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Abstract

This article deals with a Markovian queuing-inventory system (MQIS) under the stochastic modeling technique. The arrival
stream of this system is dependent on the present stock level at an instant. Meanwhile, the system focuses on reducing the
waiting time of a unit by assuming a queue-dependent service policy (QDSP). The system consists of an infinite waiting
hall to receive an arriving unit. The MQIS assumes that no unit of arrival is allowed when the stock level of the system is
empty. The discussion of this MQIS runs over the two types of ordering principles named 1) (s, Q) 2) (s, S). According to
both ordering principles, the assumed arrival and service patterns have been considered separately and classified as Model-I
(M-I) and Model-II (M-II) respectively. The steady state of the system for both M-I and M-II is analysed and resolved under
the Neuts matrix-geometric technique. The system performance measures of the system are also computed. The expected
cost function of both M-I and M-II are constructed as well. Further, the necessary numerical illustrations are provided and
distinguished for M-I and M-II to explore the proposed model. This paper finds the optimum ordering policy to execute the
stock-dependent arrival and queue-dependent service strategies.

Keywords: stock-dependent arrival, queue-dependent service, infinite waiting hall, ordering principles

1. Introduction

Successful retail or wholesale businesses almost always have two important aspects: 1) effective man-
agement, and 2) inventory control. The observation of an inventory system throughout the whole day
provides the knowledge to understand inventory management. In each unit of time, the inventory changes
constantly due to sales and service, damage, reordering, and so on. In such a way, effective management
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and inventory control are maintained by limiting these factors. On the other hand, customers play a key
role in every inventory business. Inventory management does focus on attracting those customers and
making them loyal customers. To do such things, management has to introduce and implement new
policies in order to make a predictable profit. For the attraction of customers, the business owners start
displaying their products in front of the shop and giving advertisements. In real life, one can see that
all the organizations give advertisements through Android phones, television, social media, etc. These
advertisements make changes psychologically on the customer’s mind to buy the product, and naturally,
this will increase the number of arrivals into the inventory system. This idea is applied in the proposed
MQIS as it assumes that the arriving jobs occur on the basis of the displayed stock level of the system.

The service facility of the management should be smarter and faster than the other competitors. Be-
cause it plays an important role in accommodating the customer in the waiting hall, either to wait for the
service or to exit the system. A single server service channel faces customer impatient situation problems
in the queuing systems. To eradicate them and generate loyal or happy customers, the management must
come up with innovative ideas to develop their service facility. Many organisations try to provide a non-
homogeneous service facility in order to avoid customer loss and impatience. When we look into real-life
observations, for example, in a single-server fast food restaurant, the server prepares food as fast as the
existing queue length. If the queue length decreases, the speed of the server also becomes normal. This
phenomenon is to be applied in the proposed MQIS as QDSP. Among these assumptions, the considered
MQIS has a detailed discussion based on the two ordering principles: (s, Q) or (s, S).

1.1. Literature review

The queuing-inventory has received a lot of attention in recent decades for doing research on stochastic
modeling. Many varieties of discussions and analyses that exist in the literature are merely related to our
proposed model. Since we are all living in a modern technological world, many companies introduce
their products for sale with some innovative features. These features are not easily understandable to all
customers. They need an explanation about the corresponding products regarding the handling proce-
dures, guarantee, and warranty of the products, etc. Hence, to obtain such an explanation of the product,
a customer requires a service facility from the system. According to the queuing-inventory existing lit-
erature, Melikov et al. [21] and Sigman et al. [28] introduced the service facility in order to improve
customer satisfaction. Subsequently, many authors developed their research with service facilities (see
[2, 3, 16, 18, 27]) . The readers can refer to the enlisted papers [1, 4–6, 11, 12, 20, 22, 25] to learn the
service facility related interpretations in the stochastic modeling inventory systems.

When we analyse such kinds of MQIS in this modern scenario, every inventory business needs an
innovative idea to increase the birth rate of the system. Many businesses try to display their products
in the appropriate places in the store in response to the increase in arrivals. Some companies execute
new ideas instead of displaying their products. For example, they do advertisements through television,
social media, and so on. When adapting this idea to the inventory business, which can be defined as a
stock-dependent arrival process, will increase the birth rate of the system. Datta and Pal [7] discussed
the inventory model with an inventory-level-dependent demand rate. Karabi et al. [17] analysed the
two different arrival rates, which is called the two-component demand rate (TCDR). In this paper, they
classified TCDR as two stages of inventory level: one is zero inventory and the other is positive inventory.
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In particular, they assumed that the arrival rate is constant when the inventory is empty and a varying
arrival rate if the inventory is positive. Moreover, the varying arrival rate was defined as an increasing
function and is controlled by the scaling factor, which lies between [0, 1].

Diana Tom Varghese and Dhanya Shajin [31] determined the finite storage inventory system with
a variable intensity rate for the arrival process, and it is assumed to be a non-homogeneous Poisson
process. Mostly, the traditional inventory systems apply a constant arrival rate to explore their models.
However, Sandeepkumar [19] investigated the optimization of an inventory system in which the arriving
customer intensity rate is dependent on the current stock level. Recently, Jeganathan et al. [13] presented
a comparative study between the (s, S) and (s, Q) ordering policies on the MQIS. This paper explains
the stock-dependent arrival rate for those two ordering policies separately. The author makes reference
to [25, 29, 32, 33] for the (s,Q) ordering principle as well as [31] for the (s, S) ordering principle. The
following listed articles explore the Stock-dependent Arrival Policy (SDAP) [8, 24, 26, 30].

Nowadays, many single-server inventory systems implement a variety of similar practices in order to
improve their service facilities. This is because the queue size becomes large in a single server system.
When the queue length increases, the waiting time of a customer will also increase, and it will result in the
customer’s loss. To reduce such losses, some single-server service channels are ready to provide a non-
homogeneous service rate, which is assumed to be independently and identically distributed. Jeganathan
et al. [10] used two kinds of non-homogeneous service rates in the MQIS, which are determined by the
threshold level of queue length. Recently, Jeganathan et al. [15] worked on an MQIS with a retrial facility
in which they applied a non-homogeneous service rate based on a queue-dependent service facility. In
this, they assumed that after every completion of the service process, the server observes the queue length
and then starts the next service at a different rate as per the size of the queue length. This type of service
facility can be seen in fast-food restaurants, supermarkets, and so on. Many papers learn more about
QDSP, and a few of them will be provided to the readers [9, 14, 15, 34–36].

To the best of authors’ knowledge, no paper has been published with SDAP and QDSP that is currently
available with an infinite queue size. This idea would be a research gap in the queuing-inventory literature.
In order to fill such a research gap, we proposed a stochastic model with the assumption of SDAP and QDSP.
In addition, we investigate the two different types of ordering principles known as: 1) (s, Q) 2) (s, S).

In the end, the remaining part of this paper is partitioned as follows: model description in Section 2,
analysis of the model under each ordering principle in Section 3, and Section 4. Furthermore, numerical
interpretations are given in Section 5, and finally, the concluded results are stated in Section 6.

2. Notations and model description

0 – zero matrix of an appropriate dimension
e – column vector of convenient size having one in each entry
I – identity matrix

δij –
{

1, if j = i
0, otherwise

H(x) –
{

1, if x ≥ 0
0, otherwise

δ̄ij – 1–δij



124 C. Sugapriya et al.

The proposed model describes the MQIS with an infinite queue size that can store up to S items in
the inventory. The arrival pattern of a unit holds the SDAP. The intensity of an arriving unit is defined as
λj(1 ≤ j ≤ L) where 1 ≤ L ≤ S and the arrival process of a unit follows a non-homogeneous Poisson
process. Here, L is said to be the threshold limit to terminate the stock-dependent arrival pattern. That
is, if the current inventory level exceeds the threshold limit, then the arrival rate of new customers will
follow a homogeneous Poisson process. Each arriving unit joins the infinite queue, which is attached to
the MQIS. They approach the service channel on the basis of first come, first served (FCFS). The service
channel has a single server to provide the best service to the customer. Every customer can purchase only
one unit of a product from the MQIS.

The service channel holds the QDSP in order to give their best service facility to an arriving customer.
This QDSP is defined as the service facility that is dependent on the number of customers in the queue
at an epoch. The intensity of this service process is denoted as µi(1 ≤ i ≤ k), where k is the threshold
limit of the queue length. Due to the practical complications and the assumption of an infinite queue
size, the queue-dependent service facility is terminated when the queue size reaches k. At this threshold
limit, the service rate of the system is assumed to be non-homogeneous. Once the queue length, i crosses
the threshold limit k, the intensity of a service process is defined as µk, for all i ≥ k. At this level, the
service rate of the system is assumed to be homogeneous. At the end of service completion, the customer
chooses the product with probability p and not with probability q to buy it. The mean service time of the
MQIS is assumed to be exponentially distributed. More clearly, the service process of the MQIS does
not follow QDSP after the threshold limit point of k.

Moreover, the MQIS does not allow the arriving unit to enter the waiting hall. During the stock-out
situation, the already-arrived customer has to wait for the commencement of reordered products. Once
the replenishment products are received, the service starts immediately. To perform such replenishment
of the products, the proposed MQIS has an analysis of two types of ordering principles along with the
above-mentioned assumptions separately.

Definition 1. (s, Q) ordering principle. This principle states that when a reorder is triggered, the
replenishment quantity of a Q = S − s number of products is always fixed. Such reorder is to be done if
the present stock level falls to the reorder limit s.

Definition 2. (s, S) ordering principle. This principle states that the replenishment quantity varies
in order to fill the maximum capacity of the system when the reorder is triggered. Such reorder is to be
done if the present stock level falls to the reorder limit s.

These two ordering principles are to be discussed as Model-I and Model-II, respectively. For each
ordering principle, the intensity of the replenishment process is identified as β. The mean reorder time
of each principle follows an exponential distribution. Furthermore, the MQIS will consist of defective
products. An item in the inventory may become imperfect. So, we use γ to denote a defective rate of an
inventory at any time t. The defective rate of a current inventory is defined as jγ, where 1 ≤ j ≤ S. The
mean lifetime of a product is assumed to be exponentially distributed.

State space. Let N(t) denote the number of customers in the system at time t and S(t) indicate the
present stock level of the system at time t. A stochastic process is formed by the doublet {X(t), t ≥ 0}
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= {(N(t), S(t)), t ≥ 0}. It also generates a quasi birth-and-death (QBD) process. The state space
of the system is defined by E = {(i, j) : i = 0, 1, 2, . . . and j = 0, 1, . . . , S}. Since the state
space is discrete, we say that the proposed system comes under the classification of a discrete state and
a continuous-time stochastic process. Also, the process {X(t), t ≥ 0} is said to be a continuous time
Markov chain (CTMC).

3. Model-I

This section describes the MQIS with the (s, Q) ordering principle.

3.1. Construction of matrices

The CTMC has an infinitesimal generator matrix P as follows

P =



0 1 2 . . . k k + 1 . . .

0 A00 A01

1 A10 A11 A01

2 A21 A22 A01
... . . . . . . . . .
k Akk−1 Akk A01

k + 1 Akk−1 Akk A01
... . . . . . . . . .



where

Ai, i =



jγ, i′ = i, i = 0, 1, 2, . . . , k

j′ = j − 1, j = 1, 2, . . . , S

−β i′ = i, i = 0, 1, 2, . . . , k

j′ = j, j = 0

β i′ = i, i = 0, 1, 2, . . . , k

j′ = Q+ j, j = 0, 1, 2, . . . , s

−(δ̄i0(µi + jγ) +H(s− j)β + λj) i′ = i, i = 0, 1, 2, . . . , k

j′ = j, j = 1, 2, . . . , L

−(δ̄i0(µi + jγ) + λL) i′ = i, i = 0, 1, 2, . . . , k

j′ = j, j = L+ 1, L+ 2, . . . , S

0 otherwise
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Ai, i =



h′
j, i′ = i, i = k, k + 1, . . .

j′ = j − 1, j = 1, 2, . . . , S

β i′ = i, i = k, k + 1, . . .

j′ = Q+ j, j = 0, 1, 2, . . . , s

f ′
j i′ = i, i = k, k + 1, . . .

j′ = j, j = 0, 1, 2, . . . , S

0 otherwise

where f ′
j =

{
−(δ̄j0(µk + jγ + λj) +H(s− j)β), if j = 0, 1, . . . , L

−(µk + jγ + λL +H(s− j)β), if j = L+ 1, L+ 2, . . . , S
and h′

j = jγ.

Ai, i−1 =



pµi, i′ = i− 1, i = 1, 2, . . . , k − 1

j′ = j − 1, j = 1, 2, . . . , S

qµi, i′ = i− 1, i = 1, 2, . . . , k − 1

j′ = j, j = 1, 2, . . . , S

0, otherwise

Ai, i−1 =



pµk, i′ = i− 1, i = k, k + 1, . . .

j′ = j − 1, j = 1, 2, . . . , S

qµk, i′ = i− 1, i = k, k + 1, . . .

j′ = j, j = 1, 2, . . . , S

0, otherwise

A0,1 =



λj i′ = i+ 1, i = 0, 1, . . .

j′ = j, j = 1, 2, . . . , L

λL i′ = i+ 1, i = 0, 1, . . .

j′ = j, j = L+ 1, L+ 2, . . . , S

0 otherwise

AK =



hj, i′ = i− 1, i = k

j′ = j − 1, j = 1, 2, . . . , S

β i′ = i, i = k

j′ = Q+ j, j = 0, 1, 2, . . . , s

fj i′ = i, i = k

j′ = j, j = 0, 1, . . . , S

0 otherwise

where fj = −(δ̄j0(µi + jγ) +H(s− j)β) and hj = pµk + jγ.
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Lemma 1. The stationary probability vector Π1 = (π
(0)
1 , π

(1)
1 , . . . , π

(S)
1 ) to the generator matrix, AK

is determined by
π
(j)
1 = π

(0)
1 Ωj, j = 0, 1, 2, . . . , S

where

Ωj =



1 j = 0

(−1)j
j−1∏
z=0

fz

j∏
z=1

hz

, j = 1, 2, . . . , Q

−
[
Ωj−Q+1β − Ωj−1fj−1

hj

]
, j = Q+ 1, Q+ 2, . . . , S − 1

−Ωsβ

fS
, j = S

Proof. Let AK = Akk−1 + Akk + A01 and solving ΠAK = 0, we get

π
(j)
1 fj + π

(j+1)
1 hj+1 = 0, j = 0, 1, . . . , Q− 1 (1)

π
(Q−j)
1 β + π

(j)
1 fj + π

(j+1)
1 hj+1 = 0, j = Q,Q+ 1, . . . , S − 1 (2)

π
(Q−j)
1 β + π

(j)
1 fj = 0, j = S (3)

By solving the above system of equations recursively, we get the stated result. □

3.2. Stability condition

Lemma 2. The stability condition of the system is

µk

S∑
j=1

Ωj >

L∑
j=1

Ωjλj + λL

S∑
j=L+1

Ωj (4)

Proof. By the Neuts result for the stability condition,

Π1Akk−1e > Π1A01e (5)

and writing it explicitly, we get L.H.S as π(0)
S∑

j=1

Ωjµk and R.H.S as π(0)(
L∑

j=1

Ωjλj + λL

S∑
j=L+1

Ωj).

Substituting the obtained L.H.S and R.H.S in (5), we obtain

µk

S∑
j=1

Ωj >
L∑

j=1

Ωjλj + λL

S∑
j=L+1

Ωj

□
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3.3. Computation of R1 matrix

Due to the structure of the generator matrix and stationary probability vector, the R1 matrix can be
determined by the matrix equation

R2
1Akk−1 +R1Akk + A01 = 0 (6)

where

R1 =



0 1 . . . S

0 0 0 . . . 0

1 r10 r11 . . . r1S

2 r20 r21 . . . r2S
...

...
... . . .

...
S rS0 rS1 . . . rSS


Substituting R1 in (6) and writing it explicitly, we get the following set of equations. For j =

1, 2, . . . , S

xjj′pµk + rjj′f
′
j + rjj′+1h

′
j+1 = 0, if j′ = 0

xjj′qµk + xjj′+1pµk + rjj′f
′
j + rjj′+1h

′
j+1 + λjδjj′ = 0, if j′ = 1, 2, . . . , L

xjj′qµk + xjj′+1pµk + rjj′f
′
j + rjj′+1h

′
j+1 + λLδjj′ = 0, if j′ = L+ 1, L+ 2, . . . , Q− 1

xjj′qµk + xjj′+1pµk + rjj′−Qβ + rjj′f
′
j + rjj′+1h

′
j+1 + λLδjj′ = 0, if j′ = Q,Q+ 1, . . . , S − 1

xjj′qµk + rjj′−Qβ + rjj′f
′
j + λLδjj′ = 0, if j′ = S

Solving the above system of non-linear equations by the Gauss–Seidal iterative process, we will obtain
the R1 matrix.

3.4. Partition of the steady state vector

The partition of the steady-state probability vector of the system is defined as follows:

ϕ1 = (ϕ
(0)
1 , ϕ

(1)
1 , ϕ

(2)
1 , . . . )

ϕ
(i)
1 = (ϕ

(i, 0)
1 , ϕ

(i, 1)
1 , ϕ

(i, 2)
1 , . . . , ϕ

(i, S)
1 ), i = 0, 1, 2, . . .

3.5. Computation of steady state probability vector

The entire probability vector of all system states is ϕ1 = (ϕ
(0)
1 , ϕ

(1)
1 , ϕ

(2)
1 , . . . ). The system balance equa-

tions are given by ϕ1 P = 0 and ϕ1 e = 1. Then, the steady-state probabilities of the queuing-inventory
system are calculated [23] by ϕ

(i)
1 = ϕ

(k)
1 R

(i−k)
1 where i = k + 1, k + 2, . . . and the initial conditions

are represented by the vectors ϕ(i)
1 = 0, 1, . . . , k are obtained by solving part of the balance equations
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ϕ
(0)
1 A00 + ϕ

(1)
1 A10 = 0

ϕ
(0)
1 A01 + ϕ

(1)
1 A11 + ϕ

(2)
1 A21 = 0

ϕ
(i−1)
1 A01 + ϕ

(i)
1 Aii + ϕ

(i+1)
1 Ai+1,i = 0, i = 2, 3, . . . , k − 1

ϕ
(k−1)
1 A01 + ϕ

(k)
1 (A1 +R1A2) = 0

k−1∑
n=0

ϕ
(n)
1 e + ϕ

(k)
1 [I −R1]e = 1

3.6. System performance measures

The expected system performance of the model under the (s, Q) ordering principle is determined by the
following measures:
Expected inventory level. In the MQIS, the expected inventory level of the system is defined as the sum
of the product value of the current inventory level and the stationary probability vector

Θ1 =
∞∑
i=0

S∑
j=1

jϕ
(i, j)
1

Expected reorder rate. when the present inventory level reduces to s + 1, there can either be a service
completion happened or an item becomes defective. In the case of either of these two occurrences, the
replenishment process is immediately triggered

Θ2 =
k∑

i=1

pµiϕ
(i, s+1)
1 +

∞∑
i=k+1

pµkϕ
(i, s+1)
1 +

∞∑
i=0

(s+ 1)γϕ
(i, s+1)
1

Expected perishable rate. Since the system may have imperfect items in the storage space, we require
an expected perishable rate of the system. This could be done using the sum of the product jγ and the
stationary probability vector, where j is the current inventory level

Θ3 =
∞∑
i=0

S∑
j=1

jγϕ
(i, j)
1

Expected number of customers in the system. All the customers in the system purchase an item through
the first come first serve discipline. The expected number of customers in the system is the sum of the
product value of the number of customers present in the system and the stationary probability vector

Θ4 =
∞∑
i=1

S∑
j=0

iϕ
(i, j)
1

Expected arrival rate of a customer in the system. The sum of the product of the average arrival rate
of a customer and the stationary probability vector defines the expected arrival rate of a customer
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Θ5 =
∞∑
i=0

L∑
j=1

λjϕ
(i, j)
1 +

∞∑
i=0

S∑
j=L+1

λLϕ
(i, j)
1

Expected waiting time. The expected waiting time of a customer is obtained by Little’s formula

Θ6 =
Θ4

Θ5

Expected number of customers lost. The customer loss in the system occurs only at the time of zero
inventory level. It is defined by

Θ7 =
∞∑
i=0

λ0ϕ
(i, 0)
1

3.7. Construction of cost function

The expected total cost of the proposed model under the (s, Q) ordering principle is constructed by the
cost function,

Tc = a1 Θ1 + a2 Θ2 + a3 Θ3 + a4 Θ4 + a5 Θ7

where a1 refers to holding cost per item in the system, a2 refers to set up cost per order, a3 denotes
perishable cost per item, a4 indicates waiting cost per customer in the system, and a5 refers to lost cost
per customer in the system.

4. Model-II

This section describes the MQIS with the (s, S) ordering principle.

4.1. Construction of matrices

The CTMC has an infinitesimal generator matrix P ′ as follows:

P ′ =



0 1 2 . . . k k + 1 . . .

0 A′
00 A01

1 A10 A′
11 A01

2 A21 A′
22 A01

... . . . . . . . . .
k Akk−1 A′

kk A01

k + 1 Akk−1 A′
kk A01

... . . . . . . . . .


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where

A′
i, i =



jγ, i′ = i, i = 0, 1, 2, . . . , k

j′ = j − 1, j = 1, 2, . . . , S

β i′ = i, i = 0, 1, 2, . . . , k

j′ = S, j = 0, 1, 2, . . . , s

−β i′ = i, i = 0, 1, 2, . . . , k

j′ = j, j = 0

−(δ̄i0(µi + jγ) +H(s− j)β + λj) i′ = i, i = 0, 1, 2, . . . , k

j′ = j, j = 1, 2, . . . , L

−(δ̄i0(µi + jγ) + λL) i′ = i, i = 0, 1, 2, . . . , k

j′ = j, j = L+ 1, L+ 2, . . . , S

0 otherwise

A′
i, i =



h′
j, i′ = i, i = k, k + 1, . . .

j′ = j − 1, j = 1, 2, . . . , S

β i′ = i, i = k, k + 1, . . .

j′ = S, j = 0, 1, 2, . . . , s

f ′
j i′ = i, i = k, k + 1, . . .

j′ = j, j = 0, 1, 2, . . . , S

0 otherwise

where f ′
j =

{
−(δ̄j0(µk + jγ + λj) +H(s− j)β), if j = 0, 1, . . . , L

−(µk + jγ + λL +H(s− j)β), if j = L+ 1, L+ 2, . . . , S
and h′

j = jγ.

AH =



hj, i′ = i− 1, i = k

j′ = j − 1, j = 1, 2, . . . , S

β i′ = i, i = k

j′ = S, j = 0, 1, 2, . . . , s

fj i′ = i, i = k

j′ = j, j = 0, 1, . . . , S

0 otherwise

where fj = −(δ̄j0(µi + jγ) +H(s− j)β) and hj = pµk + jγ.

Lemma 3. The stationary probability vector Π2 = (π
(0)
2 , π

(1)
2 , . . . , π

(S)
2 ) to the generator matrix, AH

is determined by
π
(j)
2 = π

(0)
2 Λj, j = 0, 1, 2, . . . , S.
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where

Λj =



1 j = 0

(−1)j
j−1∏
z=0

fz

j∏
z=1

hz

, j = 1, 2, . . . , S − 1

−

s∑
z=0

λzβ

fj
, j = S

Proof. Let AH = Akk−1 + A′
kk + A01 and solving ΠAH = 0, we get

π
(j)
2 fj + π

(j+1)
2 hj+1 = 0, j = 0, 1, . . . , S − 1, (7)

s∑
z=0

π
(z)
2 β + π

(j)
2 fj = 0, j = S. (8)

By solving the above system of equations recursively, we get the stated result.
□

Lemma 4. The stability condition of the system is

µk

S∑
j=1

Λj >
L∑

j=1

Λjλj + λL

S∑
j=L+1

Λj. (9)

Proof. Using the Neuts result for the stability condition on

π2Akk−1e > π2A01e (10)

writing it explicitly we get L.H.S as π(0)
2

S∑
j=1

Λjµk and R.H.S as π(0)
2 (

L∑
j=1

Λjλj +
S∑

j=L+1

ΛjλL).

Substituting the L.H.S and R.H.S on (10), we obtain

µk

S∑
j=1

Λj >
L∑

j=1

Λjλj + λL

S∑
j=L+1

Λj

□

4.2. Computation of R2 matrix

Due to the structure of the generator matrix and stationary probability vector, R2 matrix can be deter-
mined which satisfies the matrix equation

R2
2Akk−1 +R2A

′
kk + A01 = 0 (11)
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where

R2 =



0 1 . . . S

0 0 0 . . . 0

1 y10 y11 . . . y1S

2 y20 y20 . . . y2S
...

...
... . . .

...
S yS0 yS1 . . . ySS


Substituting R2 in (11), we get the following set of equations. For j = 1, 2, . . . , S

xjj′pµk + yjj′f
′
j + yjj′+1h

′
j+1 = 0, if j′ = 0

xjj′qµk + xjj′+1pµk + yjj′f
′
j + yjj′+1h

′
j+1 + λjδjj′ = 0, if j′ = 1, 2, . . . , L

xjj′qµk + xjj′+1pµk + yjj′f
′
j + yjj′+1h

′
j+1 + λLδjj′ = 0, if j′ = L+ 1, L+ 2, . . . , S − 1

xjj′qµk +
s∑

z=0

yjzβ + yjj′f
′
j + λLδjj′ = 0, if j′ = S.

Solving the above system of non-linear equations by the Gauss–Seidal iterative process, we will obtain
the R2 matrix.

4.3. Partition of the steady state vector

The partition of the steady-state probability vector of the system is defined as follows:

ϕ2 = (ϕ
(0)
2 , ϕ

(1)
2 , ϕ

(2)
2 , . . . ).

ϕ
(i)
2 = (ϕ

(i, 0)
2 , ϕ

(i, 1)
2 , ϕ

(i, 2)
2 , . . . , ϕ

(i, S)
2 ), i = 0, 1, 2, . . .

4.4. Computation of steady state probability vector

The entire probability vector of all system states is ϕ2 = (ϕ
(0)
2 , ϕ

(1)
2 , ϕ

(2)
2 , . . . ). The system balance equa-

tions are given by ϕ2P
′ = 0 and ϕ2e = 1. Then, the steady-state probabilities of the queuing-inventory

system are calculated [23]) by ϕ
(i)
2 = ϕ

(k)
2 R

(i−k)
2 where i = k + 1, k + 2, . . . and the initial conditions

are represented by the vectors ϕ(i)
2 = 0, 1, . . . , k are obtained by solving part of the balance equations

ϕ
(0)
2 A′

00 + ϕ
(1)
2 A10 = 0

ϕ
(0)
2 A01 + ϕ

(1)
2 A′

11 + ϕ
(2)
2 A21 = 0

ϕ
(i−1)
2 A01 + ϕ

(i)
2 A′

ii + ϕ
(i+1)
2 Ai+1,i = 0 i = 2, 3, . . . , k − 1,

ϕ
(k−1)
2 A01 + ϕ

(k)
2 (A′

1 +R2A2) = 0
k−1∑
n=0

ϕ
(n)
2 e + ϕ

(k)
2 [I −R2]e = 1.
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4.5. System performance measures

The system performance of the model under the (s, S) ordering principle is determined as follows:
Expected inventory level. In the MQIS, the expected inventory level of the system is obtained by the
sum of the product value of the current inventory level and the stationary probability vector defined by

ℵ1 =
∞∑
i=0

S∑
j=1

jϕ
(i, j)
2

Expected reorder rate. When the present inventory level reduces to s+ 1, there can either be a service
completion happened or an item become defective. In the case of either of these two occurrences, the
replenishment process is immediately triggered. It is defined by

ℵ2 =
k∑

i=1

pµiϕ
(i, s+1)
2 +

∞∑
i=k+1

pµkϕ
(i, s+1)
2 +

∞∑
i=0

(s+ 1)γϕ
(i, s+1)
2

Expected perishable rate. Since the system may have imperfect items in the storage space, we require
an expected perishable rate of the system. This could be done using the sum of the product jγ and the
stationary probability vector where j is the current inventory level. It is defined by

ℵ3 =
∞∑
i=0

S∑
j=1

jγϕ
(i, j)
2

Expected number of customers in the system. All customers in the system purchase an item through
the first come first serve discipline. The expected number of customers in the system is the sum of the
product value of the number of customers present and the stationary probability vector. It is defined by

ℵ4 =
∞∑
i=1

S∑
j=0

iϕ
(i, j)
2

The expected arrival rate of a customer enters into the system. The sum of the product of the average
arrival rate of a customer and the stationary probability vector is used to define the expected arrival rate
of a customer in the system

ℵ5 =
∞∑
i=0

L∑
j=1

λjϕ
(i, j)
2 +

∞∑
i=0

S∑
j=L+1

λLϕ
(i, j)
2

Expected waiting time. The expected waiting time of a customer is obtained by Little’s formula

ℵ6 =
ℵ4

ℵ5

Expected number of customers lost. The customer loss in the system occurs only at the time of zero
inventory level. It is defined by

ℵ7 =
∞∑
i=0

λ0ϕ
(i, 0)
2
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Construction of cost function. The expected total cost of the proposed model under the (s, S) ordering
principle is constructed by the cost function

Tc = a1ℵ1 + a2ℵ2 + a3ℵ3 + a4ℵ4 + a5ℵ7

5. Numerical discussion

In this section, we explore the proposed system with the (s, Q) and (s, S) ordering principles by nu-
merical discussion. In such a way, this section explains the total expected cost of the system, the mean
number of customers in the waiting hall, the mean number of customers lost, and the mean waiting time
of customers in the waiting hall, which is to be discussed for M-I and M-II along with the scaling fac-
tors k1 and k2. We use the scaling factor k1 as the controlling factor of a non-homogeneous arrival rate.
Similarly, we use k2 as the controlling factor on the non-homogeneous service rate. On applying those
k1 and k2, we have given the generalized model. This is because, if we assume k1 = k2 = 0, this model
becomes a purely homogeneous arrival and service rate of the system. Each illustration is explained for
homogeneous and non-homogeneous arrival/service rates. The major objective of this section is to find
the best ordering principle for the queuing-inventory setup. For this numerical work, we fixed the cost
rates as S = 30, s = 6, a1 = 0.001, a2 = 1, a3 = 0.02, a4 = 1.1, a5 = 3, as well as the rate of parameter
λ0 = 0.4, k1 = 0.2, k2 = 0.2, γ = 3, β = 4.9, λ = 1.3, µ = 12.8, k = 11, L = 7, p = 0.8, q = 0.2, r = k.

The monotonicity of the parameters is to be assumed for the following examples as follows:
• λ and k1 increase; the average number of customers entering the system is increased.
• β increases; the average replenishment time is reduced.
• γ increases; the average lifetime of a product is reduced.
• µ and k2 increase; the average service time per customer is reduced.

5.1. Example I

In this example, we investigate the expected total cost by varying the parameters γ, β, λ, µ and also
varying the two distinct scaling factors k1 and k2 (Tables 1 and 2)1. In Table 1, we mainly present the
scaling factor k1, and how it impacts the expected total cost by varying different parameters. Similarly,
Table 2 shows the effect of the scaling factor k2on the expected total cost by varying parameters.

• The expected total cost for M-I and M-II decreases in proportion to the increase in µ for every
increment in k1. This is because the average service time is reduced.

• Both λ and k1 increase, the expected total cost is increased and also when we compared M-II to
M-I (Table 1), M-II gave the minimum ETC. This is because M-II’s ordering policy depends on the
current stock level which could mean that the mean inventory level is much higher in M-II.

• When the value of γ is increasing, the total cost rate increases, and the total cost rate decrease as
β increases. In this case, the ETC of the M-II is lower than that of the M-I. As γ increases, the
defective items in the inventory also increase. So that total cost will increase. When β increases,
the average time for replenishment decreases. Hence the total cost of the system reduces.

1Tables (1–11) are included at the end of the article.
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• The total expected cost rate decreases when the scaling vector k2 increases. And compared to M-I
and M-II, M-II has a minimum expected cost value in Table 2. The scaling factor k2 reduces the
service completion time per customer when it increases. Therefore total cost rate is decreased.

• As µ and β increase, the total cost decreases as k2 increases. When λ and γ increase, the total cost
also increases (Table 2). The increase of λ will cause an increase in customers in the system. The
waiting cost of each customer in the system reflects the increase in total cost. In this case, M-II has
a minimum value of expected total cost compared to M-I.

• From Table 11, we conclude that the expected total cost of the system is high for M-I and low for
M-II under the parameter variation S, s, and L. When we increase the inventory level of a system,
the expected total cost is increased due to the holding cost. Similarly, the increment in L causes the
number of customers in the system. Thus the expected total cost is increased.

This example suggests that the firm has to maintain enough service speed or reorder time to increase
profit as well as decrease TC while the number of arriving customers increases and the life of products
decreases.

5.2. Example II

In this example, the mean number of customers in the waiting hall is shown by different parameters
λ, µ, β, γ with the scaling factor for arrival (k1) in Table 3 and the scaling factor for the service (k2) in
Table 4. In addition, we compared the M-I and M-II in Tables 3 and 4.

• The mean number of customers in the system is increased when k1 increases because k1 causes the
increase of arriving customers in the system. The mean number of customers in the waiting hall for
M-I is minimum as compared to M-II in Table 3.

• When the service rate µ2 and the lead time rate β with scaling factor k1 increases then the mean
number of customers in the waiting hall is decreased. And the mean number of customers in the
waiting hall increases when the arrival rate λ and the perishable rate γ increases (Table 3). We
observe that the service time and lead time will reduce the number of customers in the system when
they reduce. In the system, a defective item causes a shortage in the inventory. So customers will
face insufficient stock levels in the system. Hence the number of customers in the system will
increase.

• Table 4 displayed when the scaling factor for service k2 increases the mean number of customers
in the system decreases. Therefore, the number of customers in the system occurs low for M-II
because it helps to reduce the average service time per customer. So that customer in the system
quickly reduces when k2 increases.

• The mean number of customers in the system decreases when µ and β increase. And when λ and
γ increase, the mean number of customers in the system increases (Table 4). When we control the
defective items in the inventory, we can give service to the customers quickly. If this is to happen in
the system, the mean number of customers in the system can be reduced.

From this example, the queuing-inventory-based seller can control the crowd in the queue easily by
increasing the service time or reorder time or else increasing the life of the products, so that customers
will get service.
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5.3. Example III

In this example, we investigate the influence of parameters β and γ with the scaling factors k1 and k2 on
mean waiting time for M-I and M-II.

• Figure 1 shows that the mean waiting time decreases when β and the mean waiting time increases
when k1 increases for both M-I and M-II. Figure 2 demonstrates that the mean waiting time de-
creases when both β and k2 increase for both M-I and M-II.

Figure 1. Θ6 of M-I on k1 vs. β (a), and ℵ6 of M-II on k1 vs. β (b)

Figure 2. Θ6 of M-I on k2 vs. β (a), and ℵ6 of M-II on k2 vs. β (b)

• Figure 3 shows that the mean waiting time increases when γ and k1 increase for both M-I and M-II.
Furthermore, when the mean waiting time decreases (increases) when k2 (γ) increases for both M-I
and M-II (Figure 4).

• Figure 5 demonstrates that when λ increases, the mean waiting time for both M-I and M-II increases.
And the mean waiting time for both M-I and M-II increases when k1 increases. Next, the mean
waiting time for both M-I and M-II decreases when k2 increases (Figure 6).
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• Figure 7 shows that the mean waiting time for both M-I and M-II decreases when µ increases and
when k1 increases the mean waiting time for both M-I and M-II increases. Figure 8 shows that the
mean waiting time for both M-I and M-II decreases when k2 increases.

• Table 11 shows that the mean waiting time per customer increases for M-II rather than M-I under
the parameter variation S, s, and L.

Figure 3. Θ6 of M-I on k1 vs. γ (a), and ℵ of M-II on k1 vs. γ (b)

Figure 4. Θ6 of M-I on k2 vs. γ (a), and ℵ6 of M-II on k2 vs. γ (b)

We are witnessing from this example that if a seller provides good service or maintains a good ordering
time, the customer’s waiting time will decrease, which tends them to visit the shop more times.

5.4. Example IV

This example explores the mean number of customers lost for both M-I and M-II using different parame-
ters λ, µ, β, γ with the scaling factors k1 and k2. Additionally, we also compare the M-I and M-II.
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Figure 5. Θ6 of M-I on k1 vs. λ (a), and ℵ6 of M-II on k1 vs. λ (b)

Figure 6. Θ6 of M-I on k2 vs. λ (a), and ℵ6 of M-II on k2 vs. λ (b)

• When k1 increases, the mean number of lost customers increases. In addition, M-II has a lower
mean number of customers lost than M-I in Tables 5 and 6.

• When µ and β increase then the mean number of customers lost decreases and the mean number of
customers lost increases when λ and γ increases with k1 increases (k2 increases) in Table 5 (6).

• Tables 7–10 show the expected inventory and expected perishable for both M-I and M-II decreases
when µ increases with k1 and k2 respectively. Table 7 and 8 demonstrate the expected inventory for
both M-I and M-II decreases when γ, λ, k1 and k2 increases. But the expected inventory for both
M-I and M-II increases when β increases in Table 7 and 8.

• The expected perishable for both M-I and M-II increases when β and γ increase, but the expected
perishable for both M-I and M-II decreases when λ, k1 and k2 increase in Table 9 and 10. Further-
more, M-I is minimum compared to M-II for Tables 7–10.

• In Table 11, we show how the parameters S, s, and L influence the customer loss of the system. The
customer loss is higher in M-II and lower in M-I for the increment of S, s, and L.



140 C. Sugapriya et al.

Figure 7. Θ6 of M-I on k1 vs. µ (a), and ℵ6 of M-II on k1 vs. µ (b)

Figure 8. Θ6 of M-I on k2 vs. µ (a), and ℵ6 of M-II on k2 vs. µ (b)

The loss of customers crucially affects the profit of the business. To increase the profit, it is essential
to decrease the number of lost customers. It is possible by increasing the reorder time or speed of the
service facility or storage capacity or by decreasing the queue size or perishable rate.

6. Conclusion

The single server service channel of the MQIS investigated the SDAP and QDSP with an infinite queue
size. The proposed system is a generalised version of the homogeneous and non-homogeneous arrival
and service rates, respectively. Mostly, in the existing literature, an inventory system, the discussion with
SDAP and QDSP is separate. However, this paper fills such a research gap with an infinite queue in an
MQIS. Among these policies, the proposed MQIS deals with two different types of ordering principles.
Efficient attention is given to each ordering principle in order to explore and bring managerial inputs
to the inventory business. The impact of the parameter variation and the assumption of the ordering
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principles gave significant results in the numerical section. The output factors will enhance the proposed
MQIS economically for every business tycoon. In the future, this model will be extended to a multi-server
MQIS. In each of the numerical outputs, we gave the comparison results for both models. In addition,
the results are obtained for both homogeneous and non-homogeneous arrival/service rates. According
to the limitations of the scaling factor, homogeneous and non-homogeneous classifications are made in
each discussion. When we observe the total expected cost of the system, the optimum cost is obtained in
M-II. That is, the (s, S) ordering principle set up in a queuing-inventory system produces the minimum
total cost rather than the (s, Q) ordering principle. Due to the stock-dependent arrival policy, the mean
number of customers in the waiting hall increases in M-II. In the case of the mean number of customers
lost in the system, this is mostly reduced for M-II.

In the future, this proposed work will be discussed using the multi-server service facility.
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Table 1. Effect of various parameters with k1 on the total expected cost

γ β λ
k1 0 0.5 1
µ M-I M-II M-I M-II M-I M-II

3

4.9

1.3
12.7 3.918980 3.898881 3.987581 3.966947 4.102751 4.079964
12.8 3.911785 3.891095 3.980320 3.959189 4.092319 4.069298
12.9 3.904758 3.883476 3.973283 3.951659 4.082276 4.059029

1.4
12.7 4.030240 4.013143 4.110393 4.092590 4.263308 4.242081
12.8 4.021557 4.003771 4.101328 4.082924 4.249959 4.228406
12.9 4.013087 3.994618 4.092546 4.073549 4.237096 4.215227

1.5
12.7 4.136307 4.136307 4.243147 4.229029 4.440848 4.421901
12.8 4.125103 4.125103 4.231990 4.217140 4.424054 4.404665
12.9 4.114178 4.114178 4.221184 4.205616 4.407862 4.388047

5

1.3
12.7 3.908548 3.887599 3.971571 3.950853 4.066248 4.045050
12.8 3.901908 3.880307 3.964950 3.943685 4.056444 4.034988
12.9 3.895421 3.873169 3.958543 3.936734 4.047019 4.025314

1.4
12.7 4.015275 3.997510 4.089634 4.071963 4.221877 4.202500
12.8 4.007216 3.988700 4.081281 4.062955 4.209233 4.189499
12.9 3.999354 3.980093 4.073197 4.054224 4.197061 4.176981

1.5
12.7 4.129736 4.116028 4.217275 4.203542 4.394020 4.377237
12.8 4.120046 4.105460 4.206912 4.192389 4.378025 4.360760
12.9 4.110605 4.095154 4.196883 4.181584 4.362615 4.344886

5.1

1.3
12.7 3.895113 3.872699 3.949930 3.928995 4.015008 3.996266
12.8 3.889231 3.866075 3.944195 3.922639 4.006071 3.987037
12.9 3.883483 3.859585 3.938656 3.916481 3.997501 3.978183

1.4
12.7 3.995669 3.976692 4.061491 4.043905 4.163900 4.147348
12.8 3.988460 3.968639 4.054119 4.035798 4.152224 4.135268
12.9 3.981428 3.960768 4.046994 4.027947 4.141001 4.123656

1.5
12.7 4.103532 4.088906 4.182161 4.168866 4.328709 4.315188
12.8 4.094797 4.079196 4.172885 4.158715 4.313803 4.299744
12.9 4.086288 4.069724 4.163922 4.148889 4.299459 4.284881

3.5

4.9

1.3
12.7 4.319918 4.297085 4.352505 4.329099 4.404337 4.380127
12.8 4.314752 4.291446 4.347029 4.323202 4.395053 4.370595
12.9 4.309742 4.285968 4.341765 4.317526 4.386139 4.361445

1.4
12.7 4.420439 4.400533 4.464454 4.444009 4.555732 4.533531
12.8 4.413920 4.393429 4.457302 4.436316 4.543671 4.521120
12.9 4.407598 4.386530 4.450413 4.428901 4.532069 4.509183

1.5
12.7 4.528199 4.512085 4.585597 4.568996 4.723325 4.703881
12.8 4.520125 4.503290 4.576499 4.559214 4.707984 4.688066
12.9 4.512297 4.494754 4.567729 4.549778 4.693214 4.672841

5

1.3
12.7 4.306176 4.282566 4.328161 4.304968 4.349321 4.327530
12.8 4.301815 4.277675 4.323571 4.299910 4.340846 4.318781
12.9 4.297593 4.272928 4.319179 4.295059 4.332729 4.310402

1.4
12.7 4.400797 4.380288 4.433911 4.413923 4.494382 4.474949
12.8 4.395164 4.374008 4.427728 4.407146 4.483224 4.463405
12.9 4.389709 4.367915 4.421792 4.400631 4.472509 4.452320

1.5
12.7 4.502268 4.485767 4.548429 4.532576 4.655081 4.638815
12.8 4.495172 4.477882 4.540396 4.523799 4.640757 4.623970
12.9 4.488300 4.470236 4.532671 4.515349 4.626984 4.609697

5.1

1.3
12.7 4.291955 4.267217 4.301328 4.278333 4.286755 4.267990
12.8 4.288490 4.263151 4.297731 4.274211 4.279177 4.260107
12.9 4.285147 4.259210 4.294316 4.270280 4.271943 4.252582

1.4
12.7 4.380071 4.358621 4.400216 4.380696 4.424859 4.408842
12.8 4.375420 4.353249 4.395113 4.374935 4.414693 4.398250
12.9 4.370928 4.348043 4.390240 4.369419 4.404954 4.388102

1.5
12.7 4.474634 4.457422 4.507436 4.492373 4.578035 4.565640
12.8 4.468617 4.450537 4.500583 4.484705 4.564822 4.551854
12.9 4.462803 4.443868 4.494019 4.477343 4.552137 4.538620
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Table 2. Different parameter effect with k2 on Total Expected Cost

γ β λ
k2 0 0.5 1
µ M-I M-II M-I M-II M-I M-II

3

4.9

1.3
12.7 4.912393 4.858748 3.628091 3.558163 2.224521 2.183065
12.8 4.895226 4.841573 3.615849 3.544975 2.212807 2.171970
12.9 4.878247 4.824584 3.603630 3.531820 2.201270 2.161052

1.4
12.7 5.240973 5.182143 3.722682 3.653715 2.289261 2.246596
12.8 5.222205 5.163392 3.709963 3.640031 2.277063 2.235023
12.9 5.203639 5.144839 3.697279 3.626394 2.265049 2.223634

1.5
12.7 5.578656 5.514224 3.818723 3.750797 2.354189 2.310301
12.8 5.558335 5.493950 3.805487 3.736577 2.341509 2.298252
12.9 5.538228 5.473887 3.792302 3.722418 2.329019 2.286393

5

1.3
12.7 4.752392 4.705203 3.627370 3.557699 2.216088 2.171432
12.8 4.736082 4.688832 3.615120 3.544501 2.204363 2.160378
12.9 4.719947 4.672635 3.602896 3.531337 2.192815 2.149502

1.4
12.7 5.066173 5.014615 3.722339 3.652895 2.280034 2.234122
12.8 5.048376 4.996775 3.709606 3.639209 2.267831 2.222597
12.9 5.030766 4.979120 3.696910 3.625568 2.255812 2.211256

1.5
12.7 5.388237 5.331957 3.818773 3.749608 2.344185 2.297004
12.8 5.369004 5.312704 3.805516 3.735392 2.331505 2.285009
12.9 5.349968 5.293647 3.792312 3.721236 2.319016 2.273203

5.1

1.3
12.7 4.570971 4.531734 3.626671 3.557218 2.206929 2.158549
12.8 4.555583 4.516226 3.614415 3.544010 2.195189 2.147543
12.9 4.540357 4.500880 3.602184 3.530834 2.183629 2.136714

1.4
12.7 4.868451 4.825798 3.722014 3.652053 2.270023 2.220336
12.8 4.851694 4.808929 3.709267 3.638363 2.257811 2.208864
12.9 4.835108 4.792232 3.696559 3.624717 2.245786 2.197577

1.5
12.7 5.173392 5.127038 3.818834 3.748392 2.333342 2.282334
12.8 5.155315 5.108866 3.805557 3.734179 2.320661 2.270398
12.9 5.137419 5.090875 3.792334 3.720025 2.308171 2.258653

3.5

4.9

1.3
12.7 5.034178 4.990945 4.176268 4.103128 2.625263 2.557871
12.8 5.018515 4.975198 4.165956 4.091642 2.611424 2.544704
12.9 5.003026 4.959624 4.155632 4.080144 2.597775 2.531733

1.4
12.7 5.344160 5.297126 4.264002 4.191803 2.691934 2.623024
12.8 5.327019 5.279917 4.253263 4.179887 2.677622 2.609387
12.9 5.310066 5.262893 4.242526 4.167973 2.663507 2.595950

1.5
12.7 5.662784 5.611610 4.353095 4.281920 2.758761 2.688338
12.8 5.644199 5.592978 4.341892 4.269534 2.743979 2.674231
12.9 5.625814 5.574544 4.330705 4.257166 2.729399 2.660331

5

1.3
12.7 4.857390 4.821966 4.172182 4.101419 2.623293 2.553904
12.8 4.842562 4.807002 4.161829 4.089936 2.609429 2.540735
12.9 4.827895 4.792199 4.151467 4.078444 2.595756 2.527762

1.4
12.7 5.152468 5.114093 4.260767 4.190885 2.689658 2.618728
12.8 5.136268 5.097766 4.249972 4.178957 2.675324 2.605091
12.9 5.120242 5.081612 4.239182 4.167035 2.661186 2.591655

1.5
12.7 5.455432 5.413825 4.350739 4.281821 2.756187 2.683720
12.8 5.437896 5.396177 4.339465 4.269409 2.741385 2.669616
12.9 5.420545 5.378713 4.328211 4.257017 2.726785 2.655718

5.1

1.3
12.7 4.658397 4.632255 4.168323 4.099770 2.621283 2.549780
12.8 4.644460 4.618125 4.157929 4.088287 2.607392 2.536610
12.9 4.630671 4.604145 4.147529 4.076799 2.593694 2.523635

1.4
12.7 4.937159 4.909032 4.257733 4.190005 2.687335 2.614266
12.8 4.921958 4.893640 4.246882 4.178063 2.672977 2.600629
12.9 4.906917 4.878409 4.236040 4.166131 2.658816 2.587194

1.5
12.7 5.223050 5.192717 4.348558 4.281737 2.753559 2.678927
12.8 5.206621 5.176106 4.337213 4.269296 2.738735 2.664826
12.9 5.190363 5.159665 4.325893 4.256880 2.724113 2.650932
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Table 3. Different parameter effect with k1 on Mean Number of Customers in the Waiting hall

γ β λ
k1 0 0.5 1
µ M-I M-II M-I M-II M-I M-II

3

4.9

1.3
12.7 0.761081 0.783707 0.850628 0.871950 1.075663 1.090070
12.8 0.751614 0.773803 0.839989 0.860904 1.061463 1.075588
12.9 0.742360 0.764123 0.829596 0.850115 1.047617 1.061468

1.4
12.7 0.855864 0.883057 0.959172 0.984923 1.222156 1.239813
12.8 0.844869 0.871523 0.946745 0.971990 1.205312 1.222609
12.9 0.834127 0.860256 0.934614 0.959367 1.188904 1.205853

1.5
12.7 0.958652 0.991178 1.077382 1.108321 1.383884 1.405413
12.8 0.945937 0.977801 1.062923 1.093237 1.363970 1.385044
12.9 0.933523 0.964744 1.048820 1.078526 1.344591 1.365224

5

1.3
12.7 0.756846 0.779711 0.846534 0.868110 1.071527 1.086189
12.8 0.747435 0.769857 0.835952 0.857117 1.057392 1.071768
12.9 0.738233 0.760225 0.825615 0.846379 1.043611 1.057707

1.4
12.7 0.851048 0.878523 0.954492 0.980546 1.217366 1.235328
12.8 0.840120 0.867049 0.942134 0.967676 1.200603 1.218200
12.9 0.829442 0.855840 0.930071 0.955115 1.184274 1.201517

1.5
12.7 0.953198 0.986053 1.072051 1.103347 1.378350 1.400244
12.8 0.940561 0.972749 1.057676 1.088339 1.358536 1.379967
12.9 0.928223 0.959761 1.043654 1.073703 1.339253 1.360236

5.1

1.3
12.7 0.752545 0.775650 0.842371 0.864207 1.067313 1.082236
12.8 0.743189 0.765847 0.831848 0.853267 1.053246 1.067877
12.9 0.734042 0.756265 0.821567 0.842581 1.039529 1.053876

1.4
12.7 0.846160 0.873919 0.949737 0.976098 1.212489 1.230764
12.8 0.835297 0.862505 0.937450 0.963293 1.195809 1.213712
12.9 0.824684 0.851356 0.925455 0.950795 1.179559 1.197103

1.5
12.7 0.947663 0.980853 1.066638 1.098296 1.372720 1.394987
12.8 0.935106 0.967621 1.052347 1.083366 1.353007 1.374803
12.9 0.922844 0.954703 1.038407 1.068805 1.333821 1.355162

3.5

4.9

1.3
12.7 0.788648 0.809220 0.879900 0.899361 1.105079 1.117889
12.8 0.778634 0.798790 0.868734 0.887809 1.090372 1.102925
12.9 0.768848 0.788599 0.857829 0.876530 1.076035 1.088338

1.4
12.7 0.888182 0.913143 0.993387 1.017083 1.256471 1.272291
12.8 0.876528 0.900971 0.980320 1.003534 1.239000 1.254489
12.9 0.865144 0.889086 0.967568 0.990313 1.221984 1.237154

1.5
12.7 0.996410 1.026530 1.117225 1.145911 1.423827 1.443256
12.8 0.982903 1.012384 1.101993 1.130079 1.403139 1.422148
12.9 0.969718 0.998580 1.087140 1.114644 1.383012 1.401613

5

1.3
12.7 0.784272 0.805079 0.875749 0.895462 1.101009 1.114066
12.8 0.774316 0.794701 0.864641 0.883964 1.086367 1.099162
12.9 0.764584 0.784559 0.853793 0.872736 1.072093 1.084634

1.4
12.7 0.883202 0.908443 0.988636 1.012635 1.251747 1.267866
12.8 0.871615 0.896333 0.975641 0.999150 1.234356 1.250139
12.9 0.860298 0.884507 0.962958 0.985993 1.217419 1.232876

1.5
12.7 0.990764 1.021216 1.111807 1.140853 1.418357 1.438146
12.8 0.977337 1.007144 1.096661 1.125099 1.397769 1.417130
12.9 0.964232 0.993412 1.081890 1.109739 1.377737 1.396684

5.1

1.3
12.7 0.779821 0.800865 0.871522 0.891493 1.096854 1.110165
12.8 0.769922 0.790539 0.860475 0.880049 1.082279 1.095322
12.9 0.760246 0.780449 0.849684 0.868874 1.068070 1.080854

1.4
12.7 0.878138 0.903663 0.983803 1.008109 1.246929 1.263354
12.8 0.866620 0.891615 0.970879 0.994690 1.229620 1.245703
12.9 0.855370 0.879850 0.958266 0.981596 1.212762 1.228513

1.5
12.7 0.985026 1.015815 1.106297 1.135709 1.412784 1.432941
12.8 0.971681 1.001818 1.091237 1.120034 1.392296 1.412017
12.9 0.958655 0.988158 1.076551 1.104751 1.372362 1.391661
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Table 4. Different parameter effect with k2 on Mean Number of Customers in the Waiting hall

γ β λ
k2 0 0.5 1
µ M-I M-II M-I M-II M-I M-II

3

4.9

1.3
12.7 1.071866 1.115457 0.595546 0.607018 0.464675 0.473829
12.8 1.054598 1.097101 0.589432 0.600735 0.460964 0.470071
12.9 1.037847 1.079304 0.583433 0.594571 0.457313 0.466374

1.4
12.7 1.259772 1.316459 0.652698 0.665850 0.499489 0.509583
12.8 1.237971 1.293130 0.645896 0.658850 0.495496 0.505538
12.9 1.216869 1.270565 0.639223 0.651984 0.491568 0.501560

1.5
12.7 1.482057 1.556021 0.711911 0.726911 0.534317 0.545375
12.8 1.454420 1.526229 0.704384 0.719154 0.530041 0.541043
12.9 1.427731 1.497482 0.697002 0.711547 0.525835 0.536783

5

1.3
12.7 1.065051 1.109041 0.592599 0.604207 0.462650 0.471940
12.8 1.047931 1.090827 0.586513 0.597950 0.458954 0.468197
12.9 1.031324 1.073166 0.580541 0.591812 0.455319 0.464516

1.4
12.7 1.251312 1.308473 0.649471 0.662776 0.497324 0.507567
12.8 1.229717 1.285342 0.642699 0.655805 0.493347 0.503539
12.9 1.208811 1.262965 0.636057 0.648967 0.489436 0.499577

1.5
12.7 1.471483 1.545999 0.708397 0.723570 0.532014 0.543235
12.8 1.444131 1.516484 0.700904 0.715845 0.527756 0.538921
12.9 1.417714 1.488000 0.693555 0.708269 0.523568 0.534678

5.1

1.3
12.7 1.058149 1.102544 0.589602 0.601348 0.460588 0.470019
12.8 1.041180 1.084472 0.583544 0.595117 0.456909 0.466292
12.9 1.024717 1.066949 0.577600 0.589006 0.453291 0.462626

1.4
12.7 1.242754 1.300394 0.646189 0.659651 0.495121 0.505517
12.8 1.221366 1.277463 0.639449 0.652709 0.491162 0.501506
12.9 1.200658 1.255276 0.632837 0.645901 0.487268 0.497561

1.5
12.7 1.460801 1.535874 0.704824 0.720175 0.529672 0.541060
12.8 1.433735 1.506637 0.697366 0.712481 0.525433 0.536763
12.9 1.407591 1.478419 0.690051 0.704938 0.521264 0.532538

3.5

4.9

1.3
12.7 1.129037 1.170567 0.610000 0.620419 0.477388 0.486414
12.8 1.110303 1.150753 0.603692 0.613971 0.473627 0.482609
12.9 1.092145 1.131557 0.597506 0.607648 0.469928 0.478866

1.4
12.7 1.332702 1.387380 0.668749 0.680742 0.513152 0.523126
12.8 1.308889 1.362033 0.661726 0.673553 0.509108 0.519033
12.9 1.285859 1.337534 0.654840 0.666504 0.505130 0.515007

1.5
12.7 1.575378 1.647599 0.729654 0.743378 0.548909 0.559851
12.8 1.544972 1.615003 0.721878 0.735406 0.544580 0.555469
12.9 1.515638 1.583579 0.714254 0.727591 0.540323 0.551159

5

1.3
12.7 1.121941 1.163893 0.606998 0.617556 0.475374 0.484547
12.8 1.103366 1.144229 0.600719 0.611135 0.471630 0.480758
12.9 1.085360 1.125177 0.594561 0.604840 0.467947 0.477031

1.4
12.7 1.323841 1.379031 0.665458 0.677609 0.510998 0.521133
12.8 1.300249 1.353895 0.658468 0.670450 0.506972 0.517057
12.9 1.277431 1.329598 0.651613 0.663432 0.503011 0.513048

1.5
12.7 1.564228 1.637058 0.726067 0.739970 0.546617 0.557734
12.8 1.534132 1.604761 0.718327 0.732031 0.542307 0.553371
12.9 1.505092 1.573622 0.710738 0.724250 0.538068 0.549078

5.1

1.3
12.7 1.114743 1.157124 0.603940 0.614641 0.473322 0.482646
12.8 1.096329 1.137612 0.597691 0.608248 0.469595 0.478873
12.9 1.078476 1.118705 0.591562 0.601980 0.465929 0.475162

1.4
12.7 1.314865 1.370573 0.662108 0.674420 0.508804 0.519104
12.8 1.291496 1.345650 0.655150 0.667292 0.504796 0.515046
12.9 1.268890 1.321556 0.648328 0.660304 0.500853 0.511053

1.5
12.7 1.552948 1.626395 0.722417 0.736501 0.544283 0.555580
12.8 1.523163 1.594398 0.714713 0.728597 0.539993 0.551235
12.9 1.494421 1.563545 0.707159 0.720849 0.535773 0.546961



A comparative analysis of (s, Q) and (s, S) ordering policies... 147

Table 5. Mean number of customers lost for different parameters with k1

γ β λ
k1 0 0.5 1
µ M-I M-II M-I M-II M-I M-II

3

4.9

1.3
12.7 0.003037 0.002970 0.004368 0.004246 0.008618 0.008297
12.8 0.002973 0.002907 0.004287 0.004167 0.008505 0.008189
12.9 0.002911 0.002846 0.004207 0.004089 0.008395 0.008082

1.4
12.7 0.003623 0.003544 0.005157 0.005013 0.009935 0.009558
12.8 0.003548 0.003470 0.005063 0.004921 0.009809 0.009435
12.9 0.003474 0.003398 0.004971 0.004830 0.009684 0.009315

1.5
12.7 0.004288 0.004196 0.006041 0.005872 0.011367 0.010925
12.8 0.004200 0.004110 0.005932 0.005766 0.011226 0.010789
12.9 0.004114 0.004025 0.005826 0.005662 0.011086 0.010654

5

1.3
12.7 0.002923 0.002859 0.004198 0.004082 0.008273 0.007967
12.8 0.002861 0.002798 0.004120 0.004006 0.008166 0.007864
12.9 0.002801 0.002739 0.004044 0.003931 0.008060 0.007761

1.4
12.7 0.003488 0.003412 0.004959 0.004821 0.009544 0.009183
12.8 0.003415 0.003341 0.004869 0.004733 0.009423 0.009066
12.9 0.003345 0.003272 0.004780 0.004646 0.009303 0.008950

1.5
12.7 0.004129 0.004041 0.005811 0.005650 0.010926 0.010503
12.8 0.004045 0.003958 0.005707 0.005548 0.010790 0.010372
12.9 0.003963 0.003877 0.005605 0.005448 0.010656 0.010243

5.1

1.3
12.7 0.002813 0.002752 0.004037 0.003926 0.007946 0.007654
12.8 0.002754 0.002694 0.003962 0.003853 0.007843 0.007555
12.9 0.002697 0.002637 0.003889 0.003781 0.007741 0.007456

1.4
12.7 0.003359 0.003287 0.004771 0.004639 0.009172 0.008827
12.8 0.003289 0.003218 0.004684 0.004554 0.009055 0.008714
12.9 0.003221 0.003151 0.004599 0.004471 0.008940 0.008603

1.5
12.7 0.003978 0.003894 0.005593 0.005439 0.010506 0.010102
12.8 0.003897 0.003814 0.005493 0.005341 0.010375 0.009976
12.9 0.003818 0.003736 0.005395 0.005245 0.010246 0.009851

3.5 4.9

1.3
12.7 0.004307 0.004218 0.006065 0.005902 0.011327 0.010914
12.8 0.004223 0.004135 0.005961 0.005800 0.011190 0.010782
12.9 0.004141 0.004054 0.005859 0.005700 0.011056 0.010653

1.4
12.7 0.005039 0.004936 0.007030 0.006840 0.012864 0.012385
12.8 0.004942 0.004840 0.006911 0.006725 0.012712 0.012239
12.9 0.004847 0.004747 0.006795 0.006611 0.012563 0.012095

1.5
12.7 0.005854 0.005737 0.008093 0.007875 0.014513 0.013962
12.8 0.005744 0.005628 0.007959 0.007744 0.014346 0.013801
12.9 0.005636 0.005521 0.007828 0.007616 0.014181 0.013642

5

1.3
12.7 0.004063 0.004148 0.005680 0.005836 0.010496 0.010891
12.8 0.003983 0.004068 0.005582 0.005736 0.010369 0.010760
12.9 0.003905 0.003988 0.005486 0.005638 0.010245 0.010630

1.4
12.7 0.004855 0.004756 0.006768 0.006586 0.012376 0.011918
12.8 0.004762 0.004665 0.006654 0.006475 0.012230 0.011777
12.9 0.004671 0.004575 0.006542 0.006366 0.012086 0.011638

1.5
12.7 0.005644 0.005531 0.007795 0.007586 0.013971 0.013443
12.8 0.005537 0.005426 0.007666 0.007460 0.013810 0.013287
12.9 0.005433 0.005323 0.007540 0.007337 0.013650 0.013134

5.1

1.3
12.7 0.003998 0.003916 0.005618 0.005469 0.010476 0.010098
12.8 0.003920 0.003839 0.005522 0.005375 0.010350 0.009977
12.9 0.003843 0.003764 0.005427 0.005282 0.010225 0.009856

1.4
12.7 0.004680 0.004586 0.006518 0.006344 0.011912 0.011472
12.8 0.004591 0.004497 0.006408 0.006237 0.011771 0.011337
12.9 0.004503 0.004411 0.006301 0.006132 0.011632 0.011203

1.5
12.7 0.005443 0.005334 0.007511 0.007311 0.013454 0.012948
12.8 0.005340 0.005233 0.007387 0.007190 0.013299 0.012798
12.9 0.005240 0.005134 0.007265 0.007070 0.013145 0.012650
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Table 6. Mean number of customers lost for different parameters with k2

γ β λ
k2 0 0.5 1
µ M-I M-II M-I M-II M-I M-II

3

4.9

1.3
12.7 0.008760 0.008607 0.000440 0.000422 0.000003 0.000003
12.8 0.008634 0.008483 0.000427 0.000409 0.000003 0.000003
12.9 0.008510 0.008360 0.000414 0.000396 0.000003 0.000003

1.4
12.7 0.010204 0.010031 0.000542 0.000519 0.000004 0.000004
12.8 0.010060 0.009889 0.000525 0.000503 0.000004 0.000004
12.9 0.009919 0.009749 0.000510 0.000488 0.000004 0.000004

1.5
12.7 0.011792 0.011599 0.000661 0.000634 0.000005 0.000005
12.8 0.011630 0.011439 0.000641 0.000615 0.000005 0.000005
12.9 0.011471 0.011281 0.000622 0.000596 0.000005 0.000004

5

1.3
12.7 0.008416 0.008269 0.000425 0.000407 0.000003 0.000003
12.8 0.008295 0.008150 0.000412 0.000395 0.000003 0.000003
12.9 0.008176 0.008032 0.000399 0.000383 0.000003 0.000003

1.4
12.7 0.009809 0.009643 0.000523 0.000501 0.000004 0.000004
12.8 0.009672 0.009507 0.000507 0.000486 0.000004 0.000004
12.9 0.009536 0.009373 0.000492 0.000471 0.000004 0.000003

1.5
12.7 0.011344 0.011158 0.000638 0.000612 0.000005 0.000005
12.8 0.011188 0.011004 0.000619 0.000594 0.000005 0.000005
12.9 0.011035 0.010853 0.000601 0.000576 0.000005 0.000004

5.1

1.3
12.7 0.008089 0.007948 0.000410 0.000393 0.000003 0.000003
12.8 0.007973 0.007833 0.000398 0.000381 0.000003 0.000003
12.9 0.007858 0.007720 0.000386 0.000370 0.000003 0.000003

1.4
12.7 0.009434 0.009274 0.000505 0.000485 0.000004 0.000004
12.8 0.009302 0.009144 0.000490 0.000470 0.000004 0.000003
12.9 0.009171 0.009015 0.000475 0.000456 0.000004 0.000003

1.5
12.7 0.010917 0.010738 0.000616 0.000592 0.000005 0.000005
12.8 0.010767 0.010590 0.000598 0.000574 0.000005 0.000004
12.9 0.010620 0.010444 0.000580 0.000557 0.000005 0.000004

3.5

4.9

1.3
12.7 0.011523 0.011319 0.000694 0.000666 0.000006 0.000005
12.8 0.011372 0.011170 0.000674 0.000647 0.000005 0.000005
12.9 0.011223 0.011023 0.000655 0.000628 0.000005 0.000005

1.4
12.7 0.013185 0.012960 0.000836 0.000803 0.000007 0.000007
12.8 0.013016 0.012793 0.000812 0.000780 0.000007 0.000006
12.9 0.012850 0.012629 0.000789 0.000757 0.000007 0.000006

1.5
12.7 0.014988 0.014741 0.000999 0.000961 0.000009 0.000008
12.8 0.014800 0.014556 0.000971 0.000933 0.000009 0.000008
12.9 0.014615 0.014373 0.000944 0.000907 0.000008 0.000008

5

1.3
12.7 0.011087 0.010891 0.000670 0.000644 0.000006 0.000005
12.8 0.010942 0.010748 0.000651 0.000625 0.000005 0.000005
12.9 0.010798 0.010607 0.000632 0.000607 0.000005 0.000005

1.4
12.7 0.012695 0.012478 0.000807 0.000776 0.000007 0.000006
12.8 0.012532 0.012317 0.000784 0.000754 0.000007 0.000006
12.9 0.012372 0.012159 0.000762 0.000732 0.000006 0.000006

1.5
12.7 0.014439 0.014202 0.000966 0.000928 0.000009 0.000008
12.8 0.014258 0.014023 0.000938 0.000902 0.000008 0.000008
12.9 0.014080 0.013847 0.000912 0.000876 0.000008 0.000007

5.1

1.3
12.7 0.010672 0.010483 0.000647 0.000622 0.000005 0.000005
12.8 0.010532 0.010346 0.000629 0.000604 0.000005 0.000005
12.9 0.010394 0.010210 0.000611 0.000587 0.000005 0.000005

1.4
12.7 0.012227 0.012018 0.000780 0.000750 0.000007 0.000006
12.8 0.012070 0.011864 0.000758 0.000729 0.000007 0.000006
12.9 0.011916 0.011711 0.000737 0.000708 0.000006 0.000006

1.5
12.7 0.013916 0.013687 0.000933 0.000898 0.000009 0.000008
12.8 0.013742 0.013515 0.000907 0.000872 0.000008 0.000008
12.9 0.013570 0.013345 0.000882 0.000847 0.000008 0.000007
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Table 7. Effect of different parameters with k1 on Θ1 and ℵ1

µ 12.5 13
k1 γ β λ M-I M-II M-I M-II

0

3

4.9
1.3 11.643509 11.978372 11.631575 11.953363
1.4 11.641260 11.958263 11.632533 11.930972
1.5 11.635265 11.935409 11.629857 11.905908

5
1.3 11.677983 12.013947 11.668481 11.988261
1.4 11.672968 11.993086 11.666719 11.965172
1.5 11.664200 11.969527 11.661320 11.939454

3.5

4.9
1.3 11.407928 11.769787 11.404296 11.759722
1.4 11.397780 11.766476 11.397137 11.753861
1.5 11.384333 11.760468 11.386783 11.745413

5
1.3 11.445804 11.784400 11.444268 11.769062
1.4 11.433539 11.775281 11.435059 11.757684
1.5 11.417910 11.763716 11.422601 11.743936

0.5

3

4.9
1.3 11.587238 11.958756 11.583968 11.944571
1.4 11.573839 11.941275 11.563769 11.924666
1.5 11.556629 11.910899 11.549830 11.901913

5
1.3 11.634680 11.937981 11.627600 11.883069
1.4 11.626055 11.921611 11.622047 11.872333
1.5 11.613700 11.918399 11.612827 11.858802

3.5

4.9
1.3 11.329030 11.699264 11.324573 11.694649
1.4 11.311321 11.693515 11.303943 11.691329
1.5 11.290350 11.685035 11.279981 11.684356

5
1.3 11.351214 11.740148 11.344664 11.734722
1.4 11.331290 11.735449 11.321812 11.732386
1.5 11.308125 11.728070 11.295647 11.727448

1

3

4.9
1.3 11.565393 11.712361 11.544733 11.608410
1.4 11.547972 11.692887 11.525011 11.586774
1.5 11.497765 11.570832 11.472479 11.563130

5
1.3 11.600881 11.901692 11.597011 11.827743
1.4 11.590723 11.852619 11.578604 11.807160
1.5 11.551815 11.751607 11.527422 11.744611

3.5

4.9
1.3 11.495393 11.112961 11.474733 11.108410
1.4 11.447972 11.092887 11.425011 11.086774
1.5 11.397765 11.070832 11.372479 11.063130

5
1.3 11.556811 11.800256 11.531353 11.790498
1.4 11.550566 11.774972 11.478097 11.763755
1.5 11.452093 11.747920 11.422409 11.735215
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Table 8. Effect of different parameters with k2 on Θ1 and ℵ1

µ 12.5 13
k2 γ β λ M-I M-II M-I M-II

0

3

4.9
1.3 12.273132 12.729638 12.223139 12.667039
1.4 12.265706 12.717481 12.215035 12.654215
1.5 12.258121 12.705189 12.206772 12.641263

5
1.3 12.286323 12.737340 12.236624 12.675195
1.4 12.278776 12.725092 12.228395 12.662276
1.5 12.271071 12.712707 12.220006 12.649227

3.5

4.9
1.3 11.963606 12.398156 11.920386 12.341148
1.4 11.955403 12.385777 11.911545 12.328108
1.5 11.947072 12.373305 11.902571 12.314976

5
1.3 11.977397 12.406890 11.934491 12.350366
1.4 11.969082 12.394423 11.925534 12.337234
1.5 11.960637 12.381862 11.916442 12.324009

0.5

3

4.9
1.3 11.538341 11.989785 11.518496 11.986791
1.4 11.514712 11.968154 11.494465 11.964678
1.5 11.489563 11.945538 11.469089 11.941561

5
1.3 11.564089 12.053259 11.543576 12.050267
1.4 11.540045 12.032114 11.519138 12.028639
1.5 11.514489 12.009973 11.493361 12.005994

3.5

4.9
1.3 11.370195 11.518305 11.351242 11.515628
1.4 11.352890 11.496735 11.332821 11.493677
1.5 11.333995 11.474427 11.312933 11.470974

5
1.3 11.397107 11.586001 11.377529 11.583320
1.4 11.379399 11.564838 11.358721 11.561774
1.5 11.360115 11.542926 11.338456 11.539465

1

3

4.9
1.3 11.212146 11.761392 11.206852 11.741896
1.4 11.177145 11.728519 11.171214 11.709574
1.5 11.141009 11.694759 11.134432 11.676530

5
1.3 11.282098 11.785546 11.276803 11.765213
1.4 11.247558 11.752286 11.241624 11.732502
1.5 11.211868 11.718138 11.205283 11.699064

3.5

4.9
1.3 10.710175 11.589218 10.705675 11.567176
1.4 10.677162 11.561620 10.672166 11.539326
1.5 10.643320 11.532969 10.637824 11.510539

5
1.3 10.783777 11.614952 10.779267 11.592156
1.4 10.751126 11.587001 10.746118 11.563956
1.5 10.717631 11.558001 10.712118 11.534822
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Table 9. Effect of different parameters with k1 on Θ3 and ℵ3

µ 12.5 13
k1 γ β λ M-I M-II M-I M-II

0

3

4.9
1.3 34.930526 35.935117 34.894725 35.860089
1.4 34.923779 35.874790 34.897599 35.792915
1.5 34.905795 35.806226 34.889572 35.717724

5
1.3 35.033950 36.041842 35.005442 35.964784
1.4 35.018904 35.979257 35.000156 35.895515
1.5 34.992601 35.908580 34.983960 35.818362

3.5

4.9
1.3 39.951966 41.194254 39.929131 41.159026
1.4 39.927749 41.182665 39.915034 41.138514
1.5 39.892229 41.161638 39.889979 41.108946

5
1.3 40.054939 41.245400 40.039669 41.191716
1.4 40.022708 41.213485 40.017686 41.151894
1.5 39.979103 41.173006 39.984687 41.103775

0.5

3

4.9
1.3 34.090550 35.176269 34.071333 35.133712
1.4 34.061714 35.153826 34.051904 35.103997
1.5 34.021517 35.122698 34.021307 35.065738

5
1.3 34.178164 35.293943 34.166141 35.249206
1.4 34.141100 35.268832 34.138482 35.217000
1.5 34.092773 35.235196 34.089768 35.176405

3.5

4.9
1.3 39.946004 41.097425 39.911606 41.081272
1.4 39.913801 41.077304 39.900624 41.069653
1.5 39.829933 41.047622 39.866224 41.048746

5
1.3 40.039248 41.225041 40.026325 41.161473
1.4 40.009516 41.194902 39.976341 41.129161
1.5 39.928438 41.145881 39.884764 41.101157

1

3

4.9
1.3 33.736179 34.238483 33.628200 34.125229
1.4 33.613917 34.179661 33.475034 34.060322
1.5 33.433294 34.119496 33.312437 34.009391

5
1.3 33.940644 34.335075 33.881034 34.273230
1.4 33.802168 34.201856 33.735811 34.111481
1.5 33.655445 34.188648 33.582265 34.043834

3.5

4.9
1.3 33.786179 34.338883 33.724200 34.325229
1.4 33.643917 34.278661 33.575034 34.260322
1.5 33.493294 34.212496 33.417437 34.189391

5
1.3 33.998839 34.380896 33.909735 34.566743
1.4 33.819815 34.312402 33.623341 34.373144
1.5 33.732326 34.310718 33.528430 34.273253
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Table 10. Effect of different parameters with k2 on Θ3 and ℵ3

µ 12.5 13
k2 γ β λ M-I M-II M-I M-II

0

3

4.9
1.3 36.819397 38.188913 36.669418 38.001116
1.4 36.797117 38.152442 36.645105 37.962646
1.5 36.774364 38.115567 36.620316 37.923790

5
1.3 36.858969 38.212021 36.709871 38.025586
1.4 36.836328 38.175275 36.685184 37.986828
1.5 36.813212 38.138122 36.660019 37.947681

3.5

4.9
1.3 41.872622 43.393544 41.721350 43.194018
1.4 41.843912 43.350219 41.690409 43.148378
1.5 41.814750 43.306567 41.658997 43.102416

5
1.3 41.920891 43.424115 41.770719 43.226282
1.4 41.891787 43.380481 41.739370 43.180320
1.5 41.862229 43.336516 41.707547 43.134033

0.5

3

4.9
1.3 34.615022 35.969356 34.555489 35.960373
1.4 34.544135 35.904461 34.483394 35.894035
1.5 34.468688 35.836613 34.407267 35.824682

5
1.3 34.692266 36.159776 34.630728 36.150801
1.4 34.620135 36.096342 34.557414 36.085918
1.5 34.543466 36.029919 34.480083 36.017983

3.5

4.9
1.3 39.795683 40.562262 39.729348 40.485116
1.4 39.735114 40.465670 39.664874 40.387640
1.5 39.668983 40.365393 39.595265 40.286888

5
1.3 39.889874 40.652333 39.821350 40.572546
1.4 39.827897 40.554503 39.755523 40.473845
1.5 39.760402 40.453005 39.684597 40.371876

1

3

4.9
1.3 33.636437 35.284177 33.620556 35.225687
1.4 33.531434 35.185557 33.513642 35.128722
1.5 33.423028 35.084276 33.403295 35.029589

5
1.3 33.846294 35.356637 33.830410 35.295639
1.4 33.742675 35.256859 33.724873 35.197505
1.5 33.635603 35.154413 33.615848 35.097191

3.5

4.9
1.3 37.485612 40.314068 37.469861 40.304697
1.4 37.370067 40.238572 37.352582 40.227868
1.5 37.251619 40.160493 37.232382 40.148410

5
1.3 37.743220 40.551003 37.727434 40.541620
1.4 37.628942 40.476932 37.611412 40.466209
1.5 37.511708 40.400240 37.492413 40.368129
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Table 11. Effect of parameters s, S and L on Tc, Θ6, ℵ6, Θ7, ℵ7 for M-I and M-II

S s L
M-I M-II

Tc Θ6 Θ7 Tc ℵ6 ℵ7

25

3
9 3.238036 0.142861 0.015800 3.208242 0.146133 0.015974

11 3.490347 0.157464 0.016857 3.418891 0.163172 0.016888
13 3.708020 0.167833 0.017450 3.582784 0.176616 0.017614

5
9 4.071632 0.151859 0.012341 4.038042 0.157782 0.012591

11 4.366458 0.167377 0.013698 4.254299 0.178028 0.013765
13 4.623548 0.177405 0.014476 4.406793 0.194053 0.014683

7
9 4.787175 0.160186 0.010461 4.768930 0.168921 0.010820

11 5.164389 0.176973 0.012051 5.016830 0.193346 0.012174
13 5.492868 0.186689 0.012974 5.167740 0.212878 0.013234

30

3
9 3.321759 0.151609 0.015270 3.294398 0.154038 0.015420

11 3.691844 0.172875 0.016775 3.628219 0.177302 0.016817
13 4.069249 0.191854 0.018026 3.953855 0.199015 0.018154

5
9 4.113452 0.161801 0.011844 4.080144 0.166092 0.012060

11 4.544993 0.185377 0.013587 4.445382 0.193458 0.013679
13 4.996804 0.205877 0.015026 4.798062 0.219202 0.015156

7
9 4.783348 0.171360 0.009929 4.755632 0.177518 0.010230

11 5.320347 0.197952 0.011865 5.187014 0.210097 0.012026
13 5.889404 0.220523 0.013498 5.590835 0.241137 0.013619

35

3
9 3.402898 0.158250 0.014815 3.377587 0.160140 0.014946

11 3.874466 0.185037 0.016650 3.817350 0.188600 0.016699
13 4.400359 0.211664 0.018436 4.294597 0.217653 0.018529

5
9 4.166496 0.169140 0.011421 4.134227 0.172420 0.011609

11 4.713830 0.199246 0.013428 4.624679 0.205639 0.013529
13 5.344847 0.228925 0.015362 5.163771 0.239888 0.015438

7
9 4.806328 0.179338 0.009493 4.774310 0.183953 0.009747

11 5.475793 0.213669 0.011647 5.355552 0.223109 0.011815
13 6.262317 0.247337 0.013765 5.991815 0.264043 0.013808
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