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Abstract

Probabilistic price forecasting has recently gained attention in power trading because decisions based on such predictions can
yield significantly higher profits than those made with point forecasts alone. At the same time, methods are being developed
to combine predictive distributions, since no model is perfect and averaging generally improves forecasting performance. In
this article, we address the question of whether using CRPS learning, a novel weighting technique minimizing the continuous
ranked probability score (CRPS), leads to optimal decisions in day-ahead bidding. To this end, we conduct an empirical study
using hourly day-ahead electricity prices from the German EPEX market. We find that increasing the diversity of an ensemble
can have a positive impact on accuracy. At the same time, the higher computational cost of using CRPS learning compared to
an equal-weighted aggregation of distributions is not offset by higher profits, despite significantly more accurate predictions.
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1. Introduction

To mitigate risks or increase profits from trading in day-ahead power markets, market participants use
data-driven decision support techniques [12, 16, 17, 28]. For years, these have relied on point forecasts
of the major variables of interest: loads (or demand for electricity), generation from renewable energy
sources (RES), and electricity prices [10, 30]. However, as recently shown by Uniejewski and Weron [27],
decisions based on probabilistic price forecasts, i.e., quantiles, prediction intervals, or whole predictive
distributions, can yield significantly higher profits. For the quantile-based bidding strategies considered
in the Polish day-ahead power market, the profit obtained was from 5% to 19% higher than for the strategy
based on point forecasts alone.

Point forecasts are far more popular in the electricity price forecasting (EPF) literature, not only in a
decision support context. As reported by Maciejowska et al. [18], probabilistic EPF was not a part of
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the mainstream literature until the Global Energy Forecasting Competition in 2014 [9], and even now,
no more than 15% of the Scopus-indexed articles concern it. Although business analysts have begun
to recognize their importance in the planning and operation of energy systems (see, e.g., [13]), it is not
easy to generate accurate probabilistic predictions. Combining forecasts obtained from different model
specifications [19] or calibration sample lengths [11, 26] one can significantly increase accuracy without
sacrificing computational complexity or interpretability. Compared to selecting a single best-performing
forecast, combining forecasts from multiple models offers several advantages such as increased resilience
against model uncertainty or misspecification, and better adaptability in the event of structural breaks [29].

Forecast combinations (also called ensemble forecasts) involve assigning weights to the individual predic-
tions (or experts). While naive, i.e., equal, weighting is a straightforward – and surprisingly robust – way of
averaging point forecasts, in the case of predictive distributions, a choice must be made about what to combine.
Two natural approaches are vertical averaging of probabilities and horizontal averaging of quantiles [15, 20]
but the authors do not agree on which is better. Berrisch and Ziel [1] have recently proposed a cutting-edge
weighting technique, called CRPS learning that accounts for variations in predictive performance over time
and across quantiles of the distribution. It optimizes weights with respect to the continuous ranked probability
score (CRPS), the standard error metric for probabilistic forecasts [8, 18].

In this article, we address the question of whether forecast combinations obtained by minimizing the
CRPS lead to optimal decisions in day-ahead bidding. To this end, we conduct a comprehensive empirical
study involving:

• six years of hourly day-ahead electricity prices from the German EPEX market,
• state-of-the-art probabilistic forecasts generated by Marcjasz et al. [20] using distributional deep

neural networks (DDNN), as well as deep neural networks (DNN) and LASSO-estimated autore-
gressive (LEAR) models combined with quantile regression (QR),

• two approaches to combining predictive distributions – horizontal averaging of quantiles [15] and
CRPS learning [1].

Since statistical measures of forecast accuracy do not assess the utility of a forecast to its potential end
users [10, 13, 18, 31], we calculate the profits of a day-ahead bidding strategy [20, 25]. The latter aims
to find the most financially beneficial hours of the next day to buy electricity and charge a battery, then
discharge it and sell electricity. To minimize the risk of losses, limit orders are submitted to the power
exchange with the limits determined by selected quantiles of the predictive distributions.

The remainder of the article is organized as follows. In Section 2, the dataset and assumptions for
the forecasting problem are introduced. Section 3 describes the details of ensemble construction. The
results are presented in Section 4, with the forecast accuracy being the focus of Section 4.1, the trading
simulation described in 4.2, and its financial results in Section 4.3. Finally, Section 5 wraps up the results
and concludes.

2. Preliminaries and data sources

We assume a standard short-term forecast horizon of 1 day, performed in a rolling window scheme [30].
More precisely, forecasts of all 24 hourly prices on the day d are calculated at the same time in the
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morning of day d− 1, i.e., before the day-ahead market for day d closes, and that the model parameters
are estimated using a calibration sample of D most recent past observations. In our case, the underlying
data are hourly day-ahead electricity prices from the German EPEX market spanning the period from
1 January 2015 to 31 December 2020. The prices, day-ahead predictions of the loads, and RES generation
are publicly available from the ENTSO-E Transparency platform (https://transparency.entsoe.
eu). The full dataset, including emission allowances and fuel prices, is also available from https://
github.com/gmarcjasz/distributionalnn, a GitHub repository that accompanies [20].

The first D = 1456 days of the dataset are used as the initial calibration sample for all models, and
the additional 182 days are needed to calculate the quantile regression forecasts. The remaining 554 days
from 27 June 2019 until 31 December 2020 constitute the out-of-sample test period. Note that the latter
includes a major drop in the level of prices associated with a decrease in the demand for electricity during
the initial stage of the COVID-19 pandemic.

Since this study focuses on the evaluation of combination schemes for probabilistic forecasts and not
on the computation of predictive distributions themselves, we work directly with a pool of readily avail-
able state-of-the-art forecasts generated by Marcjasz et al. [20]. The latter takes the form of 99 predicted
percentiles for each day and hour, which approximate the predictive distribution quite well. They are
generated by twelve different models, eight of which are distributional deep neural networks (DDNN)
with the output layer returning fitted parameters of the normal or Johnson’s SU (JSU) distributions. Since
the quantile functions have no closed-form representations, the percentile forecasts are obtained as empir-
ical quantiles of a 10000-element random sample generated from the output normal or JSU distribution.
These forecasts are denoted further in the text as DDNN_N_{1–4} and DDNN_JSU_{1–4}, respectively,
with the numbers representing the hyperparameter set used for tuning the DDNNs.

The remaining models directly predict 99 percentiles with the use of quantile regression averaging
[QRA; 22] or quantile regression machine [QRM; 21] methods, applied to point forecasts of two well-
-performing benchmarks – LASSO-estimated autoregressive models (LEAR) and deep neural networks
(DNN) [14]. The combinations of these techniques make up the final four forecasts used in the ensembles:
LEAR_QRA, LEAR_QRM, DNN_QRA and DNN_QRM. Note that in the LEAR models, the prices for each of the
24 hourly load periods are treated as separate time series and estimated independently, whereas in the
DNN and DDNN neural networks, the 24 prices or 24 distributions are estimated jointly.

3. Methods

Combining forecasts has become a well-established method to increase predictive accuracy. The advan-
tages of using ensembles of experts in place of individual models include diversification of used infor-
mation and increasing robustness against model misspecification and structural breaks in the data [24].
While the literature generally recommends combining forecasts, many questions still remain open re-
garding the construction of ensembles. Across a multitude of possible specifications, the forecaster must
decide on how many predictions to combine, how to perform forecast selection, and how to choose
weights for each expert. Combining probabilistic forecasts is even more tricky, as the assigned weights
may change not just across experts and time, but also across quantile levels [29].

https://transparency.entsoe.eu
https://transparency.entsoe.eu
https://github.com/gmarcjasz/distributionalnn
https://github.com/gmarcjasz/distributionalnn
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3.1. Equal weighting

In point forecasting, the use of naive, i.e., equal, weights is often found to outperform more sophisticated
weighting schemes because the latter introduce excessive estimation bias [4]. In the case of predictive dis-
tributions, however, a choice must be made about what to combine. Two natural approaches are vertical
averaging of probabilities, which boils down to computing a mixture distribution, and horizontal averag-
ing of quantiles, where each quantile of the ensemble forecast is a weighted average of the corresponding
quantiles of all individual experts [15]. While the literature does not agree on which approach is bet-
ter, Marcjasz et al. [20] emphasize that horizontal averaging is more robust and results in a sharper, i.e.,
more concentrated, unimodal distribution. On the other hand, vertical averaging may lead to increased
variance and multimodality. For this reason, as well as potential information loss due to interpolation
needed to perform vertical averaging, only horizontal averaging of quantiles is considered in this paper.
For consistency with other EPF studies, we denote it in the text by qEns.

3.2. CRPS learning

Berrisch and Ziel [1, 2] have recently proposed a cutting-edge weighting technique that accounts for
variations in predictive performance over time and across quantiles; it is freely available in the profoc
package for R ([3], https://cran.r-project.org/web/packages/profoc). The authors called it
CRPS learning since it optimizes weights with respect to the continuous ranked probability score (CRPS).
The latter is a proper scoring rule and the standard error metric for probabilistic forecasts [7, 8]. It is
defined as:

CRPS(F, x) = −
∞∫

−∞

(
F (y)− 1{y≥x}

)2
dy (1)

where F is the cumulative distribution function of the evaluated probabilistic forecast. It can equivalently be
represented as a scaled integral of the quantile loss, which for an equidistant grid can be approximated by:

CRPS(F, x) ≈ 2

M

M∑
i=1

QLpi

(
F−1(pi), x

)
(2)

where (p1, . . . , pM ) is an equidistant monotonically increasing dense grid of probabilities and
QLp(q, x) =

(
1{x<q} − p

)
(q − x) is the quantile loss for a quantile forecast q of true value x for

probability p ∈ (0, 1), also known as the pinball score [1, 18]. In practice, the scaling factor of 2 in
eq. (2) is typically omitted; this is also the case here.

The CRPS learning algorithm aims to combine probabilistic forecasts by selecting optimal weights
for averaging across quantiles to minimize the CRPS of the resulting ensemble. The weight functions are
subject to online updating throughout the forecasting period and are chosen pointwise, i.e., for each quan-
tile of the distribution separately, depending on each expert’s performance. The framework additionally
includes smoothing procedures that reduce estimation noise of the weights [2].

In this study, the CRPS learning framework was applied once per ensemble, with the following ar-
bitrarily chosen set of parameters: Bernstein online aggregation (BOA) for updating weights, penalized
probabilistic smoothing with λ = 2(−5, ..., 5) updated based on past performance, and no forgetting past

https://cran.r-project.org/web/packages/profoc
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regret. The remaining options were set to the profoc package defaults. Such an approach is denoted in
the text by CRPS. Finally, note that the time required to compute forecasts of a single CRPS learning en-
semble for the entire test period is ca. 500 times longer than that for the naive qEns weighting. However,
it does not exceed 20 s on a laptop equipped with a 9th-generation Intel Core i7-9750H processor.

3.3. Comparison of the two weighting schemes

The general idea of averaging across quantiles, as well as differences between the two weighting schemes,
are shown in Figure 1. The illustration shows a toy example of a two-forecast ensemble. Among the
two experts, the DDNN_JSU_1 forecast (teal color) is sharper, i.e., more concentrated, predicting prices
between 26 and 37 C, and has a smoother cumulative distribution function (CDF), while the LEAR_QRA
predictive distribution (red color) is less sharp (with prices between 15 and 44 C) and more rugged.
Medians of both experts are relatively close to the actual observed price (31.89 C, vertical line), albeit
leaving room for improvement, i.e., with absolute errors of 0.52 and 1.24 C, respectively.
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Figure 1. Illustration of the two weighting schemes. The left panel shows predictive distributions
obtained from the DDNN_JSU_1 (teal color) and LEAR_QRA (red color) models for a selected hour and day.
The center panels present the resulting ensemble forecasts obtained by estimating weights with naive (top)

and CRPS learning (bottom) methods. The right panels illustrate the relative weights for each quantile;
these are horizontally stacked bar plots with the length of the bar representing the weight of the forecast

in the corresponding color and all weights summing up to 1. The dashed vertical line marks the actual price

The two individual forecasts are combined using the two weighting approaches, with the resulting
CDFs and the assigned weights shown in the panels to the right. It can be seen that while the qEns
approach, by definition, assigns equal weights to all models and quantiles, CRPS learning assigns larger
weights to the DDNN_JSU_1 forecast, based on its better past performance (not shown in the plot). The
share of the DDNN_JSU_1 forecast is smaller for the lowest 25 percentiles, but nevertheless, it still dom-
inates the CRPS ensemble, leading to its higher sharpness (price range of [24, 38] C) and smoothness
compared to the equally weighted ensemble (with values in the range [21, 42] C). However, both fore-
cast combinations provide a more accurate median forecast than the individual experts, with absolute
errors of 0.36 C for qEns ensemble and 0.22 C for CRPS learning.



110 W. Nitka and R. Weron

3.4. Selection of experts

The forecaster’s second decision is the selection of experts that are aggregated in the ensemble. Fol-
lowing [20], each ensemble we consider in this study contains a set of four DDNN forecasts, either
DDNN_N_{1–4} or DDNN_JSU_{1–4}. Furthermore, to diversify the pool of experts we additionally in-
clude benchmark quantile regression-based forecasts – either LEAR_QRA and LEAR_QRM or DNN_QRA and
DNN_QRM. While they have been demonstrated to perform significantly worse on their own, using them
can lead to a higher prediction accuracy of the ensembles by avoiding overfitting [29]. Thus, the resulting
naming convention for ensembles is:

DDNN_{distribution}_{averaging}_{experts}

with distribution={N,JSU} denoting whether normal or JSU forecasts were used, averaging={qEns,
CRPS} indicating the use of equal or CRPS learning-derived weights, and experts={LEAR,DNN} added
when additional experts – respectively LEAR_QRA and LEAR_QRM or DNN_QRA and DNN_QRM – were in-
cluded in the ensemble. A graphical illustration of the steps performed in order to construct the ensemble
forecasts is shown in Figure 2.

(Marcjasz et al. [20])
Calibration

sample
(Sec. 2)

Point
forecasts

Quantile
regression
forecasts

DDNN
forecasts

Sets of
experts

(Sec. 3.4)

Weighted
ensemble
forecasts

(Sec. 3.1–3.3)

Figure 2. Schematic illustration of the process of generating ensemble forecasts

It should be noted that additional forecast combinations were explored during the course of this re-
search. The complete list included smaller ensembles (four DDNN forecasts and a single QR-based fore-
cast; best 5 performing models), other combinations of quantile regression forecasts (e.g., four DDNN
forecasts, LEAR_QRA, DNN_QRA) and larger ensembles (four DDNN forecasts and four QR-based fore-
casts; eight DDNN forecasts as in [2]; all available forecasts). They offered comparable or, in the case of
the largest ensembles, significantly inferior performance to the combinations listed above, and have been
omitted from the presentation of results for the sake of clarity.

In an online learning setting, the forecaster may decide to discard the initial part of the test sample as
a burn-in period, which is beneficial for the stability of weights and hyperparameters, see, e.g., [2], which
uses a burn-in period of 182 days for combinations of DDNN forecasts. However, the quantile regression
forecasts are only available within the 554-day out-of-sample test period, the entirety of which has been
used in Berrisch et al. [2] and Marcjasz et al. [20] for evaluation. Since the majority of ensembles we
consider in this study include these quantile regression forecasts, for the sake of consistency no burn-in
period has been applied.
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4. Forecast evaluation

In this section, the generated ensemble forecasts are compared to each other and individual expert models.
The evaluation is divided into two parts. First, in Section 4.1, we measure the predictive accuracy in terms
of statistical error metrics:

• the mean absolute error (MAE) and the root mean squared error (RMSE) for median and mean
forecasts, respectively [6],

• the continuous ranked probability score (CRPS) for probabilistic forecasts [8, 23].

Then, in Sections 4.2–4.3, we measure the predictive accuracy in terms of profits – total and per trade
– from a day-ahead bidding strategy that utilizes probabilistic forecasts [20, 25]. Note that the CRPS
is approximated by a sum of pinball scores on a grid of 99 percentiles, see eq. (2). The statistical
significance of differences in CRPS scores is assessed using the Diebold–Mariano test [5].

4.1. Evaluation in terms of statistical error measures

As Gneiting et al. [7, 8] argue, the goal of probabilistic forecasting is to maximize the sharpness of the
predictive distributions subject to calibration. Here, calibration (also called reliability or unbiasedness)
refers to the statistical consistency between the probabilistic forecasts and the observations, e.g., whether
the 50% prediction interval (PI) covers 50% of the actual observations. Sharpness, on the other hand,
refers to the concentration of the predictive distributions. For instance, given two reliable 50% PIs,
the sharper or more narrow one is better. The CRPS introduced in Section 3 assesses calibration and
sharpness simultaneously [7]. Moreover, for a point forecast, it is equal to the MAE [23].

The CRPS values for all models ordered from the lowest/best to the highest/worst are shown in the
left panel of Figure 3; the corresponding MAE and RMSE errors in the right panel. Clearly, the two LEAR
forecasts perform the worst, while the DDNN_JSU_4 and two DNN forecasts the best out of the individual
models. Moreover, the individual experts are outclassed by all DDNN_N ensembles, which are further
outperformed by the DDNN_JSU combinations. The DDNN_JSU_CRPS_LEAR ensemble achieves the lowest
CRPS score. For all ensembles, both weighting schemes typically result in very similar forecasts and thus
accuracy. Nevertheless, CRPS learning yields slightly better predictions on average. A similar, though
not identical, ordering can be observed for the point forecasting error metrics. The most significant dif-
ferences are obtained for the DDNN_JSU_{1,3,4} experts in terms of the RMSE. As in [20], we calculate
the MAE for the median (i.e., the 50th percentile) and the RMSE for the expected value of each distribu-
tion; the errors presented for the individual forecasts as well as the DDNN_N_qEns and DDNN_JSU_qEns
ensembles are consistent with the results reported in [20].

To assess the statistical significance of differences in CRPS scores, we perform the Diebold–Mariano
(DM) test [5]. In order to correct for daily seasonality in CRPS values, following [14] and [20], we
consider a multivariate loss differential series defined for a pair of models A and B as:

∆A,B
d = ∥LA

d ∥1 − ∥LB
d ∥1 (3)

where LX
d = {LX

d,1, . . . , L
X
d,24} is the 24-dimensional vector of hourly CRPS values for model X on day

d and ∥LX
d ∥1 is its L1 norm. For each pair of models we apply two one-sided DM tests.



112 W. Nitka and R. Weron

1.575

1.662

1.399

1.412

1.487

1.444

1.499

1.374

1.414

1.535

1.42

1.422

1.348

1.299

1.316

1.269

1.319

1.28

1.348

1.294

1.307

1.259

1.318

1.283

LEAR_QRM

LEAR_QRA

DDNN_N_2

DDNN_JSU_3

DDNN_JSU_1

DDNN_JSU_2

DDNN_N_4

DDNN_N_3

DDNN_N_1

DNN_QRM

DNN_QRA

DDNN_JSU_4

DDNN_N_CRPS

DDNN_N_qEns

DDNN_N_qEns_DNN

DDNN_N_CRPS_DNN

DDNN_N_qEns_LEAR

DDNN_N_CRPS_LEAR

DDNN_JSU_qEns

DDNN_JSU_CRPS

DDNN_JSU_CRPS_DNN

DDNN_JSU_qEns_DNN

DDNN_JSU_qEns_LEAR

DDNN_JSU_CRPS_LEAR

0.0 0.5 1.0 1.5 2.0

CRPS score

M
o

d
e

l

4.161

4.285

3.668

3.67

4.069

3.978

4.106

3.759

3.842

4.211

3.849

3.878

3.67

3.564

3.603

3.488

3.609

3.516

3.674

3.548

3.576

3.467

3.601

3.527

6.676

6.788

5.845

5.821

7.719

6.267

7.325

6.524

6.242

6.453

6.083

6.2

5.962

6.174

5.957

5.766

5.844

5.807

5.964

6.105

5.917

5.78

5.825

5.821

0.0 2.5 5.0 7.5

Error

Error

MAE

RMSE

Figure 3. CRPS scores (left panel) and MAE and RMSE errors (right panel) for all models
and ensembles ordered from the lowest to the highest CRPS. Compare with a CRPS of 1.284

of the best performing model of Berrisch and Ziel [2]
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A heatmap of the respective p-values is presented in Figure 4. The results indicate that the predic-
tions of the DDNN_JSU_CRPS_LEAR ensemble are significantly better than those of all competing models.
The predictions of the remaining ensembles within the top 4 do not significantly differ from each other.
Another ensemble whose forecasts are significantly better than those ranked lower in terms of the CRPS
is DDNN_JSU_CRPS_DNN, while most other ensembles do not yield significantly better predictions than
ensembles similarly ranked in terms of the CRPS.
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The CRPS score provides a single number for all quantiles (and each time point in the test period).
To see how the pinball scores for individual percentiles contribute to the CRPS, in Figure 5 we plot
them for selected best-performing ensembles. To enhance readability, all values are plotted with respect
to the pinball scores of the best-performing ensemble, i.e., DDNN_JSU_CRPS_LEAR. Clearly, the relative
performance of the ensembles is not uniform across the entire distributions. The largest disparity can
be seen below the median, with the relative ranking of the ensembles changing for the three lowest
percentiles. Above the median, the ensembles perform similarly.

4.2. Day-ahead bidding

Following Uniejewski [25], we consider a realistic trading strategy that utilizes battery storage and day-
ahead bidding based on probabilistic price forecasts. The goal is to buy electricity cheaply at hour h1 and
charge the battery, then discharge it and sell the electricity expensively at hour h2 > h1. To minimize the
risk of losses, limit orders are submitted to the power exchange with the limits determined by selected
– based on the trader’s risk appetite – quantiles of the predictive distributions.

We assume that the efficiency of charging as well as discharging the battery is 90%. Hence, 1/0.9
≈ 1.1 MWh is needed to charge the battery by 1 MWh. Similarly, discharging 1 MWh generates only
0.9 MWh. Further, we assume that the total usable capacity of the battery is B = 2 MWh and that at the
beginning of the simulation period, the battery starts halfway charged (B = 1). If both orders are executed
on the next day, this state persists. If B = 0 at the beginning of a day, an unlimited bid to buy 1 MWh is
placed at hour h∗ < h2, and if B = 2, an unlimited offer to sell 1 MWh is placed at hour h∗ < h1.
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For each day in the out-of-sample test period, the following two steps are performed. First, based on
median price forecasts Y 0.5

d,h for day d and hours h = 1, 2, ..., 24 computed on day d− 1, hours h1, h2 and
h∗ are selected to maximize the profit:

Πd = − 1

0.9
Ŷ 0.5
d, h1 + 0.9Ŷ 0.5

d, h2 − 1{B=0}
1

0.9
Ŷ 0.5
d, h∗ + 1{B=2}0.9Ŷ

0.5
d, h∗ (4)

When the battery is halfway charged (B = 1), this optimization problem reduces to selecting hours with
the lowest and the highest predicted median price. In other cases, linear programming is used to optimize
the selection of h1, h2, and h∗.
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Figure 6. Illustration of the trading strategy
with limit orders defined by the 80% PIs,

corresponding to a risk appetite of 0.8. Red dots
indicate the price limits for the selected hours

Next, following Marcjasz et al. [20], a profitability condition is checked. If the transaction is expected
to be profitable, i.e., the sum of the first two terms in eq. (4) is greater than zero, a buy order with price
limit Ŷ 1−q

d, h1 and a sell order with price limit Ŷ q
d, h2 are placed. Here q = (1 − α)/2 and α is trader’s risk

appetite, i.e., the PI level, set only once for the whole test period. This is illustrated in Figure 6 for a
sample day and forecasts generated by the DDNN_N_qEns ensemble. In this example, both orders would
be accepted since the actual price falls within the 80% PI, corresponding to a risk appetite of α = 0.8.
However, hour h2 is predicted suboptimally, a slightly higher price was observed for hour 21.

4.3. Evaluation in terms of trading profits

The total profits are presented in Table 1 for five values of risk appetite α ranging from 0.5 to 0.9; the mi-
nor differences between the reported values and those in [20] for the DDNN_N_qEns and DDNN_JSU_qEns
ensembles are a result of correcting a bug in the original software. The profitability results somewhat
correspond to the CRPS results, although with a few notable exceptions. On average, the DDNN_JSU
ensembles achieve higher total profits than the DDNN_N ensembles, mirroring their better performance in
terms of the CRPS. The detailed ranking of those ensembles is where the outcomes start to vary. While
the CRPS weighting scheme outperforms equal weights in terms of forecast accuracy, this trend is mostly
reversed in the financial results. This is especially true for lower values of the risk appetite.
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Table 1. Total profits from the quantile-based trading strategy in the whole test period
for risk appetite ranging from 0.5 to 0.9. The highest values in each column are in bold.

Cells are colored independently in each column from the best (→ green) to the worst (→ red)
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Figure 7. Average daily (dark green) and the minimum and maximum hourly (light green) prices
in Germany from 27 June 2019 to 31 December 2020 (top panel). 30-day moving average of cumulative profit

for the best-performing strategies, shown as a difference between the cumulative profit of each ensemble
and DDNN_JSU_CRPS_LEAR for risk appetite α = 0.6 (center panel) and α = 0.8 (bottom panel)

For instance, the most accurate in terms of the CRPS ensemble, i.e., DDNN_JSU_CRPS_LEAR, yields
lower profits than its qEns counterpart. This is likely due to the fact that while the CRPS weighting
is more accurate on average, it is significantly outperformed by the naive weighting for the few low-
est percentiles, see Figure 5, giving the latter an advantage during the initial stage of the COVID-19
pandemic (middle part of the test period), see Figure 7. A similar behavior can be observed for the
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DDNN_JSU_CRPS_DNN ensemble, which performs worse than its competitors for the extreme quantiles,
being at a significant disadvantage in the second half of the evaluation period, when the daily price
spread is higher than in the beginning.

It can be expected that an optimal trading strategy would result in executing exactly two trades per
day, buying on the low and selling on the high. With such a “crystal ball” strategy, the trader would
earn 13,587 C throughout the whole evaluation period. Conversely, taking the worst possible decisions
would lead to a total loss of −21, 425 C. On this scale of possible profits, all evaluated ensembles rank
relatively well. The lowest profit presented in Table 1 reaches 80% of the maximum, while the best of
all forecasts as much as 96%. For comparison, a naive strategy of placing bids at fixed hours selected
ex-post as having the highest price spread on average – buying at hour 3 and selling at hour 19 – would
lead to total profits of 8048 C, or 84% of the maximum, see [20].

Table 2. Profits per trade from the quantile-based trading strategy in the whole test period
for risk appetite ranging from 0.5 to 0.9. The highest values in each column are in bold.

Cells are colored independently in each column from the best (→ green) to the worst (→ red).
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The profit per trade results reported in Table 2 are less clear-cut, with the DDNN_N ensembles no
longer being completely outclassed by the DDNN_JSU ensembles, especially when there are fewer total
trades. As profits per trade can be seen as an indicator of the trader’s risk, this disparity is consistent with
literature findings [12]. It is worth noticing that, perhaps unintuitively, higher values of the risk appetite
correspond to higher risk aversion. This is an effect of the final step of the strategy, which checks the
income of the worst case scenario. With higher values of the risk appetite, this predicted profit tends
to be lower, leading the trader to act more cautiously. This seemingly leads to a dominance of models
which are more accurate across the entire distribution rather than only in the extreme quantiles, compare
the center (risk appetite α = 0.6) and bottom (risk appetite α = 0.8) panels of Figure 7 with Figure 5.
However, this is only a conjecture, as the relationship between daily price levels, price spreads, and PIs
is not direct or linear.

5. Conclusions and discussion

In this article, we address the question of whether minimizing the continuous ranked probability score
(CRPS) – the standard error metric for probabilistic forecasts – leads to optimal decisions in day-ahead
bidding. Conducting an extensive empirical study, we find that introducing diversity to a pool of fore-
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casts is highly beneficial, both in terms of forecast accuracy measured by the CRPS and profits from
a trading strategy implemented in the German day-ahead power market. Also optimizing combination
weights with CRPS learning positively impacts forecast accuracy. This is likely caused by the uneven
performance of experts across time and quantiles, which is an outcome consistent with the literature.

While trading profits generally follow forecast accuracy, the benefits of using CRPS learning are not as
pronounced in the trading scenario, especially considering the ca. 500 times higher computational burden.
The precise cause-and-effect relationships between the predictive accuracy and profits are difficult to
disentangle. However, the performance for the extreme quantiles of the distribution seems to be related
to some of the observed patterns. In general, using any of the considered ensembles leads to achieving
satisfactory profits, especially when compared to the best-case and worst-case scenarios.

For the sake of clarity, only selected forecast sets were considered. Extending the pool of experts
and ensembles could lead to a more comprehensive evaluation. Other possible extensions of this study
include comparisons with other weighting schemes, as well as automated methods for expert selection.
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