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Abstract

This paper aims to develop an inventory model considering discrete demand, coordinated pricing, and multiple delivery
policies in a single-buyer single-supplier production-inventory system. The shortage is not allowed and the planning horizon
is considered to be infinite. The main objective of the framework is to equip the decision-maker with optimal order, pricing,
and shipment quantities to maximize the total profit of the system. The results obtained from the numerical example reveal
that the proposed approach with an average selling price equal to about 94% of the classical model, has resulted in an average
profit increase of about 16% and an average order increase of about 34% compared to the classical approach.
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1. Introduction

Integrated production inventory planning as an operations research and management science problem
has received a considerable amount of attention [34]. It strongly depends on materials handling, which
significantly affects the costs and the capability of revenue generation. It also regulates material flow
within and between the various organizations along with the integrated system [44]. Besides, in today’s
globalized competitive business environment, manufacturers are looking for supply and distribution of
materials, components, and finished products esall over the world. If they do not achieve reliable delivery,
it will be switched from one supplier to another [18]. Therefore, the importance of integrated production-
inventory management is further declared [61]. Managing the production-inventory system is strongly
related to determining the volume and order points. Therefore, several models developed address this
issue in the relative literature.
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The first inventory model, named economic order quantity (EOQ), was introduced in 1913; to develop
the replenishment policy, the economic production quantity (EPQ) model was introduced. However, so
many assumptions addressed in these models make them far from real-world situations [41]. Recent re-
search papers try to remove a number of these assumptions to obtain a more realistic model. For example,
although many companies face discrete demand that directly depends on the selling price, the models as-
sume demand is continuous and constant. Just in time (JIT) is the other inventory system that is not only
capable of reducing inventory cost but ensuring the reliability of the supplier’s production system, using
a small-batch delivery strategy [56]. As an integrated system, the JIT has better performance than other
ones [6] in terms of linking manufacturer and retailer in a mutually rewarding, long-term partnership
to provide a cost-effective inventory system [37]. This paper tries to develop an original approach to
obtain an integrated production-inventory system through the JIT concept. It considers discrete demand,
coordinated pricing, and multiple delivery policies in a single-buyer single-vendor production-inventory
system. The vendor and the buyer share their costs to achieve a globally optimal solution along a two-
stage supply chain. The objective of the system is to optimally determine how many items should be
ordered and how many items should be delivered per shipment. According to the authors’ knowledge,
no inventory model in the relative literature addresses price-dependent demand, discrete demand, and
multiple deliveries simultaneously, in a two-stage supply chain. The shortage of the final product is not
allowed and the planning horizon is considered to be infinite. The contributions of the paper are briefly
as follows:

• formulating an integrated production-inventory system through single set-up multiple delivery
(SSMD) strategies and the JIT inventory philosophy is the main contribution of the paper;

• proposing an optimal framework that addresses the discrete and periodic retailer’s demand while
considering the discrete and periodic delivery is the other main contribution of the research;

• the pricing decisions and price-dependent demand rates included in the developed framework to
solve the resulting general integrated production-inventory planning problem through an innovative
solution approach.

The rest of the paper is organized as follows. A review of the relative literature is provided in Section 2.
In Section 3, the model for the integrated single-vendor single-buyer inventory model is formulated.
Section 4 examines the effectiveness of the model through numerical experimentation. And, finally,
Section 5 provides conclusions and opportunities for future research.

2. Literature review

The concept of the integrated production-inventory system was popularized in 1977 by Grubbström and
Lundquist [23], and since then many variations have been developed. Kim and Ha [32] introduced
an SSMD model for a vendor-buyer system. It considers frequent and small-lot deliveries that may be in-
tegrated with the JIT inventory system to minimize the cost function of the system. Using a non-periodic
JIT system, Rau and OuYang [43] developed a similar model with a finite time horizon and a linear trend
for the demand. A multi-stage production-inventory system using the JIT delivery policy and Kanban is
proposed by Wang and Sarker [55] and further solved by the branch and bound method. More advanced
Internet-of-things-based JIT-oriented inventory systems are also reviewed in [19] for manufacturing lo-
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gistics systems. Zanoni and Zavanella [64] studied an integrated made-to-order production-inventory
system in a steel production industry considering finite capacity. Law and Wee [33] investigated this
system from the perspectives of both the manufacturer and the retailer. Chung and Wee [9] included pric-
ing policy, imperfect production, inspection planning, warranty period, stock-level-dependent demand,
partial backorder, and inflation in the same problem. Taking into account discrete and periodic delivery
policy in an EPQ model, Pasandideh and Niaki [42] formulated a model and proposed a genetic algo-
rithm to solve it. Yan, Banerjee [59] developed an integrated manufacturer-retailer system considering
discrete delivery lot quantity and an exact cost function. The same modeling approach was introduced
by Sarkar [49] and Chang [8] to find the system’s minimum cost using the algebraic approach. They
were also used by Cárdenas-Barrón [5] to develop the derivation of EOQ/EPQ inventory models with
two back-order costs and have been previously introduced by Sphicas [52]. Wee and Widyadana [33]
integrated a single-vendor single-buyer production-inventory model considering multiple deliveries and
lost sales to lessen the inventory cost. Jha and Shanker [27] formulated an integrated single-vendor multi-
buyer system using a batch production policy. Cao and Hu [4] claimed that addressing discrete delivery
in the model formulation may obtain a better optimal solution with lower cost regarding the step-wise
characteristics of a multi-delivery strategy. Comparing the single set-up single delivery (SSSD), SSMD,
and multiple set-up multiple-delivery (MSMD), Kim and Banerjee [31] further claimed that the SSMD is
the best delivery policy whenever the set-up cost is relatively high. Hoque and Goyal [25] developed an
optimal policy for the same system by introducing successive batches of a lot transferred to the buyer in
a finite number of unequal and equal sizes. Giri and Sharma [14, 15] also developed the same approach
by examining unequal shipments, using renewal theory. Sadeghi, Makui [48] addressed a multi-level as-
sembly system with random lead time with periodic interval demand and random lead time. Maddah and
Noueihed [36] studied an EOQ model considering random demand. AlDurgam, Adegbola [1] introduced
an integrated single-vendor single-manufacturer production-inventory model considering stochastic de-
mand in an SSMD system.

Feng and Chan [11] studied the pricing decisions and price-dependent demand rates in the integrated
production-inventory planning problems. They claimed that price is a major factor in demand, based on
marketing and economic theory. Considering a price-sensitive demand, Weng [57] introduced a single-
vendor single-buyer model. Khan and Shaikh [30] formulated a mathematical model of economic order
quantity by considering price as a decision variable and proving their optimality. They assumed that de-
mand is dependent on price and also, shortages are considered and these depend on the customer waiting
time. And Khan, Shaikh [29] also considered the EOQ model with full and partial payment, assum-
ing shortages are allowed and the demand function is considered as price and stock-dependent. Khan,
Shaikh [28] formulated a mathematical model for a single deteriorating item with demand dependent on
the frequency of advertisement and the selling price of the product. And also used the advanced pay-
ment policy and assumed that shortages were allowed. Using a multi-replenishment scenario in a finite
period system, Datta and Paul [10] analyzed an inventory system where the demand rate is influenced by
both displayed stock level and selling price. Considering a quantity discount pricing strategy, Yang [60]
developed an optimal pricing and ordering policy for a deteriorating item with price-sensitive demand.

Golpîra [16] considers an agile manufacturing setting for single-product under a vendor-managed
inventory (VMI) strategy to seize a new market opportunity by using bilevel programming. Although
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Table 1. Summary of the features of surveyed publications

Authors
Vendor–buyer

model

Finite
production

rate

Infinite
horizon

Price
-dependent

demand

Discrete
delivery orders

Discrete
demand

Harris [24] ✓
Goyal [21] ✓ ✓ ✓
Datta, Paul [10] ✓
Weng [57] ✓ ✓
Goyal, Nebebe [22] ✓ ✓ ✓ ✓
Ouyang, Wu [40] ✓ ✓
Yang [60] ✓ ✓
You [62] ✓ ✓
Mukhopadhyay, Mukherjee [38] ✓ ✓
You, Hsieh [63] ✓
Pasandideh, Niaki [42] ✓ ✓ ✓ ✓
Widyadanaa, Wee [58] ✓ ✓ ✓ ✓
Wee, Widyadana [56] ✓ ✓ ✓ ✓
Alfares, Ghaithan [2] ✓ ✓ ✓
AlDurgam, Adegbola [1] ✓ ✓ ✓ ✓
Fu, Chen [12] ✓ ✓ ✓ ✓
Omar, Zulkipli [39] ✓ ✓ ✓ ✓
Chan, Fang [7] ✓ ✓ ✓
Sadeghi [46] ✓ ✓ ✓ ✓
Liu, Li [35] ✓ ✓ ✓
Sadeghi [45] ✓ ✓ ✓ ✓
Ben-Daya, As’ ad [3] ✓ ✓ ✓ ✓
Sadeghi, Golpîra [47] ✓ ✓ ✓ ✓ ✓
This paper ✓ ✓ ✓ ✓ ✓ ✓

dealing with inventory in the construction industry is different [20], Golpîra [17] proposes the first math-
ematical framework that successfully captures the outcomes and role of the VMI strategy for the problem
of construction supply chain integration. Hsiao and Yu [26] consider the same strategy for deteriorating
items using the SSSD, and SSMD policies. They assume that the shortage is not allowed and that both
researchers and industry with constructive management insight in inventory management decisions, min-
imizing the overall cost of item deterioration and overall carbon footprint. Sarkar and Debnath [50] as-
sume both the supplier and the manufacturer follow through with an SSMD policy for shipment in a two-
stage supply chain. Sarkar and Chung [51] proposed a model to obtain the optimal flexible production
rate with the reduced total cost of the supply chain also through the SSMD policy. You [62] investigated
the problem of jointly determining the order size and optimal prices for a perishable inventory system
under the condition that demand is time- and price-dependent. Mukhopadhyay and Mukherjee [38] in-
troduced an inventory replenishment policy for deteriorating items addressing a price-dependent demand.
You and Hsieh [63] developed a continuous inventory model to find the strategy for an enterprise that
sells a seasonal item over a finite planning time. The model aims at maximizing the expected profit by
determining the optimal ordering quantity and price-setting strategy. Srivastava and Gupta [53] studied
an EPQ model for a single product with price-dependent demand under a markdown policy. Zhang,
Bai [65] introduced the problem of simultaneously determining the price and inventory control strategies
for deteriorating items. In the model, the rate of deterioration is reduced through effective preservation
technology investment, and the demand rate is a function of the selling price.
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Teksan and Geunes [54] developed a generalized EOQ model for an end item. They consider that the
quantity of input components available for production is a non-decreasing function of the price offered
by the manufacturer to its vendor, with a price-dependent demand. Alfares and Ghaithan [2] simultane-
ously considered the variability of the demand rate, the unit holding cost, and the unit purchase cost to
model an inventory system. It includes a selling price-dependent demand rate, a storage time-dependent
holding cost, and an order size-dependent purchase cost based on an all-unit quantity discount. For ob-
taining more clarity, the critical features of some more relative publications surveyed in this section are
summarized in Table 1.

3. Problem description and notations

3.1. Problem definition

Taking into consideration the discrete step-wise lot delivery policy, a single-supplier single-buyer system
is addressed in this paper. The demand is considered to be handled by the buyer as a multi-period and
discrete schema. Such price-dependent discrete demand D(v) is also captured as a function of the selling
price v per period. The time between two consecutive demands is denoted as ts. This is because the
lower the selling price, the higher the annual demand is. In each cycle time T , the buyer orders q units of
the product, and the supplier sends the products to the buyer through a step-wise strategy.

Figure 1. The proposed inventory policy

As shown in Figure 1, according to the SSMD strategy taken by the supplier, k units of the products
are supplied with production rate P in each of the J steps during the interval time t. In other words, the
buyer requests q unit of product in each cycle time. Given the perishability of the products, it is better
not to deliver all the order quantities in one shipment. Delivering the products at the m stage makes it
possible to decrease the amount delivered. This is more acceptable for the buyer due to decreasing the
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chance of perishability of the deliverables. The supplier delivers the issued order at the m stage and sent
k units of a product at every stage. So, the amount of each order is equal to Jk. The buyer faces C as the
unit selling price from the supplier and also the fixed order cost A as well as the holding cost h and the
batch transportation cost B. The objective of the model is to determine the optimal order quantity, the
optimal number of deliveries, and the selling price handled by the buyer. To do so, some assumptions are
considered in the model formulation:

• The model is designed for a single-supplier single-buyer system.
• The strategy of delivery follows the SSMD context.
• The production rate is constant through the known production time cycle that is greater than that of

the annual demand.
• The demand of the buyer is discrete, periodic, and price-dependent.
• The production rate is constant.
• The shortage is not allowed.
• Transportation time between the vendor and the buyer is considered.

3.2. Notations

The following notations will be used through the model formulation provided in Section 4:

Parameters

p – supplier’s production rate
D(v) – buyer’s price-dependent discrete demand, unit/year
T – duration of a cycle, year
t – interval time between two sequential shipments, year
ts – the time between two consecutive demands, year
J – number of shipments in each cycle
h – holding cost per unit, $
B – unit transportation cost per shipment, $
C – unit purchasing cost, $
A – fixed ordering cost per cycle, $

Decision variables

v – selling price, $
k – shipment quantity
q – retailer order quantity per cycle

4. Problem formulation and solution approach

In the following subsections, a mathematical model is formulated to support the proposed framework.
A novel heuristic-based solution approach is clearly defined to obtain a globally optimal solution, which
is clearly discussed and further investigated using a numerical example in Section 5.
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4.1. Problem formulation

As aforementioned, the system considered in this paper includes a buyer and a supplier, which should be
optimized from the perspective of the buyer. Given the fixed ordering cost A, if the number of shipments
at each cycle sets to J , the total order in each cycle is given as Jk. With the unit purchasing cost C,
the total purchasing cost can be calculated as CJk. The total transportation cost can be calculated as
JB paid for m shipment with the unit transportation cost B. After the order delivery, the holding cost
H(q, v, k) is paid by the buyer during each order cycle time with duration T . According to Figure 1, the
total inventory holding cost is subdivided into J terms corresponding to J shipment that occurred during
the ordering cycle.

Each term is devoted to the inventory holding cost paid during the period t as the interval time between
two sequential shipments. Holding cost in each period can be calculated as hSj, j ∈ J = {1, . . . , J}
where parameter h is the unit inventory holding cost and Sj, j ∈ J = {1, . . . , J} are provided through
equations (1)– (4)

S1 =

(
k + (k −D (v) ts) + (k − 2D (v) ts) + · · ·+

(
k −

( t
ts

− 1
)
D (v) ts

))
ts

⇒S1 = (2K − tD (v) + tsD (v))
t

2

(1)

S2 =

((
2k −D(v) t

)
+
(
2k −D(v) t−D(v) ts

)
+

(
2k −D(v) t− 2D(v) ts

)
+ · · ·+

(
2k −D(v)t−

( t
ts

− 1
)
D(v)ts

)
ts ⇒ S2 = (4K − 3D(v) t+D(v) ts)

t

2

(2)

Sj =
(
2 (jk)− (2j − 1)D(v) t+D(v)ts

) t
2
, j = 1, . . . , J − 1 (3)

SJ =
(
D(v) ts

)
ts + 2 (D(v)ts) ts + · · ·+ (Jk − (J − 1)D(v)tts)

⇒SJ = (D(v) ts) ts

(
1 + · · ·+ (J k − (J − 1)D(v) t)

D(v) ts

) (4)

Then, one calculates the sum of the inventory over the ordering cycle T

S =
J∑

j=1

Sj =
1

2
(J − 1) t (kJ +D(v) (t− Jt+ ts)) + SJ

⇒S =
kJ

(
kJ +D(v) (t− Jt+ ts)

)
2D(v)

(5)

Therefore, the holding cost of each cycle is

H(q, v, k) = hS (6)

Since the annual cycle is calculated as T =
Q

D(v)
=

Jk

D(v)
,
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the total annual cost T (q, v, k), can be obtained through equation

T (q, v, k) =
D(v)

Jk

(
A+ CJk + JB) +H(q, v, k)

)
⇒T (q, v, k) = CD(v) +

BD(v)

k
+
AD(v)

kJ
+
h

2
(kJ +D(v)(t− Jt+ ts)

(7)

Now, it is time to calculate the annual income of the system to make the capability to calculate the
total profit. Given the selling price C, the total income I(q, v, k) can be provided through equation

I(q, v, k) = vD(v) (8)

Then, the total annual profit can be provided through the equation

Π(q, v, k) = I(q, v, k)− T (q, v, k)

= vD(v)−
(
C D(v) +

BD(v)

k
+
AD(v)

kJ
+
h

2
((kJ) +D(v) (t− (Jt) + ts))

) (9)

According to Figure 2, during the interval time t, the supplier provides k units of product with the
production rate P and, then, sends them to the buyer, which means k = Pt.

Figure 2. The supplier inventory level

Given k = Pt, D(v) = a − bv, and q = Jk, the total annual profit Π(q, v, k) can be further
summarized as follows:

Π(q, v, k) = (v − C) (a− bv)− (a− bv)
(B
k
+
A

q

)
− h

2

(
q + (a− bv)

( k
P

− q

P
+ ts

))
(10)

Then the final model can be formulated as

maxΠ(q, v, k), q, k ≥ 0 & integer, v ≥ 0 (11)

4.2. Solution approach

As one can see in equation (11), the model is finally formulated as the non-constrained maximization
problem, which can be solved through a simple derivative approach. Due to the maximization type of
the problem, at first, it is necessary to define if the objective function is concave. To do so, the following
procedure, begun by Theorem 1, should be completely followed.
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Theorem 1. A function, i.e., the total annual profit in this paper, is concave if XtAX < 0 in which A

denotes the Hessian matrix and X is a decision vector.

Proof. Vector X in the introduced model is defined as X =
[
q v k

]t
, hence the relative Hessian

matrix is defined as

A =



∂2TC

∂q2
∂2TC

∂q∂k

∂2TC

∂q∂v

∂2TC

∂k∂q

∂2TC

∂k2
∂2TC

∂k∂v

∂2TC

∂v∂q

∂2TC

∂v∂k

∂2TC

∂v2


=



−2A(a− bv)

q3
0 −b

(
h

2P
+
A

q2

)

0 −2B(a− bv)

K3

1

2
b

(
−2B

k2
+
h

P

)

−b
(
h

2P
+
A

q2

)
1

2
b

(
−2B

k2
+
h

P

)
−2b


(12)

To test the availability of the theorem, the term XtAX is calculated as equation (13), which is negative.
Therefore, the annual profit outlined in equation (11) is strictly concave.

xT Ax = −
(
2a (Ak +Bq)

kq
+
bv (h (q − k) + 2Pv)

P

)
(13)

□

Due to the non-convexity of Π(q, v, k), the global optimal solution can be provided by the first deriva-
tive set equal to zero. To do so, equations (14)–(16) are simply provided.

∂ψ(q, v, k)

∂q
= 0 ⇒ A (a− bv)

q2
− h (−a+ P + bv)

2P
= 0 ⇒ q∗(v) =

√
2AP (a− bv)√

h (P − (a− bv))
(14)

∂ψ(q, k, v)

∂k
= 0 ⇒ 1

2

(
2B

k2
− h

P

)
(a− bv) = 0 ⇒ k∗ =

√
2BP

h
(15)

∂ψ(q, v, k)

∂v
= 0 ⇒ a+ bc+

bB

k
+
Ab

q
− 2bv +

bh (k − q + Pts)

2P
= 0

⇒ v∗(q) =
2AbkP + bhk2q + 2bBPq + 2akPq + 2bckPq − bhkq2 + bhkPqts

4bkPq

(16)

Corresponding to equations (14)–(16) and the three unknown decision variables, the optimal values
for the retailer’s order quantity per cycle, shipping quantity, and selling price, denoted respectively by q∗,
k∗, and v∗, are calculated. Although the optimal solution is obtained, there is no guarantee for q∗ and
k∗ to be an integer. However, they are restricted to be integer-valued through equation (11). To obtain
integer values for these decision variables, given the rounded values of k∗, i.e., round

(√
2BP/h

)
,

equations (14) and (16) are both recalculated, simultaneously. If the value of order quantity is going to
be an integer, then the constraints of equation (11) are satisfied; otherwise, it will be rounded and replaced
in equation (16), and the relative value of v∗ is achieved. According to García–Laguna, San–José [13],
the upper- and lower-bound of q∗, can be provided respectively through equations
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Figure 3. The proposed solution approach
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ql
∗ =

⌈
−0.5 +

√
0.25 +

2AP (a− bv)

h (P − (a− bv))

⌉
(17)

qu
∗ =

⌊
0.5 +

√
0.25 +

2AP (a− bv)

h (P − (a− bv))

⌋
(18)

where ⌈.⌉ = [.] + 1 and ⌊.⌋ = [.] are the ceiling and floor functions, respectively.

Hereafter, if −0.5 +

√
0.25 +

2AP (a− bv)

h (P − (a− bv))
is not an integer, then the optimal solution is ob-

tained as ql∗ = qu
∗; otherwise, two optimal solutions, i.e., ql∗ and qu∗ = ql

∗ + 1, are obtained. The
same procedure is also done to obtain optimal value/s for k. Given equations (19) and (20) ), if −0.5

+
√
0.25 + (2BP/h) is not an integer, then the optimal solution is obtained as kl∗ = ku

∗; otherwise,
there are two optimal solutions kl∗ and ku∗ = kl

∗ + 1

kl
∗ =

⌈
−0.5 +

√
0.25 +

2BP

h

⌉
(19)

ku
∗ =

⌊
0.5 +

√
0.25 +

2BP

h

⌋
(20)

Here, J =
q

k
depends on the values obtained for q and k. Hence, J takes the integer value, whenever

q is an integer multiple of k. The optimal value of q, then, takes the value of q1∗ =
[
q∗

k∗

]
k∗ , J =

[
q∗

k∗

]
or q2∗ =

[
q∗

k∗
+ 1

]
k∗, J =

[
q∗

k∗
+ 1

]
. If Π(q∗1, v, k) ≥ Π(q∗2, v, k) then q1∗ is the optimal solution;

otherwise, q∗2 is the final optimal solution. To obtain more clarity about the proposed solution approach,
it is completely represented in Figure 3.

5. Numerical example and sensitivity analysis

5.1. Problem data

In this section, a numerical example is designed in which the supplier production rate sets to 100 units
per year, and the retailer’s demand is defined as D(v) = 100 − 0.3v units per year. The time that exists
between two consecutive demands is set to 0.01 years and the purchasing cost is also set to 40$. The
retailer’s product order is received one time per cycle with 1000$ as its fixed ordering cost. The time of
the order delivery is not significant, corresponding to the certain lead time, addressed in this paper. The
annual holding and the transportation costs are set to 20$ per unit and 20$ per order, respectively.
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5.2. Numerical results

Using equations (19) and (20) the lower and upper bound of variable are achieved as

k∗l =
⌈
−0.5 +

√
0.25 + (2 20 100)/20

⌉
= 14, ku

∗ =
⌊
0.5 +

√
0.25 + (2 20 100)/20

⌋
= 14

So, the optimal value of shipment quantity is obtained as 32. Afterward, upper and lower optimal
values of the order quantity are defined through equations (16)–(18). The values are obtained as

qu
∗ =

⌊
0.5 +

√
0.25 +

2 1000 100 (100− 0.30 v)

20 (100− (100− 0.30 v))

⌋

ql
∗ =

⌈
−0.5 +

√
0.25 +

2 1000 100 (100− 0.30 v)

20 (100− (100− 0.30 v))

⌉

Figure 4. The number of and relative to various values of are outlined in Figure 4 (a) and Figure 4 (b)

Figure 5. Relationship between the objective function, selling price, and the order quantity

Due to the dependency of the optimal order quantities to the value of v, Figures 4a and 4b outline
the number of qu and ql relative to various values of v, respectively. As one can see, those figures are
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similar, hence the optimal value of v is obtained as 109.224, and, the optimal value of v can be, then,
calculated as 46 units. The point (v∗, q∗) = (189.515, 87.114) that is colored red, outlines the obtained
optimal solution as well. Figure 4 further shows the relationship between the objective function, selling
price, and order quantity. The number of shipments in each cycle, i.e., J can be, then, calculated as
J = 84/15 = 5.6. Accordingly, the value of J can be calculated as J = 5 or J = 6. Therefore, the
optimal value of q can be provided as q∗1 = (q∗/k∗) k∗ = 6× 14 = 84 or q∗2 = (q∗/k∗ + 1) k∗ = 7× 14

= 98. The total profit for q1∗ and q2∗ take the values of 5333.37 and 5327.53, respectively. Therefore, the
optimal order quantity is 84 units per cycle and the optimal number of shipments per cycle is 2. Figure 6
further shows the sensitivity of the objective function to the order quantity. The optimal value is outlined
as the red point in the figure.

Figure 6. Sensitivities of profit function relative to the order quantity

5.3. Analysis of results

The results obtained from the proposed model, the proposed SSMD model, and the classic model, the
traditional SSSD model, are summarized in Table 2. As shown in the table, three parameters have to
be specified before the results computations: 1) fixed order cost, 2) holding cost, and 3) transportation
cost. So, the sensitivity of the results to these parameters has been prepared to provide more confidence
in the model. In doing so, a parameter can be changed, while the others are set to fixed values. In
the SSSD model, the manufacturer provides the retailer with all the quantity it ordered; multi-delivery
ordering is not allowed. The annual cost of the order, considering the transportation cost, can be written
as equation (21) in which B is the transportation cost paid per delivery.

Π(q, v, k) = (v − C) (a− bv)− (a− bv)
(B
Q

− A

Q

)
− 1

2
h

(
Q+ (a− bv)

(Q
P

− Q

P
+ ts

))
(21)

As shown in the table, the proposed approach, with an average selling price equal to about 94% of the
average selling price of the classical approach, resulted in an average profit increase of about 16% and
an average relative percent difference (RPD) factor increase of about 14%.
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Table 2. Results of the sensitivity analysis

Cost Parameters Proposed model Classic model RPD
variability O h B k q J v P Q v P [%]

Fixed order 500 20 20 14 56 4 189.795 5620.96 47 199.736 4884.49 13.10
500 20 20 14 56 4 189.795 5620.96 47 199.736 4884.49 13.10
600 20 20 14 70 5 188.917 5556.85 52 199.936 4818.46 13.29
700 20 20 14 70 5 189.631 5495.11 56 200.217 4756.01 13.45
800 20 20 14 84 6 188.693 5436.26 59 200.596 4695.73 13.62
900 20 20 14 84 6 189.288 5384.71 62 200.925 4639.61 13.84
1000 20 20 14 84 6 189.883 5333.37 66 201.042 4590.27 13.93
1100 20 20 14 98 7 188.843 5283.22 69 201.288 4540.82 14.05
1200 20 20 14 98 7 189.353 5239.07 72 201.500 4494.01 14.22
1300 20 20 14 98 7 189.864 5195.07 74 202.021 4446.32 14.41
1400 20 20 14 98 7 190.374 5151.23 77 202.008 4403.94 14.51
1500 20 20 14 112 8 189.227 5109.96 80 202.142 4363.38 14.61

Holding 1000 10 20 20 180 9 185.969 5614.83 92 199.768 4886.91 12.96
1000 12 20 18 108 6 189.181 5585.89 85 200.059 4818.61 13.74
1000 14 20 17 102 6 189.217 5516.87 79 200.301 4756.3 13.79
1000 16 20 16 96 6 189.34 5452.22 74 200.543 4697.95 13.83
1000 18 20 15 90 6 189.559 5391.33 69 200.898 4640.73 13.92
1000 20 20 14 84 6 189.883 5333.37 66 201.042 4590.27 13.93
1000 22 20 13 78 6 190.326 5277.32 63 201.248 4540.95 13.95
1000 24 20 13 78 6 190.006 5226.8 60 201.52 4492.43 14.05
1000 26 20 12 72 6 190.609 5175.03 59 201.721 4488.52 13.27
1000 28 20 12 72 6 190.314 5128.32 55 202.048 4400.77 14.19
1000 30 20 12 72 6 190.019 5081.66 53 202.276 4357.84 14.24

Transportation 1000 20 10 10 90 9 188.772 5369.37 65 196.209 4990.93 7.05
1000 20 12 11 88 8 189.094 5361.5 65 197.209 4908.95 8.44
1000 20 14 12 84 7 189.652 5353.26 65 198.209 4827.58 9.82
1000 20 16 13 91 7 188.927 5346 66 199.042 4750.21 11.14
1000 20 18 13 91 7 189.003 5339.33 66 200.042 4669.94 12.54
1000 20 20 14 84 6 189.883 5333.37 66 201.042 4590.27 13.93
1000 20 22 15 90 6 189.256 5327.52 66 202.042 4511.19 15.32
1000 20 24 15 90 6 189.322 5321.76 66 203.042 4432.72 16.71
1000 20 26 16 80 5 190.579 5313.63 66 204.042 4354.84 18.04
1000 20 28 17 85 5 190.023 5311.39 66 205.042 4277.57 19.46
1000 20 30 17 85 5 190.081 5306.34 66 206.042 4200.89 20.83

1 Symbols used: O – fixed order cost, h – holding cost, B – transportation cost, k – optimal shipment quan-
tity, q – optimal order quantity, J – number of shipments, v – optimal selling price, P – optimal profit,
RPD – relative percent difference.

The RPD is the factor that has been defined to compare the optimal profits obtained corresponding to
the proposed model with those of the classic model (see Table 2). It, traditionally, measures the variation
in a set of data calculated

RPD =
Optimal profit (proposed model)−Optimal profit (classic model)

Optimal profit (proposed model)
× 100% (22)

These results are quite justified given the average order increase of about 34% in the proposed approach
compared to the classical approach. However, based on Figure 7, the decrease in profit due to the increase
in the fixed costs is almost the same in both models and shows an average difference of about 2%. This is
even though the number of shipments in the proposed model is more than in the classic model.
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Figure 7. Optimal profit against the various fixed order costs

In such a case, in the classical model, the logical behavior of the buyer would be to increase the
selling price to partially offset the increase in the fixed order cost, as shown in Figure 8. At the same
time, despite the changes in the selling price resulting from the proposed approach, this approach overall
has much better relative stability than the classical approach. This can be seen due to the negligible slope
(0.0004) of the trend-line for the proposed model results compared to that of the classical model.

Figure 8. Optimal selling price against the various fixed order costs

In the proposed model, since the amount of shipment quantity ( k) is remaining fixed against the
various values of the fixed order cost, the increasing number of shipments (J) results in very little change
in the holding costs. At the same time, due to the need to provide a balance between the fixed order
and the holding costs, the proposed model with a lower holding cost, in a greater fixed order cost, faces
a greater order quantity, as shown in Figure 9. In other words, given q = Jk, the increasing number of
shipments increases the order quantity. Increasing the fixed order cost may increase the buyer’s order
quantity due to the direct relationship between the system’s total cost and the number of orders a year.
Accordingly, a negligible change in the total cost of the system makes the retailer not see the need
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to increase the selling price. Since the demand and the selling price are reversely related, unlike the
classical model, the stability of the price makes the demand unchanged. Therefore, unlike the classical
model with the decreasing demand, in the proposed model the demand remains fixed, hence the optimal
order quantity may increase more sharply with the slope of 0.047 compared with that of the classical
model (0.32).

Figure 9. Optimal order quantity against the various fixed order costs

In the following, the effect of changes in the unit holding cost on the optimal results of the model
is also examined. As shown in the 11 middle rows of Table 2 and further outlined in Figure 10, unlike
the effect of the increase in the fixed order cost, shown in Figure 8, any increase in the unit holding cost
has reduced the order quantity. This is logical because increasing the unit holding cost increases the
total holding cost of the system. And decreasing the order quantity, in both models, may moderate the
increasing intensity of the holding costs to some extent.

Figure 10. Optimal order quantity against the various unit holding costs

Decreasing the amount of the order quantity may increase the number of orders a year. Therefore,
the total cost of the system may increase; hence, decreasing the profitability, as shown in Figure 11. To
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compensate for some of this decline in profits, the logical solution is to increase the price of the product,
as declared in Figure 12. However, the dependence of demand on the selling price moderates the trend of
increasing the price of the product. Because excessive price increases make a large decrease in demand
and this in turn reduces the total profit.

Figure 11. Optimal profit against various unit holding costs

Figure 12. Optimal selling price against various unit holding costs

To further analyze the sensitivity of the results to the transportation cost, given the fixed number of ship-
ments per cycle that is equal to one, the corresponding costs are added to the fixed ordering cost. Therefore,
the transportation cost of each order for the classical model behaves similarly to the fixed ordering cost.
In the proposed model, on the other hand, the transportation cost per cycle is equal to the product cost of
each order in the number of shipments. Therefore, to maintain a balance in transportation costs, the number
of shipments decreases with increasing transportation costs. At the same time, by reducing the number of
orders per cycle, the amount of each receipt increases to maintain a balance between supply and demand.
Therefore, increasing the transportation cost increases the system’s costs and, as a result, the total profit
decreases, as shown in Figure 13. However, as can be seen in the figure, the reduction rate in the proposed
model is less than the classic model due to its flexibility in the quantity and number of shipments.
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Figure 13. Optimal profit against various transportation costs

In this regard, reducing the profit increases the buyer’s selling price to offset part of the system’s costs.
However, as shown in Figure 14, since increasing the selling price reduces demand, these price changes
in the proposed model have been made very cautiously compared to the classic model. This is in full
compliance with the slight slope of the profit change of the proposed model, outlined in Figure 13.

Figure 14. Optimal selling price against various transportation costs

6. Conclusion

This study investigates an optimal integrated production-inventory system from the perspectives of both
the supplier and the buyer. A step-wise delivery strategy, which is more useful for such perishable prod-
ucts as alcohol, naphthalene, and food is considered to capture a large amount of fixed order and inventory
costs. The demand is periodic and depends on the selling price through an infinite planning horizon. To
simply solve the model, a solution approach is introduced to keep the reliability and correctness of the
calculation process. A numerical example and a well-designed sensitivity analysis clearly validate the
model and the obtained results. The results show the superiority of the model in providing results that
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are nearer to real-life situations. The numerical results show that the proposed approach, with an average
selling price equal to about 94% of the average selling price of the classical model, has resulted in an
average profit increase of about 16% and an average RPD factor increase of about 14%. It also results in
an average order increase of about 34%
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