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Abstract

The concept of energy in graphs and matrices is used effectively in all application areas. The energy of the matrix is an
extension of graph energy. The usage of the energy idea in neutrosophic matrices makes it more flexible and applicable in
multi-criteria decision-making environments. In this paper, we propose the energy approach in neutrosophic matrices with
interval values. We determined the given energy’s upper and lower bounds. The energy is used of the interval-valued neutro-
sophic matrix to address the MCDM problem. A new strategy has been introduced called the interval-valued neutrosophic
energy method to solve this problem. We look at the problem of choosing a qualified manager for a business project. A team
of professionals in the company evaluates the options using neutrosophic numbers with interval values, and the energy method
is then used to calculate the result. The result has been compared with the TOPSIS method results to show that the outcomes
are similar.

Keywords: neutrosophic set, matrix energy, interval-valued neutrosophic matrix, multi-criteria decision-making

1. Introduction

In 1978, Gutman [11] was the first to bring out the idea of energy. It is described as the sum of the
absolute values of the eigenvalues of the adjacency matrix of a graph. The energy of the graph is extended
to uncertain surroundings. In 2013, Mathew and Anjali [1] introduced a fuzzy graph’s energy. In an
intuitionistic fuzzy graph, the concept of energy was created by Praba and Deepa [20]. In this study, they
defined the adjacency matrix, the energy, and the bounds of an intuitionistic fuzzy graph. The matrix’s
energy equation was developed by DiStefano et al. The energy of a matrix is a generalization of the
energy of a graph. Nikiforov [18] published the concept of energy in graphs and matrices. Then Bravoa
et al. [4] presented a study on energy of matrices.
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Fuzzy sets and fuzzy logic were introduced by Zadeh [28] in 1965. The intuitionistic fuzzy set was
proposed by Atanassov [2] in 1986. In 1998, Smarandache [23] introduced the neutrosophic set. Neu-
trosophic sets have truth, indeterminacy, and false as their membership functions. Smarandache and
Kandasamy [12] introduced fuzzy and neutrosophic relational maps. They also added square neutro-
sophic matrices to this and developed the neutrosophic matrix and related algebraic operations [7]. Wang
et al. [27] along with many other properties, functions, and relationships of interval neutrosophic sets,
demonstrate the compactness of interval-valued neutrosophic sets. In 2014, Kharal [14] presented a
method of MCDM based on neutrosophic sets. Neutrosophic sets are being offered to the MCDM com-
munity for the first time. Novel operators on interval-valued neutrosophic sets have been presented by
Saha and Broumi [22]. They defined a few newer IVNS operators and looked at their characteristics.
Mao et al. [15] proposed a neutrosophic-based method in data envelopment research with inappropriate
outcomes. The suggested method has a basic construction and is focused on the aggregation operator. In
2020, Das [6] presented neutrosophic fuzzy matrices and several algebraic functions, defining some their
properties. Vidhya et al. [26] defined interval-valued neutrosophic fuzzy matrix and its characteristics.
Karaaslan [13] defined the determinant and adjoint of the interval-valued neutrosophic matrices based on
the permanent function. Martin et al. [16] presented a new pithogenic sub-cognitive mapping technique
with mediating effects of elements in the COVID-19 treatment model. This new strategy is more prac-
tical since it considers the mediating effects as well as the degree of element contradiction. Polymenis
[19] provided an approach for conducting a neutrosophic student’s t-type statistical test that concerns
the population means. Veeramani et al. [25] used the decision-making trial and evaluation laboratory
(DEMATEL) approach in a neutrosophic area to determine the relative significance of the financial ra-
tios of two categories, accounting-based financial measures (AFM) and economic value-based financial
measures (EFM). Edalatpanah [10] provided the introduction to the neutrosophic and plithogenic sets
for science and engineering: theory, models, and applications in 2023. In the same year, Stanimirovic
[24] suggested examining ways to improve line search techniques for dealing with unrestricted nonlinear
optimization models.

The TOPSIS approach using interval-valued neutrosophic sets for employee selection was introduced
by Vu Dung et al. [9]. Chou et al. [5] proposed interval-valued neutrosophic sets to create a multi-
criteria decision-making strategy for renewable energy selection. Using the connectivity of the analytic
hierarchical process method with the TOPSIS method under a neutrosophic environment, this study sug-
gests an extension of the MCDM technique to assess renewable energy sources. Ramesh et al. [21]
applied the TOPSIS method to group decision-making situations and computed the signless Laplacian
energy of an intuitionistic fuzzy graph. Zavadskas et al. [29] This work introduces a new multi-criteria
decision-making technique, MULTIMOORA, in multi-objective optimization by ratio analysis under
interval-valued neutrosophic sets. Interval-valued neutrosophic AHP with potential degree method was
worked by Bolturk et al. [3]. In this study, we use the representation power of the neutrosophic set to
rank interval numbers using the potential degree method in our neutrosophic AHP methodology. In 2022,
Deepa and Jeni [17] presented operations on multi-valued neutrosophic matrices and their application
to the neutrosophic simplified TOPSIS method. They also described the determinant, adjoint, and dif-
ferent operations of the multi-valued neutrosophic fuzzy matrix. The neutrosophic, simplified TOPSIS
approach was used to numerically illustrate the use of the proposed matrices.
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In this paper, we defined the energy of the interval-valued neutrosophic matrix and its application to
the MCDM problem. In Section 2, the basic definitions were given. Section 3 presents the energy of
an interval-valued neutrosophic matrix, and some propositions were given. In Section 4, we proposed a
new method for solving the MCDM problem using our definition. The proposed method is numerically
demonstrated in Section 5. We compared our method to the TOPSIS method in Section 6. Results and
discussions are given in Section 7. Finally, the conclusion was given.

2. Basic definitions

Definition 1. Energy of matrix [1]. Let Mn(C) denote the space of n × n matrices with entries in C
and P be a matrix in Mn(C). Then the energy of matrix P is defined as

E(P ) =
n∑

i=1

|λi − µ| (1)

where, λ1, λ2, . . . , λn are the eigenvalues of P and µ is the mean of eigenvalues. If µ = 0 or P is the
adjacency matrix of graph G, then E(P ) is precisely the energy of the graph G.

Definition 2. Neutrosophic set (NS) [6]. Let U be the universal set and every element a ∈ U has
a degree of truth, indeterminacy, and falsity membership in a neutrosophic set. It is denoted by S. Then
it can be defined as

S = {
〈
a, TS(a), IS(a), FS(a)

〉
, a ∈ U} (2)

where, 0 ≤ TS(a) + IS(a) +FS(a) ≤ 3 and TS is the truth membership function, IS is the indeterminacy
membership function, FS is the false membership function, every function lies between [0, 1] in U.

Definition 3. Neutrosophic fuzzy matrix [7]. A neutrosophic fuzzy matrix P of the order m × n is
defined as

P = [
〈
Tijp, Iijp, Fijp

〉
]m×n (3)

where, Tijp, Iijp, Fijp are called truth, indeterminacy and false membership of ijth in P , which satisfying
the condition 0 ≤ Tijp+Iijp+Fijp ≤ 3. For simplicity, we write [Pij ]m×n. where Pij =

〈
Tijp, Iijp, Fijp

〉
.

Definition 4. Interval-valued neutrosophic set [27]. Let U be a nonempty set with generic elements in
U denoted by a. The interval-valued neutrosophic set A in U is as follows

A = {a :
〈
a, TA(a), IA(a), FA(a)

〉
; a ∈ U} (4)

where interval truth membership function TA(a) = [TL
A , T

U
A ], interval indeterminacy membership func-

tion IA(a) = [ILA, I
U
A ], interval false membership function FA(a) = [FL

A , F
U
A ] for each point a ∈ U and

TA(a), IA(a), FA(a) ∈ [0, 1]

Definition 5. Interval-valued neutrosophic fuzzy matrix [26]. An interval-valued neutrosophic fuzzy
matrix (IVNFM) Q of order m× n is defined as

Q = [
〈
Tijq, Iijq, Fijq

〉
]m×n (5)



38 J. S. M. Donbosco and D. Ganesan

where, Tijq, Iijq, and Fijq are truth, indeterminacy, and false membership elements which are the subset
of [0, 1]. It is denoted by Tijq = [TL

ijq, T
U
ijq], Iijq = [ILijq, I

U
ijq] and Fijq = [FL

ijq, F
U
ijq] with the condition

0 ≤ TL
ijq + ILijq + FL

ijq ≤ 3 and 0 ≤ TU
ijq + IUijq + FU

ijq ≤ 3 for i = 1, 2, . . . , m and j = 1, 2, . . . , n.

Definition 6. Energy of neutrosophic matrix [8]. Let P (N) be the square neutrosophic matrix. It can
be expressed as truth, indeterminacy and false matrices, which contain the elements of truth membership
values aij , indeterminacy membership values bij , and false membership values cij . It is denoted as
P (N) =

〈
P (Tij), P (Iij), P (Fij)

〉
n×n

and aij ∈ P (Tij)n×n, bij ∈ P (Iij)n×n and cij ∈ P (Fij)n×n.
The neutrosophic matrix’s energy is defined as

E[P (N)] =
〈
E[P (Tij)], E[P (Iij)], E[P (Fij)]

〉
E[P (N)] =

〈
n∑

i=1

|λi − µλ|,
n∑

i=1

|ζi − µζ |,
n∑

i=1

|ηi − µη|

〉
(6)

where λi, ζi and ηi, i = 1, 2, . . . , n), are the eigenvalues of truth, indeterminacy, and false membership
values, respectively, and µλ, µζ , and µη are the mean values of λi, ζi and ηi, respectively.

3. The energy of interval-valued neutrosophic matrix

This section introduces the matrix’s energy of the interval-valued neutrosophic structure. The values
of every element of the matrix are neutrosophic interval values. In some situations, single values are
not reliable; in these cases, interval values are a better way to predict the outcomes. It would be more
practical and convenient to evaluate the issue as compared to other structures. So, in this section, we
define the interval-valued neutrosophic matrix energy as well as its lower and upper bounds.

Let Q be the interval-valued neutrosophic matrix with n× n order. It is defined as

Q =

[〈
(TL

ijq, T
U
ijq), (I

L
ijq, I

U
ijq), (F

L
ijq, F

U
ijq)

〉]
n×n

(7)

It can be expressed as six matrices, the first two contain the elements of lower and upper limits of truth
values,the second two matrices contain the elements of lower and upper limits of indeterminacy values
and the last two matrices contain the elements of lower and upper limits of false values[

(aLij, a
U
ij), (b

L
ij, b

U
ij), (c

L
ij, c

U
ij)
]

where aLij ∈ TL
ijq, a

U
ij ∈ TU

ijq, b
L
ij ∈ ILijq, b

U
ij ∈ IUijq, c

L
ij ∈ FL

ijq, and cUij ∈ FU
ijq.

Then the energy of the interval-valued neutrosophic matrix is defined as

E[Q] =
[
(E[TL

ijq], E[TU
ijq]), (E[ILijq], E[IUijq]), (E[FL

ijq], E[FU
ijq])

]
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E[Q] =

[ n∑
i=1

∣∣∣λL
i − µλL

∣∣∣ , n∑
i=1

∣∣∣λU
i − µλU

∣∣∣
 ,

 n∑
i=1

∣∣∣ζLi − µζL

∣∣∣ , n∑
i=1

∣∣∣ζUi − µζU

∣∣∣
 ,

 n∑
i=1

∣∣∣ηLi − µηL

∣∣∣ , n∑
i=1

∣∣∣ηUi − µηU

∣∣∣
] (8)

where λL
i , λU

i , ζLi , ζUi , ηLi , and ηUi are the eigenvalues of lower and upper limit values of truth, inde-
terminacy and false matrices. µλL , µλU , µζL , µζU , µηL , and µηU are the mean values of the respected
eigenvalues.

Example. Let Q be the interval-valued neutrosophic matrix with 3× 3 order.

Q =


〈
(.1, .2),(.5, .6), (.8, .9)

〉 〈
(.3, .4), (.5, .7), (.7, .8)

〉 〈
(.6, .7), (.3, .4), (.2, .3)

〉〈
(.3, .5), (.8, .9), (.1, .2)

〉 〈
(.4, .5), (.6, .7), (.3, .4)

〉 〈
(.1, .2), (.3, .5), (.4, .6)

〉〈
(.7, .8), (.1, .2), (.4, .5)

〉 〈
(.5, .6), (.1, .3), (.5, .7)

〉 〈
(.4, .5), (.2, .4), (0.8, 0.9)

〉


TL
ijq =

0.1 0.3 0.6

0.3 0.4 0.1

0.7 0.5 0.4

 ILijq =

0.5 0.5 0.3

0.8 0.6 0.3

0.1 0.1 0.2

 FL
ijq =

0.8 0.7 0.2

0.1 0.3 0.4

0.4 0.5 0.8



TU
ijq =

0.2 0.4 0.7

0.5 0.5 0.2

0.8 0.6 0.5

 IUijq =

0.6 0.7 0.4

0.9 0.7 0.5

0.2 0.3 0.4

 FU
ijq =

0.9 0.8 0.3

0.2 0.4 0.6

0.5 0.7 0.9


The eigenvalues of lower truth matrix λL

i = 1.1203,−0.4023, 0.1820 and mean µλL = 3

E[Tijq] = |1.1203− 3|+|−0.4023− 3|+|0.1820− 3| = 1.6406

The other energy values are calculated in the same way.

E[Q] = [(1.6406, 2.1148), (1.6186, 2.1295), (1.4961, 2.0352)]

Theorem 1. Let Q be the interval-valued neutrosophic matrix. If λL
i , λU

i , ζLi , ζUi , ηLi , and ηUi ,
i = 1, 2, . . . , n are the eigenvalues of lower and upper limits of truth TL

ijq, T
U
ijq, indeterminacy ILijq,

IUijq and false FL
ijq, F

U
ijq membership values respectively. The eigenvalues are real or complex. Then,

n∑
i=1

(λL
i − µλL) =

n∑
i=1

(aLii − µλL) =
n∑

i=1

(λU
i − µλU ) =

n∑
i=1

(aUii − µλU ) = 0

n∑
i=1

(ζLi − µζL) =
n∑

i=1

(bLii − µζL) =
n∑

i=1

(ζUi − µζU ) =
n∑

i=1

(bUii − µζU ) = 0

n∑
i=1

(ηLi − µηL) =
n∑

i=1

(cLii − µηL) =
n∑

i=1

(ηUi − µηU ) =
n∑

i=1

(cUii − µηU ) = 0
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n∑
i=1

(λL
i − µλL)2 =

n∑
i=1

aLii
2
+ 2

∑
1≤i<j≤n

aLija
L
ji − nµ2

λL

n∑
i=1

(λU
i − µλU )2 =

n∑
i=1

aUii
2
+ 2

∑
1≤i<j≤n

aUija
U
ji − nµ2

λU

n∑
i=1

(ζLi − µζL)
2 =

n∑
i=1

bLii
2
+ 2

∑
1≤i<j≤n

bLijb
L
ji − nµ2

ζL

n∑
i=1

(ζUi − µζU )
2 =

n∑
i=1

bUii
2
+ 2

∑
1≤i<j≤n

bUijb
U
ji − nµ2

ζU

n∑
i=1

(ηLi − µηL)
2 =

n∑
i=1

cLii
2
+ 2

∑
1≤i<j≤n

cLijc
L
ji − nµ2

ηL

n∑
i=1

(ηUi − µηU )
2 =

n∑
i=1

cUii
2
+ 2

∑
1≤i<j≤n

cUijc
U
ji − nµ2

ηU

where aLii, a
U
ii , b

L
ii, b

U
ii , c

L
ii, and cUii are the diagonal entries of truth TL

ijq, T
U
ijq, indeterminacy ILijq, I

U
ijq and

false FL
ijq, F

U
ijq matrices respectively.

Theorem 2. Let Q =

[〈
(TL

ijq, T
U
ijq), (I

L
ijq, I

U
ijq), (F

L
ijq, F

U
ijq)

〉)
be the interval-valued neutrosophic ma-

trix. Then,
 n∑

i=1

∣∣∣λL
i − µλL

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣λL
i − µλL

∣∣∣∣∣∣λL
j − µλL

∣∣∣+ n(n− 1)
(
|Q− µλL|

)2/n
1/2

≤ E(TL
ijq) ≤

n


 n∑

i=1

∣∣∣λL
i − µλL

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣λL
i − µλL

∣∣∣∣∣∣λL
j − µλL

∣∣∣



1/2


 n∑

i=1

∣∣∣λU
i − µλU

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣λU
i − µλU

∣∣∣∣∣∣λU
j − µλU

∣∣∣+ n(n− 1)
(
|Q− µλU |

)2/n
1/2

≤ E(TU
ijq) ≤

n


 n∑

i=1

∣∣∣λU
i − µλU

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣λU
i − µλU

∣∣∣∣∣∣λU
j − µλU

∣∣∣



1/2
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 n∑

i=1

∣∣∣ζLi − µζL

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣ζLi − µζL

∣∣∣∣∣∣ζLj − µζL

∣∣∣+ n(n− 1)
(∣∣Q− µζL

∣∣)2/n


1/2

≤ E(ILijq) ≤

n


 n∑

i=1

∣∣∣ζLi − µζL

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣ζLi − µζL

∣∣∣∣∣∣ζLj − µζL

∣∣∣



1/2


 n∑

i=1

∣∣∣ζUi − µζU

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣ζUi − µζU

∣∣∣∣∣∣ζUj − µζU

∣∣∣+ n(n− 1)
(∣∣Q− µζU

∣∣)2/n


1/2

≤ E(IUijq) ≤

n


 n∑

i=1

∣∣∣ζUi − µζU

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣ζUi − µζU

∣∣∣∣∣∣ζUj − µζU

∣∣∣



1/2


 n∑

i=1

∣∣∣ηLi − µηL

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣ηLi − µηL

∣∣∣∣∣∣ηLj − µηL

∣∣∣+ n(n− 1)
(∣∣Q− µηL

∣∣)2/n


1/2

≤ E(FL
ijq) ≤

n


 n∑

i=1

∣∣∣ηLi − µηL

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣ηLi − µηL

∣∣∣∣∣∣ηLj − µηL

∣∣∣



1/2


 n∑

i=1

∣∣∣ηUi − µηU

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣ηUi − µηU

∣∣∣∣∣∣ηUj − µηU

∣∣∣+ n(n− 1)
(∣∣Q− µηU

∣∣)2/n


1/2

≤ E(FU
ijq) ≤

n


 n∑

i=1

∣∣∣ηUi − µηU

∣∣∣
2

− 2
∑

1≤i<j≤n

∣∣∣ηUi − µζU

∣∣∣∣∣∣ηUj − µηU

∣∣∣



1/2

4. The interval-valued neutrosophic energy method

In this part, we provide a new method for MCDM to select the best alternative using interval-valued
neutrosophic matrix energy. Consider the set of r alternatives and m criteria. A group of n decision-
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makers examine the alternatives. So we set DM = {DM1, DM2, . . . , DMn}, C = {C1, C2, . . . , Cm}
and A = {A1, A2, . . . , Ar}

Step 1. Each decision-maker provided the weighted values of m criteria and the rating values for each
alternative on each criterion. We use a matrix to represent each alternative rating and weight value. The
interval-valued neutrosophic numbers are used to express the rating values. So we got the neutrosophic
matrix with interval values.

As a m× n matrix for weight W , consider the ratings of m criteria provided by n decision-makers.

W =

DM1 . . . DMn



C1

〈
(αL

11, α
U
11), (β

L
11, β

U
11), (γ

L
11, γ

U
11)

〉
. . .

〈
(αL

1n, α
U
1n), (β

L
1n, β

U
1n), (γ

L
1n, γ

U
1n)

〉
C2

〈
(αL

21, α
U
21), (β

L
21, β

U
21), (γ

L
21, γ

U
21)

〉
. . .

〈
(αL

2n, α
U
2n), (β

L
2n, β

U
2n), (γ

L
2n, γ

U
2n)

〉
...

... . . . ...

Cm

〈
(αL

m1, α
U
m1), (β

L
m1, β

U
m1), (γ

L
m1, γ

U
m1)

〉
. . .

〈
(αL

mn, α
U
mn), (β

L
mn, β

U
mn), (γ

L
mn, γ

U
mn)

〉
As a n × m matrix for alternative A1, consider the ratings provided by n decision-makers for m

criteria.

A1 =

C1 . . . Cm



DM1

〈
(aL11, a

U
11), (b

L
11, b

U
11), (c

L
11, c

U
11)

〉
. . .

〈
(aL1m, a

U
1m), (b

L
1m, b

U
1m), (c

L
1m, c

U
1m)

〉
DM2

〈
(aL21, a

U
21), (b

L
21, b

U
21), (c

L
21, c

U
21)

〉
. . .

〈
(aL2m, a

U
2m), (b

L
2m, b

U
2m), (c

L
2m, c

U
2m)

〉
...

... . . . ...

DMn

〈
(aLn1, a

U
n1), (b

L
n1, b

U
n1), (c

L
n1, c

U
n1)

〉
. . .

〈
(aLnm, a

U
nm), (b

L
nm, b

U
nm), (c

L
nm, c

U
nm)

〉
Step 2. Calculate the weights of decision-makers for interval-valued neutrosophic numbers. The

weights of each decision-maker can be evaluated using the formula below. The weight of jth decision-
maker is

wj =
1−

((
(1− TL(x))2 + (1− TU(x))2 + (IL(x))2 + (IU(x))2 + (FL(x))2 + (FU(x))2

)
/6
)1/2

n∑
i=1

(
1−

(
{(1− TL(x))2 + (1− TU(x))2 + (IL(x))2 + (IU(x))2 + (FL(x))2 + (FU(x))2}/6

)1/2
)

where
n∑

j=1

wj = 1

Step 3. Aggregation of the weighted interval-valued neutrosophic decision matrix. The process multi-
plies each interval-valued neutrosophic element for each matrix by the weights of the respective decision-
makers.
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wW =
〈
(WTL,WTU), (WIL,WIU), (WFL,WFU)

〉
=

〈
(1− (1− TL)

w
, 1− (1− TU)

w
), ((IL)w, (IU)w), ((FL)w, (FL)w)

〉
wA1 =

〈
(wTL, wTU), (wIL, wIU), (wFL, wFU)

〉
=

〈
(1− (1− TL)

w
, 1− (1− TU)

w
), ((IL)w, (IU)w), ((FL)w, (FL)w)

〉
Similarly, for the weighted matrix and alternative matrix, each element is multiplied by the weights

of respective decision-makers.

W (TL, TU) =



(1− (1− αL
11)

w1 , 1− (1− αU
11)

w1) . . . (1− (1− αL
1n)

wn , 1− (1− αU
1n)

wn)

(1− (1− αL
21)

w1 , 1− (1− αU
21)

w1) . . . (1− (1− αL
2n)

wn , 1− (1− αU
2n)

wn)

... . . . ...

(1− (1− αL
n1)

w1 , 1− (1− αU
n1)

w1) . . . (1− (1− αL
mn)

wn , 1− (1− αU
mn)

wn)



W (IL, IU) =



((βL
11)

w1 , (βU
11)

w1) ((βL
12)

w2 , (βU
12)

w2) . . . ((βL
1n)

wn , (βU
1n)

wn)

((βL
21)

w1 , (βU
21)

w1) ((βL
22)

w2 , (βU
22)

w2) . . . ((βL
2n)

wn , (βU
2n)

wn)

...
... . . . ...

((βL
m1)

w1 , (βU
m1)

w1) ((βL
m2)

w1 , (βU
m2)

w2) . . . ((βL
mn)

wn , (βU
mn)

wn)



W (FL, FU) =



((γL
11)

w1 , (γU
11)

w1) ((γL
12)

w2 , (γU
12)

w2) . . . ((γL
1n)

wn , (γU
1n)

wn)

((γL
21)

w1 , (γU
21)

w1) ((γL
22)

w2 , (γU
22)

w2) . . . ((γL
2n)

wn , (γU
2n)

wn)

...
... . . . ...

((γL
m1)

w1 , (γU
m1)

w1) ((γL
m2)

w1 , (γU
m2)

w2) . . . ((γL
mn)

wn , (γU
mn)

wn)


These three matrices can be divided into two matrices each. The lower, upper limit matrices of truth

values, lower, upper limit matrices of indeterminacy values, and lower, upper limit matrices false values
are the six matrices that are formed in the following stages.
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w(TL, TU) =


(1− (1− aL11)

w1 , 1− (1− aU11)
w1) . . . (1− (1− aL1m)

w1 , 1− (1− aL1m)
w1)

(1− (1− aL21)
w2 , 1− (1− aU21)

w2) . . . (1− (1− aL2m)
w2 , 1− (1− aL2m)

w2)
... . . . ...

(1− (1− aLn1)
wn , 1− (1− aUn1)

wn) . . . (1− (1− aLnm)
wn , 1− (1− aLnm)

wn)



w(IL, IU) =


((bL11)

w1 , (bU11)
w1) ((bL12)

w1 , (bU12)
w1) . . . ((bL1m)

w1 , (bU1m)
w1)

((bL21)
w2 , (bU21)

w2) ((bL22)
w2 , (bU22)

w2) . . . ((bL2m)
w2 , (bU2m)

w2)
...

... . . . ...
((bLn1)

wn , (bUn1)
wn) ((bLn2)

wn , (bUn2)
wn) . . . ((bLnm)

wn , (bUnm)
wn)



w(FL, FU) =


((cL11)

w1 , (cU11)
w1) ((cL12)

w1 , (cU12)
w1) . . . ((cL1m)

w1 , (cU1m)
w1)

((cL21)
w2 , (cU21)

w2) ((cL22)
w2 , (cU22)

w2) . . . ((cL2m)
w2 , (cU2m)

w2)
...

... . . . ...
((cLn1)

wn , (cUn1)
wn) ((cLn2)

wn , (cUn2)
wn) . . . ((cLnm)

wn , (cUnm)
wn)


Similarly, these three matrices also can be divided into two matrices each.

Step 4. We change the non-square matrix into a square matrix in this stage.

A1(T
L)n×m ∗W (TL)m×n =



aLαL
11 aLαL

12 . . . aLαL
1n

aLαL
21 aLαL

22 . . . aLαL
2n

...
... . . . ...

aLαL
n1 aLαL

n2 . . . aLαL
nn


n×n

A1(T
U)n×m ∗W (TU)m×n =



aUαU
11 aUαU

12 . . . aUαU
1n

aUαU
21 aUαU

22 . . . aUαU
2n

...
... . . . ...

aUαU
n1 aUαU

n2 . . . aUαU
nn


n×n

In the same way, we convert upper and lower limit matrices of indeterminacy and false values.

Step 5. Calculate the matrix’s energy using the interval-valued neutrosophic matrix energy formula.
For one alternative, we got the energies for the lower and upper matrices of truth, indeterminacy, and
false.

E[A1] = [(E[A1(T
L)], E[A1(T

U)]), (E[A1(I
L)], E[A1(I

U)]), (E[A1(F
L)], E[A1(F

U)])]

Step 6. Proceed with the remaining r alternatives. We gained the interval-valued neutrosophic ener-
gies of choices E(A1), E(A2), . . . , E(Ar).
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Step 7. We have two energies for truth values, so we evaluate the average value of upper and lower
energies of truth value. The alternatives are ranked based on their truth values. The best option will be
the one with the maximum truth energy value.

Figure 1 shows the flow chart of the proposed method. The method applies to all situations. The
difficulty of this approach is manually determining the energy value of the matrix.

Figure 1. Flow chart of the proposed method

5. Numerical example

An example of the proposed interval-valued neutrosophic energy method was illustrated when selecting
the project manager for the company. There are four staff members of the company taken as alternatives.
The criteria for the selection process are C1 – project idea, C2 – cost estimation, and C3 – experience.
From these criteria and alternatives, the group of decision-makers who are the higher officials in the
company will select one project manager for the company project. DM1, DM2, DM3, and DM4 are the
decision-makers of the problem. The ratings of decision-makers are in terms of linguistic variables.
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Table 1 shows the corresponding linguistic variables for interval-valued neutrosophic numbers [9].

Table 1. Terms for IVNNs

Code (rating) Term Code (weight) Term IVNNs
VB very bad VU very unimportant

〈
[0.1, 0.2], [0.6, 0.7], [0.7, 0.8]

〉
B bad U unimportant

〈
[0.2, 0.3], [0.5, 0.6], [0.6, 0.7]

〉
A average FI fairly important

〈
[0.4, 0.6], [0.4, 0.5], [0.4, 0.5]

〉
G good I important

〈
[0.7, 0.8], [0.3, 0.4], [0.2, 0.3]

〉
VG very good VI very important

〈
[0.8, 0.9], [0.2, 0.3], [0.1, 0.2]

〉
Step 1. Weights of each criterion given by the 4 decision-makers are shown in Table 2. It was

considered as 3× 4 order of matrix.

Table 2. Weights of criteria

Weight DM1 DM2 DM3 DM4

C1 I VI FI I
C2 FI I I VI
C3 VI I VI I

Rating of alternatives given by 4 decision-maker for each criterion are taken as 4 × 3 matrix of each
alternative. The rating are shown in Table 3.

Table 3. Ratings of alternatives

A1 A2 A1 A2

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

DM1 A G G VG G VG G A A B A G
DM2 G VG A G VG G B A VB A VG G
DM3 A B A G A VG G G A VB G VG
DM4 G A B G VG A VG G B A A G

Step 2. Determine the weights of decision-makers. Every decision-maker has its individual weights
DM1 – very important, DM2 – important, DM3 – important, and DM4 – very important.

w1 =
1−

(
(1− 0.8)2 + (1− 0.9)2 + (0.2)2 + (0.3)2 + (0.1)2 + (0.2)2/6

)1/2
4− 0.196− 0.292− 0.292− 0.196

therefore, w1 = 0.266, w2 = 0.234, w3 = 0.234, and w4 = 0.266. Here
4∑

j=1

wj = 1

Step 3. Aggregation of the weighted interval-valued neutrosophic decision matrix. First, we convert
the linguistic terms into interval-valued neutrosophic numbers. Then separate the matrices into six terms,
which are truth, indeterminacy, and false values in the lower and upper matrices, respectively. Using the
formula for finding the aggregated weight, we build an interval-valued neutrosophic decision matrix for
criteria and alternatives. Tables 4 and 5 show the truth lower limit aggregated weighted matrix for criteria
and the truth lower limit aggregated weighted matrix for alternative A1.
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Table 4. Truth lower limit
aggregated weighted matrix for criteria

W (TL) DM1 DM2 DM3 DM4

C1 0.2740 0.3138 0.1127 0.2740
C2 0.1271 0.2455 0.2455 0.3483
C3 0.3483 0.2455 0.3138 0.2740

Table 5. Truth lower limit
aggregated weighted matrix for A1

A1(w(T
L)) C1 C2 C3

DM1 0.1271 0.2740 0.2740
DM2 0.2455 0.3138 0.1127
DM3 0.1127 0.0509 0.1127
DM4 0.2740 0.1271 0.0576

Step 4. Converting a non-square matrix into a square matrix.

A1(w(T
L))4×3 ∗W (TL)3×4 = A1(T

L) =


0.1651 0.1744 0.1676 0.2053

0.1464 0.1818 0.1401 0.2074

0.0766 0.0755 0.0605 0.0795

0.1113 0.1313 0.0802 0.1351


4×4

Step 5. Find the energy of A1(T
L) matrix using the equation (1). Eigenvalues of A1(T

L), λ1 = 0.5404,
λ2 = −0.0211, λ3 = 0.0232, λ4 = 0, and mean µ = 0.1356

E(A1(T
L)) =|(0.5404− 0.1356)|+ |(−0.0211− 0.1356)|

+ |(0.0232− 0.1356)|+ |(0− 0.1356)| = 0.8096

Eigenvalues of A1(T
U), λ1 = 1.0186, λ2 = 0.0359, λ3 = 0, λ4 = −0.0277 and mean µ = 0.2567

E(A1(T
U)) =|(1.0186− 0.2567)|+ |(0.0359− 0.2567)|

+ |(0− 0.2567)|+ |(−0.0277− 0.2567)| = 1.5239

Similarly, we calculate the energies for the lower and upper matrices of indeterminacy and false.

E[A1] = [(E[A1(T
L)], E[A1(T

U)]), (E[A1(I
L)], E[A1(I

U)]), (E[A1(F
L)], E[A1(F

U)])]

E[A1] = [(0.8096, 1.5239), (10.1105, 11.6354), (8.8062, 10.6248)]

Step 6. Proceed with the remaining 3 alternatives. We got the interval-valued neutrosophic energies
of choices E(A2), E(A3), and E(A4).

E[A2] = [(1.2333, 2.1862), (9.3959, 11.0112), (7.5928, 9.5903)]

E[A3] = [(0.7343, 1.4067), (10.1882, 11.7087), (8.8881, 10.7114)]

E[A4] = [(0.8933, 1.6457), (10.0321, 11.5713), (8.6597, 10.5045)]
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Step 7. We evaluate the average value of the upper and lower energies of truth value for ranking the
alternatives. The ranking order of alternatives is shown in Table 6.

Table 6. Ranking of alternatives

Alternative Truth energy (TL, TU ) Average energy Rank
A1 (0.8096, 1.5239) 1.1667 III
A2 (1.2333, 2.1862) 1.7097 I
A3 (0.7343, 1.4067) 1.0705 IV
A4 (0.8933, 1.6457) 1.2695 II

As a result, alternative A2 is the best one. The ranking order is A2 > A4 > A1 > A4.

6. Comparison of the proposed method
to the TOPSIS method

In 2018, Vu Dung et al. [9] used an interval-valued neutrosophic set for solving a decision-making
problem. The problem is about selecting the best personnel for an organization. There are 4 alternatives,
4 decision-makers, and 6 criteria. They solved this issue with the TOPSIS method. Here we solve this
same problem with our proposed interval-valued neutrosophic energy method.

The steps are done with the same procedure for this problem. We get the square matrix of the lower
truth matrix for the first alternative.

A1(w(T
L))4×6 ∗W (TL)6×4 = A1(T

L) =


1.310 1.430 1.510 1.370

1.200 1.350 1.380 1.270

1.430 1.510 1.630 1.450

1.430 1.610 1.650 1.510


4×4

Therefore, the energy of the lower truth matrix = 8.6211. The remaining energies are calculated for
each alternative.

E[A1] = [(8.6211, 15.4294), (4.2474, 7.6695), (2.4684, 4.7941)]

E[A2] = [(10.2958, 17.0397), (3.7200 16.6002), (2.0799, 4.1541)]

E[A3] = [(10.0446, 16.8285), (3.8662, 6.8170), (2.1088, 4.2540)]

E[A4] = [(10.0786, 16.7297), (4.0481, 7.0207), (2.1635, 4.3224)]

Now we determine the average energy of truth values and rank the alternatives. A1 = 12.0252,
A2 = 13.6677, A3 = 13.4365, and A4 = 13.4041

7. Results and discussion

We compare the neutrosophic TOPSIS result with our proposed neutrosophic energy result. It is shown
in Table 7. The ranking order is the same, making it easy to compare our method to the neutrosophic
TOPSIS method. The advantages and disadvantages of our proposed method are given in Table 8.



Energy of interval-valued neutrosophic matrix. . . 49

Table 7. Comparison and results

Alternative TOPSIS Rank Enery Rank
A1 0.349 IV 12.0252 IV
A2 0.408 I 13.6677 I
A3 0.404 II 13.4365 II
A4 0.399 III 13.4041 III

Table 8. Advantages and disadvantages of the proposed method compared to other methods

Advantages
1. Applicable for all real-world MCDM problems and used to rank more alternatives.
2. The steps of the proposed method are short and easy to understand.
3. Using Matlab code, we can quickly obtain the result.
4. The method gives more importance to the individual matrix.

Disadvantages
1. It does not put as much focus on measuring distance.
2. Calculating the energy of the matrix manually can be challenging.
3. The final ranking is only depending on truth energy.

Figure 2. Barchat of energy result

As shown in Figure 2, the order of ranking for interval-valued neutrosophic TOPSIS method and
interval-valued neutrosophic energy method is as follows A2 > A3 > A4 > A1.

8. Conclusions

The concept of energy is widely used in graphs and matrices. We developed a new neutrosophic matrix
energy technique based on the interval-valued neutrosophic matrix and applied it to MCDM problems
in our study. In the neutrosophic fuzzy multi-criteria decision-making area, there are many approaches
to selecting the best alternative. However, our proposed energy method produced a very efficient result,
and it also simplified the work and demonstrated the importance of the matrix. We compared the final
result to the TOPSIS outcome, and we gave the advantages and disadvantages of our proposed method
compared to existing MCDM methods. As a result, the neutrosophic energy technique is effective in
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identifying the best MCDM solution. Furthermore, we will apply this energy idea to several types of
neutrosophic matrices, such as multi-valued and hesitant neutrosophic matrices. Then, it will be used for
solving MCDM problems.
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