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Abstract

Data envelopment analysis (DEA) is a non-parametric approach for the estimation of production frontier that is used to cal-
culate the performance of a group of similar decision-making units (DMUs) which employ comparable inputs to produce
related outputs. However, observed values might occasionally be confusing, imprecise, ambiguous, inadequate, and inconsis-
tent in real-world applications. Thus, disregarding these factors may result in incorrect decision-making. Thus neutrosophic
sets have been created as an extension of intuitionistic fuzzy sets to represent ambiguous, erroneous, missing, and inaccurate
information in real-world applications. In this study, we have proposed a technique for solving the neutrosophic form of the
Charnes–Cooper–Rhodes (CCR) model based on single-value trapezoidal neutrosophic numbers (SVTrNNs). The possibilis-
tic mean for SVTrNNs is redefined and applied the Mehar approach to transforming the neutrosophic DEA (Neu-DEA) model
into its corresponding crisp DEA model. As a result, the efficiency scores of the DMUs are calculated using different risk
parameter values lying in [0, 1]. A numerical example is given to analyze the performance of the all India institutes of medical
sciences and compared it with Abdelfattah’s ranking approach.

Keywords: efficiency analysis, single value, trapezoidal neutrosophic number, data envelopment analysis, possibilistic mean,

Mehar approach

1. Introduction

One of the most difficult tasks in today’s highly competitive world is to monitor the peers’ performance
and consistently improve since competition is high and increasing by the day. The performance evalu-
ation demands every decision-making unit (DMU) to constantly adapt and improve in order to compete
and succeed in today’s highly competitive market. Data envelopment analysis (DEA) is a non-parametric,
linear programming technique for performance analysis that generates an empirical production frontier
that estimates the comparative performance of the DMUs using several inputs and outputs data. It calcu-
lates the best practices of the DMUs in such a way that no other DMU has the same quantity of input as
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the provided inputs. Using the assumption of constant returns to scale (CRS), Charnes et al. [10] devel-
oped a linear mathematical programming model to estimate the comparative efficiency of DMUs based
on Farrell’s mathematical model [18]. To investigate relative efficiency under the assumption of variable
returns to scale (VRS), Banker et al. [8] expanded a pioneering work [10] by developing a mathematical
model called the BCC model.

The DEA is a powerful and efficient MCDM approach that has been widely implemented in various
fields such as a variety of industries, including banking institutions [32], the insurance business [26],
financial services [33], education [39], supply chain management [22], health care management [37],
sustainability [3], energy [19], agriculture [11], and health-care services [31]. The data utilized in the
traditional DEA models are numerical/crisp values. However, in real-world applications, the observed
data of inputs and/or outputs are frequently unquantifiable, ambiguous, confusing, and non-obtainable
in the absence of information [23]. Traditional DEA models cannot be used to evaluate and rank DMU
performance when the data are imprecise and ambiguous [17]. Therefore, developing DEA models to
deal with this issue is necessary. Otherwise, the efficiency score of the DMU and ranking may become
untrustworthy and invalid [42]. As a result, various researchers have proposed different variations of
fuzzy data envelopment analysis (FDEA) models using fuzzy programming techniques in recent years.
Zadeh [52] in 1965 was the first to develop the notion of the fuzzy set (FS) as a modification and impro-
visation of traditional set theory. The fuzzy set theory offers a foundation for mathematical modeling of
real-world situations with a degree of imprecision, uncertainty, or ambiguity in their description. This
theory can be used in various fields, such as engineering, mathematics, and computer science. Sengupta
[46] in 1992 used a fuzzy set in DEA for the first time. The fuzzy DEA (FDEA) is a relatively new
subject that has dragged the attention of decision-makers, academics, and the scientific community to
develop this attractive topic in different fuzzy environments. In FDEA, several approaches have been
presented to deal with erroneous, unclear, incomplete, and/or missing data. Stochastic [40] and interval
DEA models are usually used to detect inaccurate inputs and outputs data. Figure 1 shows that the fuzzy
DEA models are classified into six approaches [17, 23]. Zhou and Xu [53] summarized the development
of FDEA and its successful implementations.

It is impossible to simulate all kinds of uncertainty seen in real-world issues, such as incomplete
sets. To address this knowledge gap, Atanassov [6] developed an intuitionistic fuzzy set (IFS) in 1986
to further extend the fuzzy set. Instead of a single membership grade, each element in IFS has a non-
membership grade. Furthermore, the sum of these two membership grades must be less than or equal
to one. When available information is insufficient to describe imprecision via typical fuzzy sets, the
idea of IFS might be seen as an appropriate/alternative solution. Later, interval-valued IFS were added
to IFS. A number of research publications have been published in DEA that use intuitionistic fuzzy
sets. Gandotra et al. [20] proposed the DEA in the context of the intuitionistic fuzzy weighted entropy
approach. Sahil et al. [44] proposed the parabolic intuitionistic fuzzy-based DEA based on a parametric
approach. Puri and Yadav [43] presented the optimistic and pessimistic efficiencies with intuitionistic
fuzzy input/output data in DEA. Arya and Yadav [5] proposed the intuitionistic fuzzy data envelopment
analysis (IFDEA) and dual IFDEA (DIFDEA) models based on α and β-cuts, and the index ranking
approach is used to rank the DMUs. Javaherian et al. [25] proposed the fuzzy network two-stage DEA
model based on the expected value of the intuitionistic fuzzy inputs and outputs. Shakouri et al. [47]
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proposed the intuitionistic fuzzy network DEA model based on a parametric approach. Santos Arteaga
et al. [45] proposed a novel method for solving intuitionistic fuzzy DEA. Edalatpanah [16] proposed a
ranking approach for solving the intuitionistic fuzzy DEA model.

Figure 1. Approaches for solving FDEA

Neutrosophic set (NS), an extended version of FS and IFS presented by Smarandache [48] in 1999, is
a strong tool for handling unclear, partial, and unpredictable data in the actual world. It overcomes some
of the drawbacks of prior techniques to depicting uncertain decision information by successfully rep-
resenting ambiguous, incomplete, and inconsistent data with quantified indeterminacy and completely
independent truth, indeterminacy, and falsity memberships. It is also closer to human thinking since
it simulates human decision-making processes better by considering indeterminacy-related facts. Neu-
trosophic set and their expansions have subsequently been used in several domains, including computer
science [7, 50], mathematics [35], engineering [30], medical [29], etc. NSs have also been used in several
MCDM approaches, including AHP, VIKOR, TOPSIS, ELECTRE, PROMETHEE, and others [21, 27].
Recently, Akram et al. [4] proposed Fermatean fuzzy DEA (FFDEA) technique to solve the Fermatean
fuzzy multi-objective transportation problem (FFMOTP). Mohanta et al. [36, 38] developed the mathe-
matical technique to handle the DEA model when data are in Spherical fuzzy numbers. Jaberi Hafshjani
et al. [24] used a hybrid BSC-DEA technique to evaluate the performance of 20 bank branches using
neutrosophic numbers as input-output data. Öztaş et al. [41] used plithogenic set in DEA to measure
the performance of the hotels. Edalatpanah [15] studied the DEA model for the first time in 2018 us-
ing neutrosophic input and output data. Following then, many authors studied the neutrosophic DEA
(Neu-DEA) using various approaches, as shown in Table 1.

In this study, the possibilistic mean for a single-valued trapezoidal neutrosophic number (SVTrNN) is
redefined. A novel and efficient solution technique for the Neu-DEA model with SVTrNN inputs-outputs
is provided by using the possibilistic mean which is employed to convert the neutrosophic DEA model
into the corresponding crisp DEA model. The main advantage of the proposed Neu-DEA solving tech-
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Table 1. Neutrosophic data envelopment analysis

Concept Title of the article Reference
Score and accuracy function Neutrosophic perspective on DEA Edalatpanah [15]

Deneutrosophication
An integrated AHP & DEA methodology
with neutrosophic sets Kahraman et al. [28]

Parametric approach
Data envelopment analysis
with neutrosophic inputs and outputs Abdelfattah [1]

Logarithm approach Data envelopment analysis for simplified neutrosophic sets
Edalatpanah
and Smarandache [14]

Ranking approach
Data envelopment analysis based on
triangular neutrosophic numbers Edalatpanah [13]

Logarithm approach
A neutrosophic-based approach in data envelopment
analysis with undesirable outputs Mao et al. [34]

Ranking approach
Triangular single valued neutrosophic data envelopment
analysis. Application to hospital performance measurement Yang et al. [51]

Robust tolerance approach
Evaluating negative emissions technologies
using neutrosophic data envelopment analysis Tapia [49]

Ranking and parametric approach
Neutrosophic data envelopment analysis.
An application to regional hospitals in Tunisia Abdelfattah [2]

nique is that it allows the decision-maker to be more flexible in determining the efficiency score of the
DMUs with risk parameters. The risk parameter shows whether decision-makers believe they should be
pessimistic, optimistic, or neutral in an uncertain environment. The DMUs are ranked based on the arith-
metic mean of the efficiency score of different risk parameters. A numerical example is given to measure
the performance of the seven AIIMS in India. The rest of the paper is arranged as follows: Section 2
discusses some advanced knowledge, concepts, and arithmetic operations on SVTrNNs and possibilistic
mean. The development of neutrosophic DEA from the conventional DEA model is discussed in Section
3. Section 4 investigates the step=wise solution procedure of the suggested neutrosophic DEA model,
and the Mehar approach [9] is employed to covert into the crisp DEA model. Section 5 gives a numer-
ical example to measure the efficiency score of the AIIMS in India for the suggested model. Section 6
concludes with findings and future directions.

2. Preliminary

Definition 1. [48] Let U be a universe. A neutrosophic set (NS) X̂ over U is defined by

X̂ = {⟨x;ϕx, φx, ψx⟩ : x ∈ U} (1)

where ϕx, φx, and ψx are called membership function, non-membership function, and hesitancy function,
respectively.

They are defined by ϕx, φx, ψx : U → [0, 1] such that

0 ≤ ϕx + φx + ψx ≤ 3.

Definition 2. [12] The single-value trapezoidal neutrosophic number (SVTrNNs) is defined as

X̂ = ⟨xL, xM1 , xM2 , xU ;ϕx, φx, ψx⟩
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where the truth, indeterminacy, and falsehood degree of x have the following three membership grades:

τ(x) =



x− xL

xM1 − xL
ϕx, x ∈ [xL, xM1 ]

ϕx, x ∈ [xM1 , xM2 ]

xU − x

xU − xM2
ϕx, x ∈ [xM2 , xU ]

0, otherwise

(2)

ι(x) =



x− xL

xM1 − xL
φx, x ∈ [xL, xM1 ]

φx, x ∈ [xM1 , xM2 ]

xU − x

xU − xM2
φx x ∈ [xM2 , xU ]

1, otherwise

(3)

ν(x) =



x− xL

xM1 − xL
ψx, x ∈ [xL, xM1 ]

ψx, x ∈ [xM1 , xM2 ]

xU − x

xU − xM2
ψx, x ∈ [xM2 , xU ]

1, otherwise

(4)

where 0 ≤ τ(x) + ι(x) + ν(x) ≤ 3, ∀ x ∈ U.

Definition 3. [12] Suppose X̂1 = ⟨xL1 , x
M1
1 , xM2

1 , xU1 ;ϕx1 , φx1 , ψx1⟩ and X̂2 = ⟨xL2 , x
M1
2 , xM2

2 , xU2 ;

ϕx2 , φx2 , ψx2⟩ two SVTrNNs. Then the arithmetic relations are defined as

1. X̂1 ⊕ X̂2 = ⟨xL1 + xL2 , x
M1
1 + xM1

2 , xM2
1 + xM2

2 , xU1 + xU2 ;ϕx1 ∧ ϕx2 , φx1 ∨ φx2 , ψx1 ∨ ψx2⟩.

2. X̂1 − X̂1 = ⟨xL1 − xL2 , x
M1
1 − xM1

2 , xM2
1 − xM2

2 , xU1 − xU2 ;ϕx1 ∧ ϕx2 , φx1 ∨ φx2 , ψx1 ∨ ψx2⟩.

3. X̂1 ⊗ X̂1 = ⟨xL1 xL2 , x
M1
1 xM1

2 , xM2
1 xM2

2 , xU1 x
U
2 ;ϕx1 ∧ ϕx2 , φx1 ∨ φx2 , ψx1 ∨ ψx2⟩.

4. αX̂1 =

⟨αxL1 , αx
M1
1 , αxM2

1 , αxU1 ;ϕx1 , φx1 , ψx1⟩, α > 0

⟨αxU1 , αx
M2
1 , αxM1

1 , αxL1 ;ϕx1 , φx1 , ψx1⟩, α < 0

where a ∧ b = min(a, b) and a ∨ b = max(a, b).

Definition 4. [9] Let X̂ = ⟨xL, xM1 , xM2 , xU ;ϕx, φx, ψx⟩ be an SVTrNNs, the possibilistic mean of
truth, indeterminacy and falsity degree can be defined as

V (X̂) = λm(X̂, ϕ) + (1− λ)
(
m(X̂, φ) +m(X̂, ψ)

)
(5)

where

m(X̂, ϕ) =
1

6

(
xL + 2xM1 + 2xM2 + xU

)
ϕ2
x
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m(X̂, φ) =
1

6

((
2xL + xM1 + xM2 + 2xU

)
−
(
xL − xM1 − xM2 + xU

)
φx

−
(
xL + 2xM1 + 2xM2 + xU

)
φ2
x

)
m(X̂, ψ) =

1

6

((
2xL + xM1 + xM2 + 2xU

)
−
(
xL − xM1 − xM2 + xU

)
ψx

−
(
xL + 2xM1 + 2xM2 + xU)ψ2

x

)
are the possibilistic means of truth, indeterminacy, and falsity membership degree, respectively, and
λ reflects decision-maker’s attitude towards taking risks:

1. λ ∈ [0, 0.5) shows the expert is a risk taker who prefers uncertainty.
2. λ = 0.5 shows the expert’s decision on the parameter selection is neutral.
3. λ ∈ (0.5, 1] shows the expert’s sensitivity to taking risks while deciding.

Example 1. If X̂ = a be any real number, then in SVTrNN form X̂ = ⟨a, a, a, a; 1, 0, 0⟩ then
V (X̂) = λa+ (1− λ)2a = 2a− aλ ̸= a.

Definition 5. Suppose X̂1 and X̂2 be two SVTrNNs, then two SVTrNNs can be compared by

1. X̂1 ≤ X̂2 if and only if V (X̂1) ≤ V (X̂2),

2. X̂1 < X̂2 if and only if V (X̂1) < V (X̂2),

where V (.) is the possibilistic mean.

Definition 6. The possibilistic mean of truth, indeterminacy, and falsity membership degree of
X̂ = ⟨xL, xM1 , xM2 , xU ; ϕx, φx, ψx⟩ are redefined as

V (X̂) = λm(X̂, ϕ) + (1− λ)
(m(X̂, φ) +m(X̂, ψ)

2

)
(6)

where
m(X̂, ϕ) =

1

6

(
xL + 2xM1 + 2xM2 + xU

)
ϕ2
x

m(X̂, φ) =
1

6

((
2xL + xM1 + xM2 + 2xU

)
−
(
xL − xM1 − xM2 + xU

)
φx

−
(
xL + 2xM1 + 2xM2 + xU

)
φ2
x

)

m(X̂, ψ) =
1

6

(
[2xL + xM1 + xM2 + 2xU ]− [xL − xM1 − xM2 + xU ]ψx

− [xL + 2xM1 + 2xM2 + xU ]ψ2
x

)
are the possibilistic mean of truth, indeterminacy, and falsity membership degree, respectively.

That implies
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Ṽ (X̂) =
λ

6

((
xL + 2xM1 + 2xM2 + xU

)
ϕ2
x

+
1− λ

2

((
2xL + xM1 + xM2 + 2xU

)
−
(
xL − xM1 − xM2 + xU

)
φx

−
(
xL + 2xM1 + 2xM2 + xU

)
φ2
x

)
+
(
2xL + xM1 + xM2 + 2xU

)
−
(
xM1 − xM2 + xU

)
ψx −

(
xL + 2xM1 + 2xM2 + xU

)
ψ2
x

)
(7)

Thus the possibilistic mean of any real number a ∈ R, which can be written in SVTrNN form
X̂ = ⟨a, a, a, a; 1, 0, 0⟩. Thus, Ṽ (a) = a.

Lemma 1. Let us consider X̂i = ⟨xLi , x
M1
i , xM2

i , xUi ; ϕxi
, φxi

, ψxi
⟩ be n SVTrNNs and αi ∈ R. Then

the possibilistic mean of the aggregation of the following expression can be defined as

Ṽ

n∑
i=1

αiX̂i =
1

6

n∑
i=1

(
λ
(
xLi + 2xM1

i + 2xM2
i + xUi

)( n∧
i=1

ϕxi

)2
1− λ

2

((
2xLi + xM1

i + xM2
i + 2xUi

)
−
(
xLi − xM1

i − xM2
i + xUi

)( n∨
i=1

φxi

)
+
(
2xLi + xM1

i + xM2
i + 2xUi

)
−
(
xLi − xM1

i − xM2
i + xUi

)( n∨
i=1

ψxi

)
−
(
xLi + 2xM1

i + 2xM2
i + xUi

)( n∨
i=1

ψxi

)2))
αi

(8)

Proof.
n∑

i=1

αiX̂i =

〈 n∑
i=1

αix
L
i ,

n∑
i=1

αix
M1
i ,

n∑
i=1

αix
M2
i ,

n∑
i=1

αix
U
i ;

n∧
i=1

ϕxi
,

n∨
i=1

φxi
,

n∨
i=1

ψxi

〉
Then from definition (6), we have

Ṽ

n∑
i=1

αiX̂i =
1

6

(
λ
( n∑

i=1

αix
L
i + 2

n∑
i=1

αix
M1
i + 2

n∑
i=1

αix
M2
i +

n∑
i=1

αix
U
i

)( n∧
i=1

ϕxi

)2
+

1− λ

2

((
2

n∑
i=1

αix
L
i +

n∑
i=1

αix
M1
i +

n∑
i=1

αix
M2
i + 2

n∑
i=1

αix
U
i

)

−
( n∑

i=1

αix
L
i −

n∑
i=1

αix
M1
i −

n∑
i=1

αix
M2
i +

n∑
i=1

αix
U
i

)( n∨
i=1

φxi

)

−
( n∑

i=1

αix
L
i + 2

n∑
i=1

αix
M1
i + 2

n∑
i=1

αix
M2
i +

n∑
i=1

αix
U
i

]( n∨
i=1

φxi

)2)
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+
(
2

n∑
i=1

αix
L
i +

n∑
i=1

αix
M1
i +

n∑
i=1

αix
M2
i + 2

n∑
i=1

αix
U
i

)

−
( n∑

i=1

αix
L
i −

n∑
i=1

αix
M1
i −

n∑
i=1

αix
M2
i +

n∑
i=1

αix
U
i

]( n∨
i=1

ψxi

)

−
( n∑

i=1

αix
L
i + 2

n∑
i=1

αix
M1
i + 2

n∑
i=1

αix
M2
i +

n∑
i=1

αix
U
i

)( n∨
i=1

ψxi

)2))
that implies

Ṽ
n∑

i=1

αiX̂i =
1

6

n∑
i=1

(
λ
(
xLi + 2xM1

i + 2xM2
i + xUi

)( n∧
i=1

ϕxi

)2
+

1− λ

2

((
2xLi + xM1

i + xM2
i + 2xUi

)
−
(
xLi − xM1

i − xM2
i + xUi

)( n∨
i=1

φxi

)

−
(
xLi + 2xM1

i + 2xM2
i + xUi

)( n∨
i=1

φxi

)2
+
(
2xLi + xM1

i + xM2
i + 2xUi

)

−
(
xLi − xM1

i − xM2
i + xUi

)( n∨
i=1

ψxi

)
−
(
xLi + 2xM1

i + 2xM2
i + xUi

)( n∨
i=1

ψxi

)2))
αi

□

3. Neutrosophic data envelopment analysis (Neu-DEA)

Suppose that there are n DMUs, each of m inputs and r outputs represented by the vectors x ∈ Rm and
y ∈ Rr, respectively. We define the input matrix X as X = [x1, . . . , xm] ∈ Rm×n, and the output matrix
Y as Y = [yl, . . . , yr] ∈ Rr×n, xi ∈ Rm∀i = 1, 2, . . . , m, yk ∈ Rr,∀k = 1, 2, 3, . . . , r. Assume that
X > 0 and Y > 0. Charnes et al. [10] developed this model for measuring the efficiency of DMUo, i.e.,

max
u,v

θ =

r∑
k=1

ukyko

m∑
i=1

vixio

subject to

r∑
k=1

ukykj

m∑
i=1

vixij

≤ 1, j = 1, 2, . . . , n

uk ≥ 0, k = 1, 2, . . . , r

vi ≥ 0, i = 1, 2, . . . , m

(9)



Neutrosophic data envelopment analysis. . . 89

which is equivalent to the linear program (LPo), i.e.,

max
u,v

θ =
r∑

k=1

ukyko

subject to
m∑
i=1

vixio = 1

r∑
k=1

ukykj ≤
m∑
i=1

vixij, j = 1, 2, . . . , n

uk ≥ 0, k = 1, 2, . . . , r

vi ≥ 0, i = 1, 2, . . . , m

(10)

which is called the CCR model.
If any of the observed data for inputs and/or outputs in this model are inaccurate, unclear, or ambigu-

ous, the efficiency score of the DMUo will be inaccurate. Furthermore, if this DMU is on an efficient
production function, it will serve as a shaky reference unit for the other inefficient DMUs. A strong
technique for dealing with this type of situation is to use neutrosophic set theory.

Assuming inputs and outputs are SVTrNNs while the variables ur and vi are real numbers. Thus, the
neutrosophic CCR (Neu-CCR) model will be written as follows:

max
u,v

θ =
r∑

k=1

ukŷko

subject to
m∑
i=1

vix̂io = 1̂

r∑
k=1

ukŷkj ≤
m∑
i=1

vi, x̂ij, j = 1, 2, . . . , n

uk ≥ 0, k = 1, 2, . . . , r

vi ≥ 0, i = 1, 2, . . . , m

(11)

where x̂ij = ⟨xLij, x
M1
ij , x

M2
ij , x

U
ij;ϕxij

, φxij
, ψxij

⟩ and ŷkj = ⟨yLkj, y
M1
kj , y

M2
kj , y

U
kj;ϕykj , φykj , ψykj⟩ for

i = 1, 2, 3, . . . , n, j = 1, 2, 3, . . . , m and k = 1, 2, 3, . . . , r, are the SVTrNNs, and 1̂ = ⟨1, 1, 1, 1;
1, 0, 0⟩. The efficiency score of the Neu-CCR model is θ∗ ∈ [0, 1].

Theorem 2. The CCR model given in equation (10) and the Neu-CCR model in equation (11) are
equivalent.

Proof. When the aggregation operator is applied, it is easy to see that every Neu-CCR model’s opti-
mum feasible solution is also an optimum feasible solution for the CCR model, and vice versa. □

4. Method for solving neutrosophic DEA (Neu-DEA) model

Fuzzifier or fuzzification is the process of changing crisp input-output data into fuzzy input-output data
using information from a knowledge base. Fuzzification is necessary at an early stage of the uncertainty
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theory. As a result, the fuzzifier may be defined as a mapping from an observable crisp data space to a
fuzzy data space in a given discourse universe. Trapezoidal membership functions are the most widely
employed in the fuzzification process because they are easily implemented by embedded controllers. In
this case, a trapezoidal neutrosophic fuzzy set is employed based on the expert decision. The solution
technique of the neutrosophic DEA model is represented by the flowchart in Figure 2.

Figure 2. Technique for solving the neutrosophic DEA model

Let us consider the inputs x̂ij and outputs ŷkj are the SVTrNNs that is
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for i = 1, 2, 3, . . . , m, j = 1, 2, 3, . . . , n and k = 1, 2, 3, . . . , r.

The following steps are performed to solve the Neu-DEA model.
Step 1. Transform the DEA model into the Neu-DEA model as shown in equation (11).
Step 2. Apply the possibilistic mean function (Ṽ ) in the Neu-DEA model. The Neu-CCR models is
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(12)



Neutrosophic data envelopment analysis. . . 91

Step 3. Mehar’s approach [9] is used to convert the Neu-CCR model into an equivalent crisp CCR
model. From equation (12), the possibilistic mean of the aggregation of the neutrosophic trapezoidal
fuzzy environment can be written as

max
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Now from Lemma (1) we have
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which is the corresponding crisp CCR model.
Step 4. Solve this crips CCR model and find the optimal solution θ∗ for each λ ∈ [0, 1] which

represents the attitude of the DM regarding the risk:
1. λ ∈ [0, 0.5) shows that the expert is a risk taker who prefers uncertainty.
2. λ = 0.5 shows that the expert’s decision on the parameter selection is neutral.
3. λ ∈ (0.5, 1] shows that the expert’s sensitivity to taking risks while making a decision.
Step 5. The DMUs are ranked based on the arithmetic mean of efficiency scores.

5. Numerical example

In this example, we calculate the efficiency score of the All India Institute of Medical Sciences (AIIMS)
in India. The input parameters are the number of faculty in hundred, the number of departments, and the
number of beds in hundred, while the output parameters are outpatients in lacs and inpatients in thousand.
The single-value trapezoidal neutrosophic numbers (SVTrNNs) are used to represent the fuzzy input and
output data, as shown in Tables 2 and 3. The proposed crisp DEA model is feasible because the number
of inputs and outputs (3 + 2 = 5) is less than the number of DMUs (7).

Table 2. Inputs data of the AIIMS in India

AIIMS Faculty (in 100) Department Beds (in 100)
Bhopal ⟨0.54, 0.58, 0.63, 0.65; 0.7, 0.6, 0.4⟩ ⟨26, 26, 26, 26; 1, 0, 0⟩ ⟨2.6, 2.9, 3.1, 3.2; 0.6, 0.4, 0.6⟩
Bhubaneswar ⟨1.25, 1.28, 1.32, 1.35; 0.9, 0.2, 0.3⟩ ⟨41, 41, 41, 41; 1, 0, 0⟩ ⟨4.8, 5, 5.4, 5.6; 0.8, 0.5, 0.3⟩
Jodhpur ⟨0.98, 1.02, 1.05, 1.08; 0.8, 0.5, 0.4⟩ ⟨34, 34, 34, 34; 1, 0, 0⟩ ⟨3.2, 3.5, 3.9, 4.2; 0.9, 0.3, 0.2⟩
New Delhi ⟨6.5, 6.8, 7.2, 7.4; 0.8, 0.5, 0.2⟩ ⟨57, 57, 57, 57; 1, 0, 0⟩ ⟨23.4, 23.7, 23.8, 24.1; 0.7, 0.4, 0.7⟩
Patna ⟨1.34, 1.37, 1.39, 1.42; 0.9, 0.3, 0.3⟩ ⟨45, 45, 45, 45; 1, 0, 0⟩ ⟨8.9, 9.1, 9.3, 9.5; 0.2, 0.8, 0.6⟩
Raipur ⟨0.68, 0.71, 0.73, 0.76; 0.9, 0.5, 0.1⟩ ⟨26, 26, 26, 26; 1, 0, 0⟩ ⟨3.56, 3.6, 3.62, 3.64; 0.5, 0.8, 0.4⟩
Rishikesh ⟨0.89, 0.91, 0.93, 0.95; 0.8, 0.4, 0.6⟩ ⟨31, 31, 31, 31; 1, 0, 0⟩ ⟨6.5, 6.9, 7.1, 7.4; 0.8, 0.1, 0.7⟩
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Table 3. Outputs data of the AIIMS in India

AIIMS Outpatients (in lacs) Inpatients (in 1000)
Bhopal ⟨2.56, 2.59, 2.63, 2.69; 0.8, 0.5, 0.7⟩ ⟨3.14, 3.18, 3.21, 3.24; 0.8, 0.5, 0.3⟩
Bhubaneswar ⟨4.16, 4.21, 4.26, 4.28; 0.7, 0.6, 0.5⟩ ⟨15.25, 15.28, 15.32, 15.34; 0.9, 0.4, 0.1⟩
Jodhpur ⟨2.02, 2.08, 2.12, 2.15; 0.5, 0.8, 0.2⟩ ⟨9.14, 9.19, 9.2, 9.24; 0.8, 0.4, 0.3⟩
New Delhi ⟨41.34, 41.38, 41.4, 41.41; 0.9, 0.3, 0.3⟩ ⟨234, 234.1, 234.16, 234.2; 0.7, 0.2, 0.4⟩
Patna ⟨5.21, 5.26, 5.29, 5.31; 0.4, 0.5, 0.8⟩ ⟨18.4, 18.8, 19.1, 19.3; 0.7, 0.6, 0.7⟩
Raipur ⟨2.2, 2.24, 2.27, 2.31; 0.8, 0.4, 0.4⟩ ⟨6, 6.04, 6.1, 6.15; 0.7, 0.5, 0.6⟩
Rishikesh ⟨3.18, 3.25, 3.28, 3.3; 0.7, 0.3, 0.4⟩ ⟨6.95, 6.98, 7.04, 7.1; 0.6, 0.8, 0.3⟩

We have used the solution technique outlined in Section 4 to measure the efficiency of each AIIMS
in India. The mathematical model shown in Step 3 is employed in MATLAB R2013a to determine
the relative efficiency scores of the DMUs which were calculated and ranked the DMUs based on the
mean efficiency scores of the DMUs as shown in Table 4. Also, Table 4 shows how the risk parameter
λ ∈ [0, 1] influences the efficiency score of the DMUs. When λ = 0, AIIMS Delhi is more efficient
than other AIIMS. When λ = 0.5, AIIMS Delhi is more efficient than other AIIMS. When λ = 0.75,

AIIMS Delhi and AIIMS Bhopal are more efficient than other AIIMS, and when λ = 1, AIIMS Delhi
and AIIMS Patna are more efficient than other AIIMS. After analyzing the efficiency scores of AIIMS
in India (Table 4 and Figure 3), we find that AIIMS Delhi is fully efficient with an efficiency score of
1, whereas the efficiency scores of the other DMUs decrease in the following order: AIIMS Bhopal,
AIIMS Patna, AIIMS Raipur, AIIMS Bhubaneswar, AIIMS Rishikesh, and AIIMS Jodhpur. The mean
efficiency score of various risk levels is determined, and AIIMS Delhi is efficient, whereas other AIIMS
are inefficient. The trends of efficiency score changes with respect to risk parameter λ ∈ [0, 1] are shown
in Figure 4, which show how the efficiency score affects when the risk level changes from optimistic to
pessimistic level. The efficiency score of the three DMUs (AIIMS Bhubaneswar, AIIMS Rishikesh, and
AIIMS Jodhpur) decreases when the risk level changes from optimistic to pessimistic, while it increases
for AIIMS Patna, AIIMS Delhi performs constantly, and AIIMS Bhopal and AIIMS Raipur increase
from 0 to 0.75 after that efficiency score decreases.

Table 4. Efficiency score of the AIIMS in India

AIIMS λ Ranking Abdelfattah [2]0 0.25 0.5 0.75 1.0 Mean
Bhopal 0.6165 0.7166 0.8498 1 0.6839 0.77336 2 0.8387
Bhubaneswar 0.3905 0.396 0.4025 0.405 0.2729 0.37338 5 0.4846
Jodhpur 0.232 0.2136 0.1918 0.165 0.1083 0.18214 7 0.3269
AIIMS New Delhi 1 1 1 1 1 1 1 1
Patna 0.5476 0.6091 0.7164 0.9523 1 0.76508 3 0.5694
Raipur 0.5204 0.5823 0.6703 0.7871 0.5348 0.61898 4 0.4663
Rishikesh 0.4502 0.4238 0.3961 0.358 0.1304 0.3517 6 0.6471

The ranking function defined by Abdelfattah [2] for a SVTrNN X̂ = ⟨xL, xM1 , xM2 , xU ;ϕx, φx, ψx⟩,
is

R(X̂) =
xL + xU + 2(xM1 + xM2)

2
+ (ϕx − φx − ψx)

It is used to convert each SVTrNN input and output into an equivalent crisp input and output respectively.
The crisp input and output values are then employed in a traditional DEA model to calculate the relative
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Figure 3. Efficiency score of the AIIMS in India with different risk parameters

Figure 4. Efficiency score changes with optimistic to pessimistic decision

efficiency of the DMUs. This ranking method cannot be used directly to the neutrosophic constraints
to convert equivalent crisp constraints. However, the set of neutrosophic constraints is converted into
an equivalent set of crisp constraints through the possibilistic mean approach. Furthermore, the corre-
sponding crisp constraints associated with the risk parameter λ ∈ [0, 1], which expresses the attitude of
the decision-maker toward taking risks. In Table 4, the proposed approach and Abdelfattah’s ranking
approach [2] were used to determine the efficiency score of the DMUs. Also illustrates the relative ef-
ficiencies of all AIIMS in India at various risk levels as calculated by the suggested neutrosophic DEA
model. We compared in Figure 5, the mean efficiency score of the suggested approach with Abdelfattah’s
ranking approach [2].

6. Conclusion

The conventional DEA model evaluates the performance of the DMUs when input and output data are
accurately measured. It is a challenge to quantify inputs and outputs correctly since they are imprecise,
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unclear, partial, complicated, confusing, and occasionally linguistic. It is difficult to accomplish this in
a real-world investigation because data is often inaccurate or ambiguous. Therefore, it is necessary to
develop new approaches and ideas to handle this situation. A new theory, neutrosophic set theory, which
is an extension of FS and IFS theories, has recently emerged as a highly effective tool for achieving this
goal due to its ability to manage ambiguity as well as indeterminate and inconsistent data.

Figure 5. Comparison with Abdelfattah ranking approach citeabdelfattah2021neutrosophic

This article presented a novel technique for solving a neutrosophic data envelopment analysis model
with single-value trapezoidal neutrosophic inputs and outputs. This proposed approach converted the
Neu-DEA model into the corresponding crisp DEA model using the possibilistic mean. The suggested
DEA approach is unique in its capability to handle inputs and outputs easily and effectively in comparison
to the existing Neu-DEA approaches. The proposed technique has shown promising results in computing
and analyzing the performance of the DMUs. It is important to note that in this research discussion of
uncertainty, ambiguity, and indeterminacy only applies to single-valued trapezoidal neutrosophic num-
bers. The proposed method also takes into consideration the decision maker’s preference parameters or
risk attitude. This risk parameter reflects the decision-maker’s attitude toward taking risks. However, a
practical application is used in this work to show that the neutrosophic DEA model can handle real-world
applications by evaluating the efficiency of seven All-India Institutes of Medical Sciences (AIIMS) in In-
dia in a neutrosophic environment. The presented technique shows that AIIMS Delhi is efficient with
optimistic to pessimistic decisions, and the efficiency score of other AIIMS are shown in Table 4. The
proposed approach may be considered efficient and effective in the context of the finding.

The performance of each AIIMS in India is evaluated using a limited number of variables (inputs and
outputs). The primary limitation of the study is the increase in inputs and/or outputs, which may lead to
a different efficiency score. Future research is suggested in order to determine whether there are other
effective parameters that might be used to improve the performance of AIIMS in India. Also, one of the
fascinating areas for future research is when the inputs and outputs are not always homogeneous. This
proposed possibilistic mean approach will be solve several other DEA models, including BCC, SBM,
Additive, Super efficiency, and Undesirable DEA models, with impressive outcomes.



96 K. K. Mohanta et al.

Acknowledgement
The authors are thankful to the Editor-in-Chief and the reviewers for their insightful comments, which helped to improve the

quality of earlier versions of the article.

Funding
No external funding.

References

[1] Abdelfattah, W. Data envelopment analysis with neutrosophic inputs and outputs. Expert Systems 36, 6 (2019), e12453.
[2] Abdelfattah, W. Neutrosophic data envelopment analysis: An application to regional hospitals in Tunisia. Neutrosophic Sets and

Systems 41 (2021), 89–105.
[3] Ai, N., Kjerland, M., Klein-Banai, C., and Theis, T. L. Sustainability assessment of universities as small-scale urban

systems: A comparative analysis using Fisher Information and Data Envelopment Analysis. Journal of Cleaner Production 212 (2019),
1357–1367.

[4] Akram, M., Shah, S. M. U., Al-Shamiri, M. M. A., and Edalatpanah, S. A. Extended DEA method for solving
multi-objective transportation problem with Fermatean fuzzy sets. AIMS Mathematics 8, 1 (2023), 924–961.

[5] Arya, A., and Yadav, S. P. Development of intuitionistic fuzzy data envelopment analysis models and intuitionistic fuzzy
input–output targets. Soft Computing 23, 18 (2019), 8975–8993.

[6] Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 1 (1986), 87–96.
[7] Ayele, E. T., Thillaigovindan, N., Guta, B., and Smarandache, F. A two stage interval valued neutrosophic soft

set traffic signal control model for a four way isolated signalized intersections, Neutrosophic Sets and Systems 38, 1 (2020), 543–575.
[8] Banker, R. D., Charnes, A., and Cooper, W. W. Some models for estimating technical and scale inefficiencies in data

envelopment analysis. Management science 30, 9 (1984), 1078–1092.
[9] Bhatia, T. K., Kumar, A., Sharma, M. K., and Appadoo, S. S. Mehar approach to solve neutrosophic linear program-

ming problems using possibilistic mean. Soft Computing 26 (2022), 8479–8495.
[10] Charnes, A., Cooper, W. W., and Rhodes, E. Measuring the efficiency of decision making units. European Journal of

Operational Research 2, 6 (1978), 429–444.
[11] Chaubey, V., Sharanappa, D. S., Mohanta, K. K., Mishra, V. N., and Mishra, L. N. Efficiency and productivity

analysis of the Indian agriculture sector based on the Malmquist-DEA technique. Universal Journal of Agricultural Research 10, 4
(2022), 331–343.

[12] Deli, I., and Şubaş, Y. A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision
making problems. International Journal of Machine Learning and Cybernetics 8, 4 (2017), 1309–1322.

[13] Edalatpanah, S. A. Data envelopment analysis based on triangular neutrosophic numbers. CAAI Transactions on Intelligence
Technology 5, 2 (2020), 94–98.

[14] Edalatpanah, S. A., and Smarandache, F. Data envelopment analysis for simplified neutrosophic sets. Neutrosophic Sets
and Systems 29, 1 (2019), 214–226.

[15] Edalatpanah, S. A. Neutrosophic perspective on DEA. Journal of Applied Research on Industrial Engineering 5, 4 (2018),
339–345.

[16] Edalatpanah, S. A. A data envelopment analysis model with triangular intuitionistic fuzzy numbers. International Journal of
Data Envelopment Analysis 7, 4 (2019), 47–58.

[17] Emrouznejad, A., Tavana, M., and Hatami-Marbini, A. The state of the art in fuzzy data envelopment analysis. In
Performance measurement with fuzzy data envelopment analysis, A. Emrouznejad and M. Tavana, Eds., Springer, Berlin, 2014,
pp. 1–45.

[18] Farrell, M. J. The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General) 120, 3
(1957), 253–281.

[19] Fernández, D., Pozo, C., Folgado, R., Jiménez, L., and Guillén-Gosálbez, G. Productivity and energy efficiency
assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index. Applied energy 212 (2018),
1563–1577.

[20] Gandotra, N., Bajaj, R. K., and Gupta, N. Sorting of decision making units in data envelopment analysis with intuitionistic
fuzzy weighted entropy. In Advances in Computer Science, Engineering & Applications, D. Wyld, J. Zizka and D. Nagamalai, Eds.,
Springer, Berlin, 2012, pp. 567–576.

[21] Garg, H. Garg, H. Decision-making With Neutrosophic Set: Theory and Applications in Knowledge Management. Computational
Mathematics and Analysis series, Nova Science Publishers, New York 2021.

[22] Hahn, G. J., Brandenburg, M., and Becker, J. Valuing supply chain performance within and across manufacturing
industries: A DEA-based approach. International Journal of Production Economics 240 (2021), 108203.

[23] Hatami-Marbini, A., Emrouznejad, A., and Tavana, M. A taxonomy and review of the fuzzy data envelopment analysis
literature: two decades in the making. European Journal of Operational Research 214, 3 (2011), 457–472.



Neutrosophic data envelopment analysis. . . 97

[24] Jaberi Hafshjani, M., Najafi, S. E., Hosseinzadeh Lotfi, F., and Hajimolana, S. M. A hybrid BSC-DEA model
with indeterminate information. Journal of Mathematics 2021 (2021), 8867135.

[25] Javaherian, N., Hamzehee, A., and Sayyadi Tooranloo, H. Designing an intuitionistic fuzzy network data envelopment
analysis model for efficiency evaluation of decision-making units with two-stage structures. Advances in Fuzzy Systems 2021 (2021),
8860634.

[26] Kaffash, S., Azizi, R., Huang, Y., and Zhu, J. A survey of data envelopment analysis applications in the insurance industry
1993–2018. European Journal of Operational Research 284, 3 (2020), 801–813.

[27] Kahraman, C., and Otay, İ. Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Springer, Cham, 2019.
[28] Kahraman, C., Otay, İ., Öztayşi, B., and Onar, S. Ç. An integrated AHP & DEA methodology with neutrosophic sets.

In Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Springer, Cham, 2019, pp. 623–645.
[29] Khalifa, N. E. M., Smarandache, F., Manogaran, G., and Loey, M. A study of the neutrosophic set significance on

deep transfer learning models: An experimental case on a limited Covid-19 chest X-ray dataset. Cognitive Computation (2021), 1–10.
[30] Khan, Z., Gulistan, M., Kausar, N., and Park, C. Neutrosophic rayleigh model with some basic characteristics and

engineering applications. IEEE Access 9 (2021), 71277–71283.
[31] Kohl, S., Schoenfelder, J., Fügener, A., and Brunner, J. O. The use of data envelopment analysis (DEA) in

healthcare with a focus on hospitals. Health Care Management Science 22, 2 (2019), 245–286.
[32] Lee, Y. J., Joo, S.-J., and Park, H. G. An application of data envelopment analysis for Korean banks with negative data.

Benchmarking: An International Journal 24, 4 (2017), 1052–1064.
[33] Liu, H.-H., Huang, J.-J., and Chiu, Y.-H. Integration of network data envelopment analysis and decision-making trial

and evaluation laboratory for the performance evaluation of the financial holding companies in Taiwan. Managerial and Decision
Economics 41, 1 (2020), 64–78.

[34] Mao, X., Guoxi, Z., Fallah, M., and Edalatpanah, S. A. A neutrosophic-based approach in data envelopment analysis
with undesirable outputs. Mathematical Problems in Engineering 2020 (2020), 626102.

[35] Mohanta, K. K., Chaubey, V., Sharanappa, D. S., and Mishra, V. N. A modified novel method for solving the
uncertainty linear programming problems based on triangular neutrosophic number. Transactions on Fuzzy Sets and Systems 1, 1
(2022), 155–169.

[36] Mohanta, K. K., and Sharanappa, D. S. The spherical fuzzy data envelopment analysis (SF-DEA): A novel approach for
efficiency analysis. In Book of Abstracts of the 2nd International Conference on Applied Mathmatics and Computational Sciences
(ICAMCS-2022), S. Yadav, F. Singh and J. Kumar, Eds., AIJR, 2022, p. 52.

[37] Mohanta, K. K., Sharanappa, D. S., and Aggarwal, A. Efficiency analysis in the management of Covid-19 pandemic
in India based on data envelopment analysis. Current Research in Behavioral Sciences 2 (2021), 100063.

[38] Mohanta, K. K., Sharanappa, D. S., Dabke, D., Mishra, L. N., and Mishra, V. N. Data envelopment analysis
in the context of spherical fuzzy inputs and outputs. European Journal of Pure and Applied Mathematics 15, 3 (2022), 1158–1179.

[39] Moncayo-Martínez, L. A., Ramírez-Nafarrate, A., and Hernández-Balderrama, M. G. Evaluation of public
HEI on teaching, research, and knowledge dissemination by Data Envelopment Analysis. Socio-Economic Planning Sciences 69
(2020), 100718.

[40] Montazeri, F. Z. An overview of data envelopment analysis models in fuzzy stochastic environments. Journal of Fuzzy Extension
and Applications 1, 4 (2020), 272–278.

[41] Öztaş, G. Z., Adalı, E. A., Tuş, A., Öztaş, T., and Özçil, A. An alternative approach for performance evaluation:
Plithogenic sets and DEA. In Intelligent and fuzzy techniques: Smart and innovative solutions. Proceedings of the INFUS 2020
Conference, Istanbul, Turkey, July 21-23, 2020), C. Kahraman, S. Cevik Onar, B. Oztaysi, I. Sari, S. Cebi, and A. Tolga, Eds.,
vol. 1197 of the Advances in Intelligent Systems and Computing, series, Springer, Cham, 2020, pp. 742–749.

[42] Peykani, P., Mohammadi, E., Saen, R. F., Sadjadi, S. J., and Rostamy-Malkhalifeh, M. Data envelopment
analysis and robust optimization: A review. Expert Systems 37, 4 (2020), e12534.

[43] Puri, J., and Yadav, S. P. Intuitionistic fuzzy data envelopment analysis: An application to the banking sector in India. Expert
Systems with Applications 42, 11 (2015), 4982–4998.

[44] Sahil, M. A., Kaushal, M., and Lohani, Q. M. D. Parabolic intuitionistic fuzzy based data envelopment analysis. In 2021
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), (Luxembourg, 2021), IEEE, pp. 1–8.

[45] Santos Arteaga, F. J., Ebrahimnejad, A., and Zabihi, A. A new approach for solving intuitionistic fuzzy data envel-
opment analysis problems. Fuzzy Optimization and Modeling Journal 2, 2 (2021), 46–57.

[46] Sengupta, J. K. A fuzzy systems approach in data envelopment analysis. Computers & Mathematics with Applications 24, 8-9
(1992), 259–266.

[47] Shakouri, B., Abbasi Shureshjani, R., Daneshian, B., and Hosseinzadeh Lotfi, F. A parametric method for rank-
ing intuitionistic fuzzy numbers and its application to solve intuitionistic fuzzy network data envelopment analysis models. Complexity
2020 (2020), 6408613.

[48] Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability.
American Research Press, Rehoboth, 1999.

[49] Tapia, J. F. D. Evaluating negative emissions technologies using neutrosophic data envelopment analysis. Journal of Cleaner
Production 286 (2021), 125494.

[50] Ucal Sari, I., and Ak, U. Machine efficiency measurement in industry 4.0 using fuzzy data envelopment analysis. Journal of
Fuzzy Extension and Applications 3, 2 (2022), 177–191.



98 K. K. Mohanta et al.

[51] Yang, W., Cai, L., Edalatpanah, S. A., and Smarandache, F. Triangular single valued neutrosophic data envelopment
analysis: application to hospital performance measurement. Symmetry 12, 4 (2020), 588.

[52] Zadeh, L. A. Fuzzy sets. Information and Control 8, 3 (1965), 338–353.
[53] Zhou, W., and Xu, Z. An overview of the fuzzy data envelopment analysis research and its successful applications. International

Journal of Fuzzy Systems 22, 4 (2020), 1037–1055.


	Introduction
	Preliminary
	Neutrosophic data envelopment analysis (Neu-DEA)
	Method for solving neutrosophic DEA (Neu-DEA) model
	Numerical example
	Conclusion

