
Vol. 33, No. 4 (2023) | DOI: 10.37190/ord230401

OPEN ACCESS

Operations Research and Decisions

www.ord.pwr.edu.pl

Expectation properties of generalized order statistics
based on the Gompertz-G family of distributions

Yousef F. Alharbi1∗ Mohamad A. Fawzy1,2 Haseeb Athar3

1Department of Mathematics, College of Science, Taibah University, Al Madinah, Kingdom of Saudi Arabia
2Mathematics Department, Faculty of Science, Suez University, Suez, Egypt
3Department of Statistics and Operations Research, Faculty of Science, Aligarh Muslim University, India
∗Corresponding author, email address: ymatrafe@taibahu.edu.sa

Abstract

Gompertz-G family of distributions has been considered. The moment properties of generalized order statistics were studied
and characterization results have been presented. Further, several examples and special cases were discussed. The results can
be applied to many known distributions included in this family.
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1. Introduction

The order statistics and related general models of ordered random variables are important in statistical
theory and its applications. Kamps [19] introduced the generalized order statistics (GOS) and showed
that all well-known models of ordered random variables such as record values, order statistics, Pfeifer’s
records, progressive type II censored order statistics, etc. are the sub-models of GOS in the distributional
and theoretical sense. There is no doubt that GOS and different models of ordered random variables
will continue to arouse the interest of many researchers working in the fields of theoretical statistics,
applications, and statistical mathematics.

Recurrence relations for moments of GOS and characterization through it for various distributions
have been investigated by several authors. For a detailed review of the topics, see Keseling [21], Cramer
and Kamps [15], Kamps and Cramer [20], Pawlas and Szynal [29], Saran and Pandey [30], Ahmad and
Fawzy [1], Athar and Islam [7], Al-Hussaini et al. [3] , Anwar et al. [5], Khan et al. [23], Khwaja et al.
[25], Khan and Zia [24], Athar and Nayabuddin [8], Khan and Khan [22], Nayabuddin and Athar [26],
Singh et al. [31], Zarrin et al. [32], Athar et al. [9–12] and references therein.

Received 11 September 2022, accepted 17 August 2023, published online 22 December 2023
ISSN 2391-6060 (Online)/© 2023 Authors
The costs of publishing this issue have been co-financed by the program Development of Academic Journals of the Polish
Ministry of Education and Science under agreement RCN/SP/0241/2021/1

http:\www.ord.pwr.edu.pl
https://orcid.org/0000-0002-2673-1464
https://orcid.org/0000-0003-2196-8312
https://orcid.org/0000-0001-5823-9979
mailto:ymatrafe@taibahu.edu.sa


2 Y. F. Alharbi et al.

1.1. Definition of GOS

Let n ≥ 2 be a given integer and m̃ = (m1,m2, . . . , mn−1) ∈ Rn−1, k ≥ 1 be the parameters such that

γi = k + n− i+
n−1∑
j=i

mj ≥ 0 for 1 ≤ i ≤ n− 1

The random variables X1,n,m̃,k, X2,n,m̃,k, . . . , Xn,n,m̃,k are said to be GOS from an continuous popula-
tion with cumulative distribution function (CDF) F () and probability density function (PDF) f(), if their
joint PDF is of the form

k
( n−1∏

j=1

γj

)( n−1∏
i=1

(
1− F (xi)

)mif(xi)
)(

1− F (xn)
)k−1

f(xn) (1)

on the cone F−1(0) < x1 ≤ x2 ≤ . . . ≤ xn < F−1(1).

1.2. Sub-model of GOS

The particular cases of model (1) are:

• If m1 = m2 = · · · = mn−1 = 0 and k = 1, then γr = n− r+1, 1 ≤ r ≤ n− 1. In this case, model (1)
reduces to the joint density of order statistics. For more details about order statistics see [16].

• By choosing n = m, mi = Ri for i = 1, 2, . . . ,m − 1 and k = Rm + 1, then γr = m − r + 1

+
m∑
i=r

Ri, 1 ≤ r ≤ m where Ri is a set of prefixed integer that shows Ri random removal at ith failure

from surviving items of an experiment. In this case, model (1) reduces to the joint density based on
progressively type-II censored order statistics [13].

• Let X1, X2, . . . , Xn be a sequence of independent and identically distributed random variables
with CDF F (x). Let Yn = max{X1, X2, . . . , Xn}, n ≥ 1. Then, we say Xj is an upper record
values of sequence {Xn, n ≥ 1}, if Yj ≥ Yj−1, j ≥ 1. Now if we put m1 = m2 = . . .

= mn−1 = −1 and k = 1 in (1), then γr = 1, 1 ≤ r ≤ n − 1. In this case, model (1) re-
duces to the joint density of upper record values. For more details on record values see [2] and
[6].

• If mi = (n − i + 1)αi − (n − i)αi+1 − 1 and k = αn, α ∈ R+, i = 1, 2, . . . , n − 1 then γr

= (n− r + 1)αr, 1 ≤ r ≤ n− 1. In this case, model (1) reduces to the joint density of sequential
order statistics. For more details see [15].

Here we may consider two cases:
Case I. γi ̸= γj , i, j = 1, 2, . . . , n− 1, i ̸= j.

In view of (1), the PDF of rth GOS Xr, n, m̃, k is given as [20]

fr, n, m̃, k(x) = Cr−1f(x)
r∑

i=1

ai(r)[F̄ (x)]γi−1 (2)

where

Cr−1 =
r∏

i=1

γi, γi = k + n− i+
n−1∑
j=1

mj > 0
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and

ai(r) =
r∏

j=1
j ̸=i

1

(γj − γi)
, 1 ≤ i ≤ r ≤ n

The joint PDF of Xr, n, m̃, k and Xs, n, m̃, k, 1 ≤ r < s ≤ n, is given as [20]

fr, s, n, m̃, k(x, y) = Cs−1

s∑
j=r+1

a
(r)
j (s)

(
F̄ (y)

F̄ (x)

)γj

×

(
r∑

i=1

ai(r)(F̄ (x))γi

)
f(x)

F̄ (x)

f(y)

F̄ (y)
, x < y (3)

where

a
(r)
j (s) =

s∏
t=r+1
t̸=j

1

(γt − γj)
, r + 1 ≤ j ≤ s ≤ n

Case II. mi = m, i = 1, 2, . . . , n− 1

The PDF of rth GOS Xr, n,m, k is given as [19]

fr, n,m, k(x) =
Cr−1

(r − 1)!

(
F̄ (x)

)γr−1
f(x)gr−1

m

(
F (x)

)
(4)

where

Cr−1 =
r∏

i=1

γi, γi = k + (n− i)(m+ 1)

hm(x) =


− 1

m+ 1
(1− x)m+1, m ̸= −1

log
( 1

1− x

)
, m = −1

and

gm(x) = hm(x)− hm(0) =

x∫
0

(1− t)mdt, x ∈ [0, 1)

The joint PDF of Xr, n,m, k and Xs, n,m, k, 1 ≤ r < s ≤ n, is given as [29]

fr, s, n,m, k(x, y) =
Cs−1

(r − 1)! (s− r − 1)!

(
F̄ (x)

)m
gr−1
m (F (x))

×
(
hm(F (y))− hm(F (x)

)s−r−1(
F̄ (y)

)γs−1
f(x)f(y), −∞ ≤ x < y ≤ ∞ (5)

1.3. Gompertz-G family of distributions

Alizadeh et al. [4] proposed the Gompertz generalized (Gompertz-G) family of distributions. It makes
kurtosis more flexible compared to baseline models and produces skewness for symmetrical distributions.
Thus, it provides greater flexibility in the modeling of real data sets. Some of the distributions belonging to
this family like Gompertz–Frechet, Gompertz inverse exponential, Gompertz–Weibull–Frechet, and Gom-
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pertz alpha power inverted exponential distributions are separately studied by Oguntunde et al. [27, 28],
Bodhisuwan and Aryuyuen [14], Eghwerido et al. [17], respectively. The CDF of the Gompertz-G family
of distribution is given by

F (x) = 1− exp

(
α

β

(
1− (1−G(x))−β

))
, α, β > 0 (6)

and the corresponding PDF for this family is

f(x) = αg(x) (1−G(x))−β−1 exp

(
α

β

(
1− (1−G(x))−β

))
(7)

where G(x) and g(x) refer the CDF and PDF of the base distribution.
In view of (6) and (7), we get the relation between survival function (SF) and PDF as below

F̄ (x) =
(1−G(x))β+1

αg(x)
f(x) (8)

Equation (8) can also be expressed as

F̄ (x) =
1

α

[β+1]∑
l=0

(−1)l
(
[β + 1]

l

)
Gl(x)

g(x)
f(x) (9)

where F̄ (x) = 1− F (x) is the survival function (SF) and [.] is an integer.
The paper is organized as follows. Section 2 presents the single moment of GOS for the family of

distributions in (6). In addition, some examples and special cases are demonstrated. Section 3 discusses
the properties of product moments, whereas the characterization results are studied in Section 4. Finally,
the conclusion is given in Section 5.

2. Single moment

Before coming to the main result, we shall reproduce the lemma given by Athar and Islam [7]

Lemma 1. For Case I with PDF given in (2) and 2 ≤ r ≤ n, n ≥ 1, p = 1, 2 . . .

E
(
Xp

r, n, m̃, k

)
− E

(
Xp

r−1, n, m̃, k

)
= pCr−2

∞∫
−∞

xp−1

r∑
i=1

ai(r)
(
F̄ (x)

)γi dx (10)

Proof. For γi ̸= γj , i, j = 1, 2, . . . , n− 1, i ̸= j, Athar and Islam [7] have shown that

E
(
ξ(Xr, n, m̃, k)

)
− E

(
ξ(Xr−1, n, m̃, k)

)
= Cr−2

∞∫
−∞

ξ′(x)
r∑

i=1

ai(r)
(
F̄ (x)

)γi dx (11)

where ξ(x) is a Borel measurable function of x ∈ (−∞,∞).
Let ξ(x) = xp, then Lemma 1 can be established in view of (11). □
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Theorem 1. Assume Case I is satisfied. For the Gompertz-G family of distributions as given in (6) and
n ∈ N, m̃ ∈ R, k > 0, 1 ≤ r ≤ n, p = 1, 2, . . .

E
(
Xp

r, n, m̃, k

)
− E

(
Xp

r−1, n, m̃, k

)
=

p

αγr
E
(
A(Xr, n, m̃, k)

)
(12)

and subsequently

E
(
Xp

r, n, m̃, k

)
− E

(
Xp

r−1, n, m̃, k

)
=

p

αγr

[β+1]∑
l=0

(−1)l
(
[β + 1]

l

)
E
(
B(X l

r, n, m̃, k)
)

(13)

where A(x) = xp−1 (1−G(x))β+1

g(x)
and Bl(x) = xp−1 (G(x))l

g(x)

Proof. In view of (8) and (10), we have

E
(
Xp

r, n, m̃, k

)
−E
(
Xp

r−1, n, m̃, k

)
=

pCr−1

γr

∞∫
−∞

xp−1

r∑
i=1

ai(r)
(
F̄ (x)

)γi−1

(
(1−G(x))β+1

αg(x)
f(x)

)
dx

=
pCr−1

αγr

∞∫
−∞

A(x)
r∑

i=1

ai(r)
(
F̄ (x)

)γi−1
f(x)dx

This yields (12). In view of (9) and following the same steps, the relation (13) can be obtained. Hence,
the proof of Theorem (1) is completed. □

Corollary 1. For Case II and the condition as stated in Theorem 1

E
(
Xp

r, n,m, k

)
− E

(
Xp

r−1,,n,m, k

)
=

p

αγr
E
(
A(Xr, n,m, k)

)
(14)

Proof. Since for γi ̸= γj; i ̸= j = 1, 2, . . . , n− 1 but mi = m

ai(r) =
1

(m+ 1)r−1
(−1)r−i 1

(i− 1)!(r − i)!

Therefore, PDF given in (1.2) reduces to (1.4). Thus, relation (14) can be established by replacing m̃

with m in (12). □

Remark 1. If mi = 0; i = 1, 2, . . . , n − 1 and k = 1, then the relation for single moment of order
statistics for Gompertz-G family of distribution is given by

E
(
Xp

r:n

)
− E

(
Xp

r−1:n

)
=

p

α(n− r + 1)
E
(
A(Xr:n)

)
where E(Xp

r:n) is the pth moment of rth order statistic.
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Remark 2. Let mi → −1, i = 1, 2, . . . , n− 1, then single moment of kth upper record values is given as

E(Xp

U(k)(n)
)− E(Xp

U(k)(n−1)
) =

p

αk
E
(
A(XU(k)(n))

)
where E(Xp

U(k)(n)
), is the pth moment of kth upper record values.

2.1. Examples

In this section, we present some special models of Gompertz-G family by considering the baseline dis-
tributions like power function, Pareto, exponential, inverse exponential, Lomax, alpha power inverted
exponential, and Frechet. The CDF and PDF of these baseline distributions are listed in Table 1.

Table 1. The CDF and PDF of the baseline distributions for the considered examples

Model G(x) g(x) Parameters
Power function λ−θxθ θxθ−1λ−θ 0 ≤ x ≤ λ;λ, θ > 0
Pareto 1− λνx−ν νλνx−(ν+1) λ ≤ x ≤ ∞;λ, ν ≥ 0
Exponential 1− e−λx λe−λx x > 0;λ > 0

Inverse exponential e−θ/x θ

x2
e−θ/x x > 0; θ > 0

Lomax 1− (1 + δx)
−θ

θδ (1 + δx)
−(θ+1)

x > 0; δ, θ > 0
Alpha power
inverted exponential

1

α− 1

(
αexp(−c/x) − 1

) clogα
x2(α− 1)

exp(−c/x)αexp(−c/x) α > 0, x > 0

Frechet exp
(
−(α/x)β

)
βαβx−[β+1]exp

(
−(α/x)β

)
x > 0;α, β > 0

Now using the above base distributions the CDF, PDF and recurrence relations for the single moment of
GOS for some of the distributions of Gompertz-G family are presented below.

2.1.1. Gompertz power function distribution (GOPOW)

The CDF and PDF of GOPOW distribution are given as

F (x) = 1− exp

(
α

β

(
1− (1− λ−θxθ)−β

))
, 0 ≤ x ≤ λ;α, β > 0 (15)

and

f(x) = αθλ−θxθ−1(1− λ−θxθ)−β−1 exp

(
α

β

(
1− (1− λ−θxθ)−β

))
(16)

Now, it is easy to see that

Bl(x) = xj−1 λ−θlxθl

θxθ−1λ−θ
=

1

θ
λθ(1−l)xj+θ(l−1)

Thus, using (13), we get

E
(
Xp

r, n, m̃, k

)
− E

(
Xp

r−1, n, m̃, k

)
=

p

θαγr

[β+1]∑
l=0

(−1)l
(
[β + 1]

l

)
λθ(1−l)E

(
X

p+θ(l−1)
r, n, m̃, k

)
.
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2.1.2. Gompertz–Pareto distribution (GOPAR)

The CDF and PDF of GOPAR distribution are given as

F (x) = 1− exp

(
α

β

(
1− λ−νβxνβ

))
, λ ≤ x < ∞;α, β > 0 (17)

and

f(x) = ανλ−νβxνβ−1 exp

(
α

β

(
1− λ−νβxνβ

))
(18)

Further, we have

A(x) = xp−1 (1−G(x))β+1

g(x)
= xp−1 (λ

νx−ν)
β+1

νλνx−(ν+1)
=

λνβ

ν
xp−νβ

Thus, in the view of (12), we get

E
(
Xp

r, n, m̃, k

)
− E

(
Xp

r−1, n, m̃, k

)
=

pλνβ

ναγr
E
(
Xp−νβ

r, n, m̃, k

)
2.1.3. Gompertz exponential distribution (GOEXP)

The CDF and PDF of GOEXP distribution are given, respectively, by

F (x) = 1− exp

(
α

β

(
1− eλβx

))
, x > 0, α, β, λ > 0 (19)

and

f(x) = αλ exp

(
α

β

(
1− eλβx

)
+ λβx

)
, x > 0 (20)

Now we compute A(x) as follows

A(x) = xp−1 (1−G(x))β+1

g(x)
= xp−1 e

−λx(β+1)

λe−λx
=

1

λ
xp−1e−λβx =

∞∑
u=0

(−1)u
λu−1βu

u!
xu+p−1

Therefore using (12), we get

E
(
Xp

r, n, m̃, k

)
− E

(
Xp

r−1, n, m̃, k

)
=

p

αγr

∞∑
u=0

(−1)u
λu−1βu

u!
E
(
Xu+p−1

r, n, m̃, k

)
2.1.4. Gompertz inverse exponential distribution (GOIEX)

The CDF and PDF of GOIEX distribution are given, respectively, by

F (x) = 1− exp

(
α

β

(
1− (1− e−

θ
x )−β

))
, x > 0, α, β, θ > 0 (21)

and

f(x) = α
θ

x2
e−

θ
x

(
1− exp

(
− θ

x

))−β−1

exp

(
α

β

(
1− (1− e−

θ
x )−β

))
, x > 0 (22)
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Furthermore, one can find that

Bl(x) = xp−1 (G(x))l

g(x)
= xp−1

(
e

−θ
x

)l
θ
x2 e

−θ
x

=
1

θ
xp+1e−θx−1(l−1)

=
1

θ
xp+1

∞∑
u=0

(−1)u
(θ(l − 1)x−1)

u

u!
=

1

θ

∞∑
u=0

(−1)u
θu

u!
(l − 1)uxp−u+1

Thus from (13) we obtain

E
(
Xp

r, n, m̃, k

)
− E

(
Xp

r−1, n, m̃, k

)
=

p

αθγr

[β+1]∑
l=0

∞∑
u=0

(−1)l+u

(
[β + 1]

l

)
θu(l − 1)u

u!
E
(
Xp−u+1

r, n, m̃, k

)
2.1.5. Gompertz–Lomax distribution (GOLOM)

The CDF and PDF of GOLOM distribution are given, respectively, by

F (x) = 1− exp

(
α

β

(
1− (1 + δx)θβ

))
, x > 0, α, β > 0 (23)

and

f(x) = αδ(1 + xδ)βθ−1 exp

(
α

β

(
1− (1 + δx)θβ

))
, x > 0, α, β > 0 (24)

Now, it can be seen that

A(x) =xp−1 (1−G(x))β+1

g(x)
= xp−1 (1 + δx)−θ(β+1)

θδ (1 + δx)−(θ+1)
=

xp−1

θδ
(1 + δx)1−θβ

=
xp−1

θδ

[1−θβ]∑
t=0

(
[1− θβ]

t

)
(δx)1−θβ−t =

1

θ

[1−θβ]∑
t=0

(
[1− θβ]

t

)
δ−(t+θβ)xp−θβ−t

Thus, in the view of (12), we get

E
(
Xp

r, n, m̃, k

)
− E

(
Xp

r−1, n, m̃, k

)
=

p

αθγr

[1−θβ]∑
t=0

(
[1− θβ]

t

)
δ−(t+θβ)E

(
Xp−θβ−t

r, n, m̃, k

)
3. Product moments

Lemma 2. For Case I with PDF as given in (2) and 1 ≤ r < s ≤ n, n ≥ 1, k > 0, p, q = 1, 2, . . .

E
(
Xp

r, n, m̃, kX
q
s, n, m̃, k

)
− E

(
Xp

r, n, m̃, kX
q
s−1, n, m̃, k

)
= qCs−2

∞∫
−∞

∞∫
x

xpyq−1

×

(
s∑

j=r+1

a
(r)
j (s)

(
F̄ (y)

F̄ (x)

)γj
)(

r∑
i=1

ai(r)[F̄ (x)]γi

)
f(x)

F̄ (x)
dydx (25)
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Proof. Athar and Islam [7] have shown that

E
(
ξ{Xr, n, m̃, k, Xs, n, m̃, k}

)
− E

(
ξ{Xr, n, m̃, k, Xs−1, n, m̃, k}

)
= Cs−2

∞∫
−∞

∞∫
x

∂

∂y
ξ(x, y)

(
s∑

j=r+1

a
(r)
j (s)

(
F̄ (y)

F̄ (x)

)γj
)(

r∑
i=1

ai(r)[F̄ (x)]γi

)
f(x)

F̄ (x)
dydx (26)

Lemma can be established by letting ξ(x, y) = xpyq in (26). □

Theorem 2. Let Case I be satisfied. For the Gompertz-G family of distributions as given in (6) and
n ∈ N, m̃ ∈ R, k > 0, 1 ≤ r < s ≤ n, p, q = 1, 2, . . .

E
(
Xp

r, n, m̃, kX
q
s, n, m̃, k

)
− E

(
Xp

r, n, m̃, kX
q
s−1, n, m̃, k

)
=

q

αγs
E
(
A{Xr, n, m̃, k, Xs, n, m̃, k}

)
(27)

and subsequently

E
[
Xp

r,n,m̃,k.X
q
s,n,m̃,k

]
− E

[
Xp

r,n,m̃,k.X
q
s−1,n,m̃,k

]
=

q

α γs

[β+1]∑
l=0

(−1)l
(
[β + 1]

l

)
E
[
Bl{Xr,n,m̃,k, Xs,n,m̃,k}

] (28)

where A(x, y) = xpyq−1 (1−G(y))β+1

g(y)
and Bl(x, y) = xpyq−1 (G(y))l

g(y)
.

Proof. In view of (8) and (25), we obtain

E
(
Xp

r, n, m̃, kX
q
s, n, m̃, k

)
− E

(
Xp

r, n, m̃, kX
q
s−1, n, m̃, k

)
=

qCs−1

αγs

∞∫
−∞

∞∫
x

xpyq−1

(
s∑

j=r+1

a
(r)
j (s)

(
F̄ (y)

F̄ (x)

)γj
)(

r∑
i=1

ai(r)[F̄ (x)]γi

)

× f(x)

F̄ (x)

f(y)

F̄ (y)

(1−G(y))β+1

g(y)
dydx =

qCs−1

αγs

∞∫
−∞

∞∫
x

A(x, y)

(
s∑

j=r+1

a
(r)
j (s)

(
F̄ (y)

F̄ (x)

)γj
)

(
r∑

i=1

ai(r)[F̄ (x)]γi

)
f(x)

F̄ (x)

f(y)

F̄ (y)
dydx

This gives (27). Proceeding on the same lines and using (9), we can get (28). Thus, the proof of Theorem
(2) is completed. □

Corollary 2. For Case II and the condition as stated in Theorem 2

E
(
Xp

r, n,m, kX
q
s, n,m, k

)
− E

(
Xp

r, n,m, kX
q
s−1, n,m, k

)
=

q

αγs
E
(
A(Xr, n,m, k, Xs, n,m, k)

)
(29)

Proof. Since for γi ̸= γj, i ̸= j = 1, 2, . . . , n− 1 but mi = m

a
(r)
i (s) =

1

(m+ 1)s−r−1
(−1)s−i 1

(i− r − 1)!(s− i)!
.
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Therefore, joint PDF of Xr, n, m̃, k and Xs, n, m̃, k given in (3) reduces to (5).
Thus, relation (29) can be established by replacing m̃ with m in (27). □

Remark 3. If mi = 0, i = 1, 2, . . . , n − 1 and k = 1, then the relation for product moment of order
statistics for Gompertz-G family of distribution is given by

E
(
Xp

r:nX
q
s:n

)
− E

(
Xp

r:nX
q
s−1:n

)
=

q

α(n− s+ 1)
E
(
A(Xr:n, Xs:n)

)
Remark 4. Let mi → −1, i = 1, 2, . . . , n− 1, then product moment of kth upper record values is

E(Xp

U(k)(n)
Xq

U(k)(m)
)− E(Xp

U(k)(n)
Xq

U(k)(m−1)
) =

q

αk
E
(
A(XU(k)(n), XU(k)(m))

)
3.1. Examples

3.1.1. Gompertz power function distribution (GOPOW)

For the given CDF in (15), we get

Bl(x, y) = xpyq−1 (G(y))l

g(y)
= xpyq−1 λ−θlyθl

θyθ−1λ−θ
=

1

θ
λθ(1−l)yq+θ(l−1)xp

Therefore, in view of (28), it is easy to see that

E
(
Xp

r, n, m̃, kX
q
s, n, m̃, k

)
− E

(
Xp

r, n, m̃, kX
q
s−1, n, m̃, k

)
=

q

αθγs

[β+1]∑
l=0

(−1)lλθ(1−l)

(
[β + 1]

l

)
E
(
Xp

r, n, m̃, kX
q+θ(l−1)
s, n, m̃, k

)
.

3.1.2. Gompertz–Pareto distribution (GOPAR)

Using the CDF given in (17), we have

A(x, y) = xpyq−1 (1−G(y))β+1

g(y)
= xpyq−1 (λ

νy−ν)
β+1

νλνy−(ν+1)
=

λνβ

ν
yq−νβxp

Thus, using (27), we obtain

E
(
Xp

r, n, m̃, kX
q
s, n, m̃, k

)
− E

(
Xp

r, n, m̃, kX
q
s−1, n, m̃, k

)
=

qλνβ

ναγs
E
(
Xp

r, n, m̃, kX
q−νβ
s, n, m̃, k

)
.

3.1.3. Gompertz exponential distribution (GOEXP)

For the CDF given in (19), we have

A(x, y) = xpyq−1 (1−G(y))β+1

g(y)
= xpyq−1 e

−λy(β+1)

λe−λy
=

1

λ
xpyq−1e−λβy = xp

∞∑
w=0

(−1)w
λw−1βw

w!
yw+q−1
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Now, in view of (27), it is easy to see that

E
(
Xp

r, n, m̃, kX
q
s, n, m̃, k

)
− E

(
Xp

r, n, m̃, kX
q
s−1, n, m̃, k

)
=

q

αγs

∞∑
w=0

(−1)w

w!
λp−1βwE

(
Xp

r, n, m̃, kX
q+w−1
s, n, m̃, k

)
3.1.4. Gompertz inverse exponential distribution (GOIEX)

For the given CDF in (21), we have

Bl(x, y) = xpyq−1 (G(y))l

g(y)
= xpyq−1

(
e

−θ
y

)l
θ
y2
e

−θ
y

=
xp

θ
yq+1e−θy−1(l−1)

=
xp

θ
yq+1

∞∑
u=0

(−1)u
(θ(l − 1)y−1)

u

u!
=

xp

θ

∞∑
u=0

(−1)u
θu

u!
(l − 1)uyq−u+1

Therefore, in view of (28), we obtain

E
(
Xp

r, n, m̃, kX
q
s, n, m̃, k

)
− E

(
Xp

r, n, m̃, kX
q
s−1, n, m̃, k

)
=

q

αθγs

[β+1]∑
l=0

∞∑
u=0

(−1)l+u

(
[β + 1]

l

)
θu(l − 1)u

u!
E
(
Xp

r, n, m̃, kX
q−u+1
s, n, m̃, k

)
3.1.5. Gompertz–Lomax distribution (GOLOM)

Using the CDF in (23), one can show that

A(x, y) = xpyq−1 (1−G(y))β+1

g(y)
= xpyq−1 (1 + δy)−θ(β+1)

θδ (1 + δy)−(θ+1)
=

xpyq−1

θδ
(1 + δy)1−θβ

=
xpyq−1

θδ

[1−θβ]∑
t=0

(
[1− θβ]

t

)
(δy)1−θβ−t =

xp

θ

[1−θβ]∑
t=0

(
[1− θβ]

t

)
δ−(t+θβ)yq−θβ−t

Now, in the view of (27), we get

E
(
Xp

r, n, m̃, kX
q
s, n, m̃, k

)
− E

(
Xp

r, n, m̃, kX
q
s−1, n, m̃, k

)
=

q

αθγs

[1−θβ]∑
t=0

(
[1− θβ]

t

)
δ−(t+θβ)E

(
Xp

r, n, m̃, kX
q−θβ−t
s, n, m̃, k

)

4. Characterization

In this section, the characterization of Gompertz-G family of distributions define in (6), is presented
through recurrence relations between the moments of GOS.



12 Y. F. Alharbi et al.

Theorem 3. Fix a positive integer k and let p be a non-negative integer. A necessary and sufficient
condition for a random variable X to be distributed with PDF given in (7) is that

E
(
Xp

r, n, m̃, k

)
− E

(
Xp

r−1, n, m̃, k

)
=

p

αγr

[β+1]∑
l=0

(−1)l
(
[β + 1]

l

)
E
(
B(X l

r, n, m̃, k)
)

(30)

where Bl(x) = xp−1 (G(x))l

g(x)
.

Proof. Necessary part follows from (13). To prove the sufficiency part, suppose the relation in (30) is
true. Now, using (2) and (10) in (30), we get

pCr−2

∞∫
−∞

xp−1

r∑
i=1

ai(r)
(
F̄ (x)

)γi dx =
pCr−1

αγr

[β+1]∑
l=0

(−1)l
(
[β + 1]

l

)

×
∞∫

−∞

xp−1

(
(G(x))l

g(x)

r∑
i=1

ai(r)
(
F̄ (x)

)γi−1
f(x)

)
dx

This implies

pCr−1

αγr

∞∫
−∞

xp−1

r∑
i=1

ai(r)
(
F̄ (x)

)γi−1

(
αF̄ (x)−

[β+1]∑
l=0

(−1)l
(
[β + 1]

l

)
(G(x))l

g(x)
f(x)

)
dx = 0 (31)

Applying the extension of Müntz–Szász theorem (see, e.g., [18]) to (31), we get

F̄ (x)

f(x)
=

1

αg(x)

[β+1]∑
l=0

(−1)l
(
[β + 1]

l

)
Gl(x)

Thus, f(x) is the PDF as given in (7). Hence, Theorem (3) holds. □

Theorem 4. Fix a positive integer k and let p, q are non-negative integers. A necessary and sufficient
condition for random variables X, Y to be distributed with PDF given in (7) is that

E
(
Xp

r, n, m̃, kX
q
s, n, m̃, k

)
− E

(
Xp

r, n, m̃, kX
q
s−1, n, m̃, k

)
=

q

αγs

[β+1]∑
t=0

(−1)t
(
[β + 1]

t

)
E
(
Bt(Xr, n, m̃, k, Xs, n, m̃, k)

) (32)

where Bt(x, y) = xiyj−1 (G(y))t

g(y)
.
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Proof. If part follows from (28). To prove only if part, suppose the relation in (32) holds. Now, in
view of (3) and (25), we have

qCs−2

∞∫
−∞

∞∫
x

xpyq−1

(
s∑

i=r+1

a
(r)
i (s)

(
F̄ (y)

F̄ (x)

)γi
)(

r∑
i=1

ai(r)[F̄ (x)]γi

)
f(x)

F̄ (x)
dydx

=
qCs−1

αγs

[β+1]∑
t=0

(−1)t
(
[β + 1]

t

) ∞∫
−∞

∞∫
x

xpyq−1G
t(y)

g(y)

(
s∑

i=r+1

a
(r)
i (s)

(
F̄ (y)

F̄ (x)

)γi
)

×

(
r∑

i=1

ai(r)[F̄ (x)]γi

)
f(x)

F̄ (x)

f(y)

F̄ (y)
dydx

This implies

qCs−1

αβγs

∞∫
−∞

∞∫
x

xpyq−1

(
r∑

i=1

ai(r)[F̄ (x)]γi

)(
s∑

i=r+1

a
(r)
i (s)

(
F̄ (y)

F̄ (x)

)γi
)

f(x)

F̄ (x)

×

αβ −
[β+1]∑
t=0

(−1)t
(
[β + 1]

t

)
Gt(y)

g(y)

f(y)

F̄ (y)

 dydx = 0

(33)

Applying the extension of Müntz–Szász theorem (see, e.g., [18]) to (33), we get

F̄ (y)

f(y)
=

1

αg(y)

[β+1]∑
t=0

(−1)t
(
[β + 1]

t

)
Gt(y).

Thus, f(y) is a PDF as given in (7). Thus, the proof of Theorem (4) is completed. □

5. Conclusions

The Gompertz-G family of distributions with two additional shape parameters has been proposed by
Alizadeh et al. [4]. It includes a wide family of continuous distributions and gives a better fit to generated
distributions. The GOS is a unified approach for several ordered random variables, like order statistics,
record values, sequential order statistics, etc. The main purpose of this study is to demonstrate moments
of generalized order statistics for several continuous distributions belonging to this class. Moreover,
characterizing a probability distribution plays an important role in statistical studies and has significant
applications in natural and applied sciences. Thus, the characterization of this general class of distribution
is also carried out using moment properties.
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