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Abstract

The paper is aimed to investigate the reliability metrics of a multi-unit fault-tolerant control (FTC) system wherein the units
are subject to failure and those are repairable by two heterogeneous servers. Server 1 remains permanently available for
essential service of failed units, whereas server 2 goes on vacation and renders service based on the N -policy threshold,
which may also provide optional and essential services. Server 1 may break down at a steady rate during its servicing period
but immediately gets repaired and resume servicing the failed units. When the working unit fails, the available warm standby
unit holds responsibility for the smooth operation of the system. The transition of standby units to operational mode may be
unsuccessful with switching failure probability. We develop a Markovian model to obtain the steady-state probabilities. We
explore computational and sensitivity analysis of different performance measures for various variability of the parameters.
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1. Introduction

Many researchers developed new design approaches and fault control techniques for better system relia-
bility and availability from time to time. Fault-tolerant control (FTC) systems are very crucial in many
life-basic applications such as power plants, flight control frameworks, telecommunication, manufactur-
ing, space applications, and so on. The modern FTC complex system has been developed with tolerance
capabilities and fault accommodation. The presence of faults can disturb the functionality of the system or
sometimes destroy the whole system. The fault-tolerant computing system has the ability that preserves
the continuity of operation without interruption in the presence of one or more faults [6, 18]. Hence the
design of fault-tolerant control (FTC) systems is necessarily validated from the reliability perspective.
The reliability of FTC systems with various parameters has been investigated by many researchers. In
a repairable system, warm standby provisioning is taken as a significant part of improving the quality and
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accessibility. In most of the FTC systems with warm standby provisioning, the exchange of standbys in
a working state is prevalent. The process of switching from standby to operating mode may be unsuc-
cessful after a period of time. Such imperfect switching of standby units needs to be analyzed in the FTC
system to make it adaptable [15, 16].

FTC systems with server vacation should be effectively quantified for finding/maintaining the relia-
bility and other performance indices of dependability. The term “server vacation" refers to a period of
time when a server is not available for service for a random period of time [19]. The idea of threshold
N -policy vacation is utilization in the reliability and machine repair problems for maximum utilization
of the server properly. In N -policy, when N or more than N failed units are gathered in the system, the
subsequent server turns on, and when there is no failed unit in the system, the server turns off and it may
go for vacation [2]. It is expected that the server is consistently accessible in the system on a regular basis
to provide the service to failed units and the system never fails. In any FTC system, service interruption
due to server failure may happen which can show a direct impact on desired system performance as well
as in reaching the intended output. Many researchers looked into the repairable service system, in which
the server may break down. Choudhary and Tadj [4] discussed a repairable system with two phases of the
server when it is subjected to server breakdown. The servers are set up to provide two types of services:
essential and optional. After the completion of the first essential service, an optional service is provided
to the units. Optional services reflect a significant impact in increasing the system’s performance. Jain
and Chauhan [11] discussed the repairable Markovian model with optional service assistance whereas
the bulk arrival queuing system with optional services has been suggested by Singh et al. [20]. In this
context, the reliability estimation for the machining system under the server vacation threshold rule with
essential and optional service has been discussed by Gupta and Agrawal [7].

We present some notable contributions in the direction of real-time systems from a reliability view-
point with concepts of imperfect switching, N -policy, and server breakdown. Choudhary and Tadj [4]
discussed a repairable system with two phases of the server when it is subjected to server breakdown.
Wang and Chen [21] examined the reliability metrics of three frameworks with general service time, re-
boot delay, and switching failure. A reliability perspective quality investigation of FTC framework on
automated airborne vehicles has been done by Hu and Seiler [9]. Yang and Wu [24] discussed a working
vacation repairable system with server breakdown for minimizing the cost. Jain et al. [14] investigated
N -policy-based time-shared repairable system with mixed spares, whereas Jain and Jain [10] studied
the multiple server repairable system with inconsistent server and two kinds of spares. He et al. [8]
discussed a multi-component system with N -policy and vacation. Some new investigations have also
been discussed on the reliability forecast with N -policy by Jain and Gupta [12]. Jain and Meena [13]
developed a Markov mathematical model for a repairable system with two heterogeneous servers where
recovery of units follows some threshold rule. Chen et al. [3] assessed aeronautics system reliability
measures with imperfect fault coverage. Wu and Yang [23] and Fang et al. [5] discussed the reliability
of the repairable system with switching failure subject to an unreliable repairman.

From the literature survey, it is evident that very few research articles have been published on the
performance analysis of production and manufacturing systems with server breakdown, multiple types
of spare provisioning, and essential and optional services under the N -policy threshold for server vaca-
tioning. From the best knowledge of the authors, it is related that a research gap in the area of reliability
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modeling of fault-tolerant control systems with switching failure, server interruption, and the option of
essential/optional services. Performance modeling of the FTC system under the assumptions of switch-
ing failure rate, vacation rate, operational and standby units failure and service rates, breakdown and
service rate of servers have a wide range of applications. We are motivated to investigate various relia-
bility indices of the FTC system. A clear comparison of notable features used in recent-past studies with
the proposed study is given in Table 1.

Table 1. Special features used in the proposed model different from the other relevant works

Authors
Threshold

policy
Standbys
/spares

Vacation
/sorking vacation Breakdown

Optional
service

Jain et al. [14] ✓ ✓ × ✓ ×
Jain and Meena [13] ✓ ✓ ✓ × ×
He et al. [8] ✓ × ✓ × ×
Singh et al. [20] × × × ✓ ✓
Yen et al. [26] ✓ × ✓ ✓ ✓
Yang and Wu [25] × ✓ ✓ ✓ ×
Kumar et al. [17] ✓ ✓ ✓ × ×
Wang et al. [22] × ✓ × ✓ ×
Proposed model ✓ ✓ ✓ ✓ ✓

In the present investigation, we are concerned with Markov analysis of fault-tolerant control system
(FTC) by developing a machine repair model with two heterogeneous servers and provision of k-types
warm standby units. To explore the performance metrics of the FTC system with k-types warm standby
support by incorporating realistic assumptions, a Markov model in the general setup can be framed. We
investigate the reliability, mean time to system failure, and sensitivity check of an FTC system.

We refer to a fault-tolerant process control system that is responsible for controlling, monitoring,
and documenting production/manufacturing processes (cf. [1]). The systematic diagram for a fault-
tolerant process control system is given in Figure 1. The system comprises operating hardware units
(Racks, CPUs, synchronization cables and modules, communication processors) along with their redun-
dant copies that simultaneously participate in the control tasks. These hardware operating units are highly
fault tolerant. However, service unavailability of any unit is a possible case for a period of time due to
processor speed, network bandwidth, and improper switching from failed to standby component, server
vibration, improper connections. Hence the system components must be repaired on a regular basis. The
fault-tolerant control system enables one to configure two maintenance supervisors (server 1 and server 2)
redundantly for fault-tolerant operations which ensures process monitoring, controlling, and fault repair-
ing at all times (essential tasks/service). Server 1 is subject to the process error at any point during its
functioning (server breakdown). In order to ensure high availability of service, broken down server 1
is immediately sent to the repair facility to check and repair it instantly. In the real-time fault-tolerant
process control system, when some components are detected as failed during the vacation period of the
supervisor (server 2), it may join as soon as possible to service the failed component in the system. The
supervisor (server 2) is also responsible to monitor and control the environmental noise like a magnetic
field in actuators and sensors (optional services).

The remainder of this paper is organized as follows. In Section 2, we discuss the complete model
description with the help of a state transition diagram. The system state transition equations are pre-
sented in Section 3. In Section 4, we present the analysis of system governing equations by employing a
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matrix approach. In Section 5, we discuss some performance estimates. Mathematical outcomes under
numerical simulation are given in Section 6. Finally, Section 7 contains the conclusion of the complete
work.

2. Model description

In this section, we develop a multi-unit Markovian model for the fault-tolerant control system in which the
units are subject to failures and two servers are helpful to repair the failed units. The units may demand
two types of services, namely essential and optional. We assume total (M +S) units of FTC system which
is composed of M identical operating units and S warm standby units with two heterogeneous servers
– 1 and 2. Following are the notations and assumptions which we have used for modeling purposes.

2.1. Notations and assumptions

• The S warm standbys are supposed to be of k types such that S =
k∑

j=1

Sj , which are different as per

different failure rates. The lifetimes of M operating units and jth (j = 1, 2, . . . , k) type standby
units are exponentially distributed. The failure rates of units are state-dependent and units may also
fail due to common cause failure.

• The failure rate of jth type standby unit is higher than that of the (j + 1)th type standby unit, i.e.,
αj ≥ αj+1. When an operating unit fails, it is immediately replaced by a warm standby unit which
has a higher failure rate.

• For a normal functioning of the system, M operational units are required and units operate simulta-
neously in parallel. When all the warm standby units are exhausted and when there are less than M

but more than m operating units, the system still works in a degraded mode. The system fails when
L or more than L units fail in the system, where L = M + S −m+ 1 (1 < m < M).

• When the failed units are gathered in the system, server 1 becomes available to service them in
normal busy periods, but there may be the possibility of server interruption in servicing process.
Hence, server 1 may be broken down.

• The lifetime and service time of server 1 during his breakdown period are exponentially distributed
with rates α and β, respectively.

• In a normal busy period, initially server 2 is unavailable for servicing the failed units as he can go
on vacation for a random period of time. But server 2 returns from vacation to a normal busy state
only when there are N or more failed units accumulated in the system as per the N -policy rule, and
then both servers 1 and 2 become available to repair the failed units as an essential service. The
vacation time of server 2 is assumed to follow an exponential distribution.

• Only server 2 is responsible for performing optional service on demand for servicing failed units
with probability p = 1 − p. If there is no demand/requirement for units, units will be serviced by
probability p.

• The switch-over times of the units from standby to operational state is instantaneous.
• We assume automatic switching of standby units in operating state is imperfect.
• The service times of both servers 1 and 2 are exponentially distributed.
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Figure 1. Schematic diagram of fault-tolerant process control system

M – identical operating units
S – warm standby units
Sj – jth type warm standby/spares unit, j = 1, 2 . . . , k
λ – failure rate of operating unit
αj – failure rate of jth type standby unit
λc – common cause failure rate
λd – degraded failure rate
α – server 1 breakdown rate
β – server 1 recovery (repair) rate
N – threshold parameter of server 2 when it returns from vacation
θ – server 2 vacation return rate
q – standby switching failure probability
µ1 – service rate of server 1
µ2 – service rate of server 2 for essential service
µ′
2 – service rate of server 2 for optional service

Pn, 0(t) – probability when there are n (0 ≤ n ≤ L) failed units in the system at time t
and server 1, is available for essential service while server 2 is on vacation

Pn, 1(t) – probability when there are n (0 ≤ n ≤ L) failed units in the system at time t
and server 1 is in a broken down state and server 2 is not available

Pn,2(t) – probability when there are n (N ≤ n ≤ L) failed units in the system at time t
and essential service is being rendered by server 1 and server 2

Pn,3(t) – probability when there is n (N ≤ n ≤ L) failed units in the system at time t
and only server 2 is available for optional service to the failed units
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We consider bivariate Markov process η(t) = {(χ(t), ξ(t), t ≥ 0} to develop the Markov model. Here
χ(t) denotes the number of failed units in the system at time t and ξ(t) denotes the state of the server at
time t, respectively,

where

ξ(t) =


0, server 1 is available for essential service and server 2 is on vacation

1, only server 1 is in breakdown state, server 2 is not available

2, both servers 1 and 2 are available for essential service

3, only server 2 is available for optional service

The transition failure rate in the system can be given as:

λn =



Mλ+ (S(1) − n)α1 +
k∑

i=2

Siαi + λc, 0 ≤ n ≤ S(1)

Mλ+ (S(l) − n)αl +
k∑

i=l+1

Siαi + λc, S(l−1) ≤ n ≤ S(l), l = 2, 3, . . . , k

(M + S − n)λd, S(k) ≤ n ≤ M + S(k) −m = L− 1

0, otherwise

where S(l) =
l∑

j=1

Sj .

3. System state transition equations

In this section, we build the transient difference differential equations for the Markov model of the fault-
tolerant control system by utilizing the birth-death process (see Figure 2), which are mentioned below
for different levels.

Case 1. Server 1 is available for essential service and server 2 is on vacation, ξ(t) = 0, 0 ≤ n ≤ L

P ′
0, 0(t) = −(λ0 +Mλq + α)P0, 0(t) + µ1P1, 0(t) + βP0, 1(t) (1)

P ′
1, 0(t) = −(λ1 + µ1 +Mλq + α)P1, 0(t) + λ0P0, 0(t) + µ1P2, 0(t) + β (2)

P ′
n, 0(t) =− (λn + µ1 +Mλq+α)Pn, 0(t) + λn−1Pn−1, 0(t) + µ1Pn+1, 0(t)

+
n−2∑
r=0

Mλqn−r−1(1− q)Pr, 0(t) + βPn, 1(t), 2 ≤ n ≤ N − 2
(3)

P ′
N−1, 0(t) = −(λN−1 + µ1 +Mλq + α)PN−1, 0(t) + λN−2PN−2, 0(t) + µ1Pn, 0(t)

+
N−3∑
r=0

MλqN−r−2(1− q)Pr, 0(t) + (µ1+pµ2)Pn, 2(t) + µ′
2Pn, 3(t) + βPN−1, 1(t)

(4)
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P ′
n, 0(t) = −(λn + µ1 + θ +Mλq + α)Pn, 0(t) + λn−1Pn−1, 0(t) + µ1Pn+1, 0(t)

+
n−2∑
r=0

Mλqn−r−1(1− q)Pr, 0(t) + βPn, 1(t), N ≤ n ≤ S(k) − 1
(5)

P ′
S(k), 0(t) = − (λS(k) + µ1 + θ + α)PS(k), 0(t) + λS(k)−1PS(k)−1, 0(t) + µ1PS(k)+1, 0(t)

+
S(k)−2∑
r=0

MλqS
(k)−r−1(1− q)Pr, 0(t) + βPS(k), 1(t)

(6)

P ′
S(k)+1, 0(t) = −(λS(k)+1 + µ1 + θ + α)PS(k)+1, 0(t) + λS(k)PS(k), 0(t) + µ1PS(k)+2, 0(t)

+
S(k)−1∑
r=0

MλqS
(k)−rPr, 0(t) + βPS(k)+1, 1(t)

(7)

P ′
n, 0(t) = −(λn + µ1 + θ + α)Pn, 0(t) + λn−1Pn−1, 0(t)

+µ1Pn+1, 0(t) + βPn, 1(t), S
(k)+2 ≤ n ≤ L− 2

(8)

P ′
L−1, 0(t) = −(λL−1 + µ1 + θ + α)PL−1, 0(t) + λL−2PL−2, 0(t) + βPL−1, 1(t) (9)

P ′
L, 0(t) = λL−1PL−1, 0(t) (10)

Case 2. Only server 1 is in a breakdown state, server 2 is not available, ξ(t) = 1, 0 ≤ n ≤ L

P ′
0, 1(t) = −(λ0 +Mλq+β)P0, 1(t) + αP0, 0(t) (11)

P ′
1, 1(t) = −(λ1 +Mλq+β)P1, 1(t) + λ0P0, 1(t) + αP1, 0(t) (12)

P ′
n, 1(t) = −(λn +Mλq+β)Pn, 1(t) + λn−1Pn−1, 1(t)

+
n−2∑
r=0

Mλqn−r−1(1− q)Pr, 1(t) + αPn, 0(t), 2 ≤ N ≤ S(k) − 1
(13)

P ′
S(k), 1(t) = −(λS(k) + β)PS(k), 1(t)+λS(k)−1PS(k)−1, 1(t)

+
S(k)−2∑
r=0

MλqS
(k)−r−1(1− q)Pr, 1(t) + αPS(k), 0(t)

(14)

P ′
S(k)+1, 1(t) = −(λS(k)+1 + β)PS(k)+1, 1(t) + λS(k)PS(k), 1(t)

+
S(k)−1∑
r=0

MλqS
(k)−rPr, 1(t) + αPS(k)+1, 0(t)

(15)

P ′
n, 1(t) = −(λn + β)Pn, 1(t) + λn−1Pn−1, 1(t) + αPn, 0(t), S(k)+2 ≤ n ≤ L− 1 (16)

P ′
L, 1(t) = λL−1PL−1, 1(t) (17)

Case 3. Both server 1 and server 2 are available for essential service, ξ(t) = 2, N ≤ n ≤ L

P ′
n, 2(t) = −(λN + µ1 + µ2 +Mλq)Pn, 2(t) + θPn, 0(t) + µ′

2PN+1, 3(t) + (µ1+pµ2)PN+1, 2(t), (18)
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Figure 2. State transition diagram
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P ′
N+1, 2(t) = −(λN+1 + µ1 + µ2 +Mλq)PN+1, 2(t) + θPN+1, 0(t) + µ′

2PN+2, 3(t)

+(µ1+pµ2)PN+2,2(t) + λNPn, 2(t)
(19)

P ′
n, 2(t) = −(λn + µ1 + µ2 +Mλq)Pn, 2(t) + θPn, 0(t) + µ′

2Pn+1, 3(t) + (µ1+pµ2)Pn+1, 2(t)

+λn−1Pn−1, 2(t) +
n−2∑
r=N

Mλqn−r−1 (1− q)Pr,2(t), N + 2 ≤ n ≤ S(k) − 1
(20)

P ′
S(k),2(t) = −(λS(k) + µ1 + µ2)PS(k),2(t) + θPS(k), 0(t) + µ′

2PS(k)+1, 3(t)

+(µ1+pµ2)PS(k)+1, 2(t) + λS(k)−1PS(k)−1, 2(t) +
S(k)−2∑
r=N

MλqS
(k)−r−1(1− q)Pr,2(t)

(21)

P ′
S(k)+1, 2(t) = −(λS(k)+1 + µ1 + µ2)PS(k)+1, 2(t) + θPS(k)+1, 0(t) + µ′

2PS(k)+2, 3(t)

+(µ1+pµ2)PS(k)+2,2(t) + λS(k)PS(k),2(t) +
S(k)−1∑
r=N

MλqS
(k)−rPr,2(t)

(22)

P ′
n, 2(t) = −(λn + µ1 + µ2)Pn, 2(t) + θPn, 0(t) + µ′

2Pn+1, 3(t) + (µ1+pµ2)Pn+1, 2(t)

+λn−1Pn−1, 2(t), S(k)+2 ≤ n ≤ L− 2
(23)

P ′
L−1, 2(t) = −(λL−1 + µ1 + µ2)PL−1, 2(t) + θPL−1, 0(t) + λL−2PL−2,2(t) (24)

P ′
L,2(t) = λL−1PL−1, 2(t) (25)

Case 4. Only server 2 is available for optional service, ξ(t) = 3, N ≤ n ≤ L

P ′
n, 3(t) = − (λN + µ′

2 +Mλq)Pn, 3(t) + pµ2Pn, 2(t) (26)

P ′
N+1, 3(t) = − (λN+1 + µ′

2 +Mλq)PN+1, 3(t) + λNP(n, 3)(t) + pµ2PN+1, 2(t) (27)

P ′
n, 3(t) = −(λn + µ′

2 +Mλq)Pn, 3(t) + λn−1Pn−1, 3(t) + pµ2Pn, 2(t)

+
n−2∑
r=N

Mλqn−r−1 (1− q)Pr,3(t), N + 2 ≤ n ≤ S(K) − 1
(28)

P ′
S(k),3(t) = − (λS(k) + µ′

2)PS(k),3(t) + λS(k)−1PS(k)−1, 3(t) + pµ2PS(k),2(t)

+
S(k)−2∑
r=N

MλqS
(k)−r−1 ( 1− q)Pr,3(t)

(29)

P ′
S(k)+1, 3(t) = − (λS(k)+1 + µ′

2)PS(k)+1,3(t) + λS(k)PS(k),3(t) + pµ2PS(k)+1, 2(t)

+
S(k)−1∑
r=N

MλqS
(k)−rPr,3(t)

(30)

P ′
n, 3(t) = − (λn + µ′

2)Pn, 3(t) + λn−1Pn−1, 3(t) + pµ2Pn, 2(t), S
(k)+2 ≤ n ≤ L− 1 (31)

P ′
L,3(t) = λL−1PL−1, 3(t). (32)
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4. The analysis

The concept of matrix analytic approach can be used to evaluate equations (1)–(32). For the solution
purpose, we introduce the Laplace transform of Pi,ξ(t)(t) as

P ∗
i,ξ(t)(s) =

∫ ∞

0

e−stPi,ξ(t)(t)dt, s ≥ 0 (33)

We assume that all units are in a good state initially so that P0, 0(0) = 1, Pn, 0(0) = 0, when 1 ≤ n ≤ L

and Pn, 1(0) = Pn, 2(0) = Pn, 3(0) = 0 when 0 ≤ n ≤ L.
Expressing equations (1)–(32) in matrix notations as

D(s)P ∗(s)= P (0) (34)

where D(s) denotes the transition rate matrix of order (4(L + 1) − 2N) × (4(L + 1) − 2N) it may be
given as

D(s) =

[
M11 M12

M21 M22

]
(35)

and its submatrices M11, M12, M21, M22 one can find in appendix A,

P ∗(s) =


P ∗
0, 0(s), P

∗
1, 0(s), . . . , P

∗
n, 0(s), P

∗
N+1, 0(s), . . . , P

∗
Sk, 0

(s), P ∗
S(k)+1, 0

(s), . . . , P ∗
L, 0(s),

P ∗
0, 1(s), P

∗
1, 1(s), . . . , P

∗
n, 1(s), P

∗
N+1, 1(s), . . . , P

∗
S(k), 1

(s), P ∗
S(k)+1, 1

(s), . . . , P ∗
L, 1(s),

P ∗
n, 2(s), P

∗
N+1, 2(s), . . . , P

∗
S(k),2

(s), P ∗
S(k)+1, 2

(s), . . . , P ∗
L,2(s),

P ∗
n, 3(s), P

∗
N+1, 3(s), . . . , P

∗
S(k),3

(s), P ∗
S(k)+1, 3

(s), . . . , P ∗
L,3(s)



T

and
P (0) = {1, 0, 0, . . . , 0}T

Now we present Cramer’s rule to solve equation (34) and obtain an explicit expression for the last
element of column vector P ∗

i,ξ(t)(s) as

P ∗
i, ξ(t)(s) =

det[Di+1(s)]

det[D(s)]
, ξ(t) = 0, 1, 2, 3 (36)

Here, det[D(s)] is the determinant of matrix D(s), and the determinant det[Di+1(s)] is obtained by
replacing (L+ i+ 1−N − 1)th column in matrix D(s) by initial vector P (0) = {1, 0, 0, . . . , 0}T .

Now, we compute the characteristic roots of matrix D(s), s = 0 is clearly a root of det[D(s)] = 0.
When we substitute s = −r, we obtain

D(−r) = D − rI

Here, identity matrix I and D = D(0) are matrix of (4(L+ 1)− 2N)× (4(L+ 1)− 2N) order.
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Thus equation (34) becomes

D(−r)P ∗(s) = (D − rI)P ∗(s) = P (0) (37)

To find the distinct eigenvalues rf(f ̸= 0) which may be real or complex. We set the determinant of
matrix (D − rI) = 0 and f = 1, 2, . . . , (4(L+ 1)− 2N).

We assume that there are g distinct real eigenvalues (with zero), say r1, r2, . . . , rg and h pairs of
distinct complex conjugate eigenvalues, say (rg+1, rg+1), (rg+2, rg+2), . . . , (rg+h, rg+h) where g and h

satisfy g+2h = 4(L+ 1)−2N . It is noticed that h = 0 represents all eigenvalues that are real and g = 0

denotes all eigenvalues (exclude zero) are complex.
Then, we evaluate det[DL−i+1(s)]. Then we substitute the values of det[DL−i+1(s)] and det[D(s)] in

equation (36)

P ∗
i,ξ(t)(s) =

bi, 1
s+r1

+
bi,g
s+rg

+
(ci, 1) s+ di, 1

s2 + (rg+1 + rg+1) s+(rg+1.rg+1)
+ . . .

+
(ci,h) s+ di,h

s2 + (rg+h + rg+h) s+(rg+h.rg+h)
, i = 0, 1, . . ., L

(38)

where bi, 1, . . . , bi,g, ci, 1, . . . , ci,h, di, 1, . . . , di,h are unknown real numbers.
Let us consider uf and vf are real and imaginary parts of h pairs of distinct complex conjugate eigen-

values. By taking inverse Laplace transform of equation (38), we get explicit expressions of Pi,ξ(t)(t)

given by

Pi,ξ(t)(t) =

g∑
f=1

bi,fe
−uf t

+
h∑

f=1

(
ci,fe

−uf tcos (vf t) +
di,f − ci,fuf

vf
e−uf t sin (vf t)

)
, i = 0, 1, . . . , L

(39)

5. Performance measures

In this section, we establish various performance measures to check the operational efficiency of the fault-
tolerant control system and to know which parameter will be helpful to enhance it even in the presence of
server breakdown, and standby switching failures wherein the server remains on vacation for a random
time period.

• Expected number of failed units in the system

Ef (t) =
L∑
i=1

iPi, 0(t) +
L∑
i=1

iPi, 1(t)+
L∑

i=N

iPi, 2(t)+
L∑

i=N

iPi, 3(t)
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• Expected number of standby units in the system

Es(t) =
S−1∑
i=0

(S − i)Pi, 0(t) +
S−1∑
i=0

(S − i)Pi, 1(t)+
S−1∑
i=N

(S − i)Pi, 2(t) +
S−1∑
i=N

(S − i)Pi, 3(t)

• Probability that server 1 is busy

P 1
b (t) =

L∑
i=1

Pi, 0(t) +
L∑

i=N

Pi, 2(t)

• Probability that server 2 is busy

P 2
b (t) =

L∑
i=N

Pi, 2(t) +
L∑

i=N

Pi, 3(t)

• Probability that server 1 is in a breakdown state

Pbd(t) =
L∑
i=0

Pi, 1(t)

• The system reliability

R(t) = 1−
3∑

j=0

PL,j(t), t ≥ 0

• Mean time to failure

MTTF = lim
s→0

R∗(s) = lim
s→0

(
1

s
−

3∑
j=0

PL,j(t)

)

• The system availability

A(t)= 1−Ef (t)

L

• Failure frequency of the system

Wf = λL−1 (PL, 0(t) + PL, 1(t) + PL,2(t) + PL,3(t))

6. Numerical results and sensitivity analysis

We explore computational and sensitivity analysis of different performance measures for various variabil-
ity of the parameters with the help of MATLAB software.

6.1. Numerical simulation of system reliability

The numerical illustration is taken to check the sensitivity of parameters for assuming ten operating units
(M = 10) for fault-tolerant control system along three types of warm standbys (S = S1 + S2 + S3)
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taking as S1 = 4, S2 = 3 and S3 = 2. Also, we assume that server 2 becomes active to render the service
only after returning from vacation when N = 3. Following are the default parameters that we have taken
for computational results of the system reliability indices as λ = 0.1, λd = 0.01, λc = 1.5, α1 = 0.01,
α2 = 0.1, α3 = 0.5, q = 0.7, p = 0.1, p = 0.9, µ1 = 0.02, µ2 = 0.1, µ′

2 = 1, θ = 0.8, α = 1.5, β = 0.5.
The numerical findings are summarised in Figures 3–7 and Tables 2–7 which allow us to investigate the
effect of various parameters on performance measures as time passes.

• Time dependencies of the system reliability under varying failure parameters
of operating and standby units. In Figure 3, we show the effect of the system’s reliability
with respect to time. Initially, as time increases, reliability R(t) decreases sharply. After that, it
decreases gradually and lastly becomes nearly constant as time t further increases. It is also visible
that the reliability R(t) of the system decreases with increasing parameters λ, λd, λc and α3.

• Time dependencies of the system reliability under the varying server 1 breakdown
and repair parameters. As previously, we get a decreasing pattern of the system reliability
upon time and then the constant value (Figure 4). Further, we yield in Figure 4a that as we increase
the breakdown rate of server 1, the reliability decreases. On the contrary, in Figure 4b the reliability
R(t) increases as its recovery rate increases.

• Time dependencies of the system reliability under varying switching failure and
vacation parameters. Upon time increasing, we observe a gradual decrease in the system’s
reliability R(t)which then becomes asymptotically constant for different values of switching failure
probability q and vacation rates θ (Figure 5). We can see that as q increases, R(t) decreases whereas,
when θ increases, R(t) also increases.

• Time dependencies of the system reliability with a service rate of server 1 by the
varying server 1 breakdown and repair parameters. We show the sensitivity of system
reliability for the service rate (µ1) of server 1 in Figure 6. Initially, a sharp jump is found in R(t) for
lower values of µ1 then it starts to increase gradually. Further, upon increasing the breakdown rate
(α) of server 1, the reliability decreases which matches with a realistic scenario (Figure 6a). Also,
R(t) increases as the repair rate of server 1 in the breakdown period (β) increases (Figure 6b).

• Time dependencies of the system reliability with a service rate of server 2 by
varying switching failure and vacation parameters. Figure 7 depicts the effect of system
reliability with respect to service rate (µ2) of server 2 by varying switching failure probability (q)

and vacation rate (θ). We get an increasing pattern upon µ2 increasing up to a constant value. As
we increase the switching failure probability, the reliability decreases (Figure 7a). On the contrary,
the reliability R(t) increases as the vacation rate increases (Figure 7b).

• Effect of various operational characteristics by varying parameters. The numeric
outcomes of operational characteristics such as the expected number of failed and standby units,
machine availability, and probabilities for busy servers with respect to different parameters are given
in Tables 2–7. It is quite clear to see the effect of parameters λ, q, β, µ1 on various performance
measures by varying the time in Tables 2–5. In Tables 2–3, the indices Ef , P

1
b , P

2
b , Pbd,Wf increase

while A and Es decrease with increase in λ and q. With the increase in the indices β and µ1,
Ef , P

1
b , P

2
b , Pbd,Wf decrease while A(t) and Es increase (see Tables 4–5).

Tables 6 and 7 depict the effect of θ and α on system measures by varying time t. In Table 6,
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Figure 3. Reliability vs. time by varying: a) λ, b) λd, c) λc, d) α3,λd = λ∗ in Figure 3b and λc = λ∗∗ in 3c)

Figure 4. Reliability vs. time by varying a) α, and b)β
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Figure 5. Reliability vs. time by varying a) q, and b) θ

Figure 6. Reliability vs. server 1 service rate (µ1) by varying a) α, and b) β

Figure 7. Reliability vs. server 2 service rate (µ2) by varying a) q, and b) θ
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Table 2. Effect of performance measures by varying time (t) and λ

Failure rate Time (t) Ef Es A P 1
b P 2

b Pbd Wf
λ = 0.1 0.2 0.283353 3.618602 0.983332 0.133047 0.002732 0.017449 0.011332

0.4 1.06207 3.663522 0.937525 0.321703 0.025434 0.060579 0.016034
0.6 2.238555 3.691118 0.86832 0.514154 0.073727 0.119086 0.016502
0.8 3.691069 3.710473 0.782878 0.707611 0.141741 0.18572 0.01656

λ = 1.1 0.2 0.538987 1.909377 0.968295 0.161907 0.007408 0.017855 0.012512
0.4 1.932503 1.913327 0.886323 0.36624 0.04713 0.062156 0.017087
0.6 3.696819 1.916656 0.78254 0.568887 0.113879 0.120869 0.017524
0.8 5.524305 1.919488 0.675041 0.765288 0.196034 0.185968 0.017576

Table 3. Effect of performance measures by varying time (t) and q

Failure probability Time (t) Ef Es A P 1
b P 2

b Pbd Wf
q = 0.2 0.2 0.283353 3.618602 0.983332 0.133047 0.002732 0.017449 0.011332

0.4 1.06207 3.663522 0.937525 0.321703 0.025434 0.060579 0.016034
0.6 2.238555 3.691118 0.86832 0.514154 0.073727 0.119086 0.016502
0.8 3.691069 3.710473 0.782878 0.707611 0.141741 0.18572 0.01656

q = 0.3 0.2 0.290891 3.606405 0.982889 0.133978 0.002881 0.017555 0.01159
0.4 1.091312 3.650212 0.935805 0.324953 0.026212 0.061168 0.016354
0.6 2.296536 3.677072 0.86491 0.520042 0.075485 0.120402 0.016827
0.8 3.778541 3.695876 0.777733 0.71599 0.144605 0.187856 0.016886

Table 4. Effect of performance measures by varying time (t) and β

Server 1 repair rate Time (t) Ef Es A P 1
b P 2

b Pbd Wf
β = 0.5 0.2 0.283353 3.618602 0.983332 0.097053 0.001626 0.017449 0.011332

0.4 1.06207 3.663522 0.937525 0.31608 0.012565 0.060579 0.016034
0.6 2.238555 3.691118 0.86832 0.594464 0.039332 0.119086 0.016502
0.8 3.691069 3.710473 0.782878 0.901392 0.084229 0.18572 0.01656

β = 1.0 0.2 0.283352 3.633343 0.983332 0.097053 0.00163 0.016915 0.003615
0.4 1.061911 3.681542 0.937535 0.316079 0.012707 0.057097 0.005418
0.6 2.237732 3.711994 0.868369 0.594452 0.040262 0.10928 0.005642
0.8 3.688793 3.73385 0.783012 0.901327 0.08745 0.166141 0.00567

Table 5. Effect of performance measures by varying time (t) and µ1

Service rate Time (t) Ef Es A P 1
b P 2

b Pbd Wf
µ1 = 1 0.2 0.283353 3.618602 0.983332 0.133047 0.002732 0.017449 0.011332

0.4 1.06207 3.663522 0.937525 0.321703 0.025434 0.060579 0.016034
0.6 2.238555 3.691118 0.86832 0.514154 0.073727 0.119086 0.016502
0.8 3.691069 3.710473 0.782878 0.707611 0.141741 0.18572 0.01656

µ1 = 2 0.2 0.270257 3.821925 0.984103 0.129058 0.002531 0.016859 0.00464
0.4 0.98822 3.904142 0.941869 0.308692 0.02309 0.05739 0.005466
0.6 2.064689 3.960702 0.878548 0.492363 0.066888 0.112589 0.005474
0.8 3.399417 4.003103 0.800034 0.678294 0.129148 0.176211 0.005474
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Ef , P
1
b , Pbd,Wf decrease whereas P 2

b , A,Es increase with increases in θ. In Table 7, Ef , P
1
b , Pbd,Wf

increase whereas P 2
b , A,Es decrease with increasing α.

6.2. Numerical simulation of MTTF system

The MTTF is the key reliability metric for many fault-tolerant control systems which needs to be evalu-
ated. We performed a numerical experiment to observe the effect of parameters on the MTTF system.

For the computational results of the MTTF, we used the following default parameters λ = 0.02,
λd = 0.01, λc = 0.1, α1 = 0.01, α2 = 0.02, α3 = 0.03, q = 0.01, p = 0.5, p = 0.5, µ1 = 0.02, µ2 = 0.1,
µ′
2 = 1.0, θ = 0.8, α = 0.01, β = 1.5. The results are summarized in Figures 8–11 and Tables 8–9.

Figures 8–10 illustrate the effect of the MTTF system with respect to standby failure rate α1, α2 and α3,
respectively. We see that MTTF decreases regularly with the increase in α1, α2, and α3. As we increase
λ, or λc, the MTTF decreases (Figures 8a, 9a and 10a and Figures 8b, 9b, and 10b, respectively).

Figure 11 represents the pattern of the MTTF system by varying repair parameter µ2. An increas-
ing trend in MTTF is seen for increasing values of µ2. As we increase λ or λc, the MTTF decreases
(Figures 11a, 11b, respectively).

In Table 8, we summarize the numerical results for MTTF by varying λ, µ1, α, α1, α3, whereas in
Table 9, we summarize the numerical results for MTTF by varying λc,µ1, α, and α1, α3. From these
tables, we can emphasize that the MTTF changes with respect to parameters very significantly.

7. Conclusion and managerial implications

In the present paper, we studied a fault-tolerant control system, when the system and its units are subject
to failures due to various reasons. However, the server may show unreliable behaviour at some point in
time. We have constructed a Markovian model based on the birth-death process to determine reliability,
MTTF, and other operational characteristics. The system governing steady-state probabilities equations
was solved by using the matrix approach based on the Cramer rule. We performed computational and
sensitivity analyses of several performance measures for different parameter variability. The numerical
illustration clearly shows that the performance of the FTC system is truly different from that FTC system
without spare provision and standby switching failure. The sensitivity analysis reveals that reliability and
MTTF can be improved by controlling suitable parameters. The following conclusions may be drawn
from the results obtained.

• The system reliability of fault-tolerant systems is highly dependent on a number of factors includ-
ing operational and standby unit failure and service rates, breakdown and service rates of servers,
standby switching failure rate, and vacation rate.

• When the server vacation rate increases, the probability of server breakdown and switching failure
decreases, which is a natural phenomenon in real-time systems.

• We can improve system reliability by preventing the failure of working and standby units through
proper maintenance and by providing better service.

• As the service rate µ1 and β increase, a decreasing pattern can be seen for some measures such
as the expected number of failed units, probabilities of servers busy and probability of servers in
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Table 6. Effect of performance measures by varying time (t) and θ

Vacation rate Time (t) Ef Es A P 1
b P 2

b Pbd Wf
θ = 1.5 0.2 0.283353 3.618602 0.983332 0.133047 0.002732 0.017449 0.011332

0.4 1.06207 3.663522 0.937525 0.321703 0.025434 0.060579 0.016034
0.6 2.238555 3.691118 0.86832 0.514154 0.073727 0.119086 0.016502
0.8 3.691069 3.710473 0.782878 0.707611 0.141741 0.18572 0.01656

θ = 2.5 0.2 0.283348 3.621254 0.983332 0.133046 0.004384 0.017382 0.007155
0.4 1.061994 3.667488 0.93753 0.321683 0.03917 0.059334 0.009993
0.6 2.237892 3.696546 0.868359 0.513916 0.109211 0.113926 0.010313
0.8 3.688377 3.717364 0.783037 0.706776 0.202946 0.173452 0.010354

Table 7. Effect of performance measures by varying time (t) and α

Server 1 breakdown rate Time (t) Ef Es A P 1
b P 2

b Pbd Wf
α = 1.0 0.2 0.283353 3.618602 0.983332 0.097053 0.001626 0.017449 0.011332

0.4 1.06207 3.663522 0.937525 0.31608 0.012565 0.060579 0.016034
0.6 2.238555 3.691118 0.86832 0.594464 0.039332 0.119086 0.016502
0.8 3.691069 3.710473 0.782878 0.901392 0.084229 0.18572 0.01656

α = 1.5 0.2 0.28339 3.560406 0.983326 0.097053 0.001549 0.025363 0.019495
0.4 1.062301 3.599192 0.937512 0.316088 0.011477 0.085748 0.028847
0.6 2.239495 3.622426 0.868265 0.594532 0.034694 0.165026 0.029675
0.8 3.692013 3.638559 0.782823 0.901658 0.072285 0.253174 0.029775

Figure 8. MTTF vs. α1 by varying a) λ, and b) λc

Table 8. Effect of α, µ1, α1 and α3 on MTTF system

α λ = 0.02 λ = 0.03 λ = 0.04 µ1 λ = 0.02 λ = 0.03 λ = 0.04
0.01 2269.18 1804.34 1462.15 0 44.70 32.14 24.16
0.02 2257.84 1795.63 1455.36 0.002 52.97 38.08 28.62
0.03 2246.60 1787.00 1448.62 0.004 63.88 45.93 34.53
0.04 2235.47 1778.45 1441.95 0.006 78.73 56.64 42.60
0.05 2224.46 1769.98 1435.33 0.008 99.69 71.81 54.05
0.06 2213.55 1761.60 1428.78 0.01 130.75 94.38 71.16
α1 λ = 0.02 λ = 0.03 λ = 0.04 α2 λ = 0.02 λ = 0.03 λ = 0.04
0 2463.85 1933.51 1551.83 0 2911.47 2268.25 1803.64

0.01 2269.18 1804.34 1462.15 0.01 2765.35 2163.28 1726.98
0.02 2099.90 1689.66 1381.31 0.02 2628.68 2064.87 1654.81
0.03 1951.53 1587.26 1308.11 0.03 2500.84 1972.53 1586.81
0.04 1820.56 1495.33 1241.53 0.04 2381.20 1885.83 1522.69
0.05 1704.24 1412.40 1180.77 0.05 2269.18 1804.34 1462.15
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Figure 9. MTTF vs. α2 by varying a) λ, and b) λc

Figure 10. MTTF vs. α3 by varying a) λ, and b) λc

Figure 11. MTTF vs. µ2 by varying a) λ, and b) λc
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a breakdown state which reflects that availability of active servers in the system increases system
efficiency and the system will work longer.

• With a rise in the failure rates of operating (standby) units and switching failure probability, the
probabilities of servers being busy, servers in a breakdown state, and failure frequency are found to
be raised, which matches with real-world experience.

• Even uncertain changes in some system parameters, such as failure and service rates of operational
units, degraded failure rate, service rate of server in breakdown state, and actual service rate also
have a significant impact on the MTTF system. The MTTF, on the other hand, is found to be highly
sensitive to the unit failure rate and common cause failure rate.

The reliability indicator of FTC systems with warm standbys, server breakdown, and standbys switch-
ing failure has many practical uses in electronic industries, power plants, aircraft safety systems, security
systems, etc. The current study may give useful direction to production engineers and system designers
for improving the reliability of the FTC system. The research may be extended with consideration of
the reboot process and working vacation. However, this situation is more realistic and will increase the
complexity of the proposed work.
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Appendix
Since we have

D(s) =

[
M11 M12

M21 M22

]
For brevity, we use

Φn = Mλqn, 1 ≤ n ≤ S(k)

Ψn = Mλqn(1− q), 1 ≤ n ≤ S(k) − 1

Here,

M11 =


A0 A1 A2 A3 0

B0 B1 B2 0 B4

0 C1 C2 0 0

D0 0 0 D3 D4

0 E1 0 0 E4

 M12 =


0 0 0 0 0

0 B6 0 0 0

C5 0 C7 0 0

D5 0 0 0 0

E5 0 0 0 0



M21 =


0 0 F2 0 0

G0 0 0 0 0

0 0 0 0 0

I0 0 0 0 0

0 0 0 0 0

 M22 =


F5 0 0 0 0

0 G6 G7 G8 0

0 H6 H7 0 H9

0 I6 0 I8 I9
0 J6 J7 0 J9


The submatrices of D(s) are taken as:

A0 =



(λ0 +Mλq + s+ a) −λ0 −Ψ1 · · · · · · −ΨN−3 −ΨN−2

−µ1 (λ1 + µ1 +Mλq + s+ a) −λ1 · · · · · · −ΨN−4 −ΨN−3

0 −µ1 (λ2 + µ1 +Mλq + s+ a) · · · · · · −ΨN−5 −ΨN−4

...
...

...
. . .

. . .
...

...

0 0 · · · · · ·
. . .

...
...

0 0 · · · · · · · · · (λN−2 + µ1 +Mλq + s+ a) −λN−2

0 0 · · · · · · . . . −µ1 (λN−1 + µ1 +Mλq + s+ a)


N×N

D3 =



(λ0 +Mλq + s+ β) −λ0 −Ψ1 . . . · · · −ΨN−3 −ΨN−2

0 (λ1 + µ1 +Mλq + s+ β) −λ1 · · · · · · −ΨN−4 −ΨN−3

0 0 (λ2 + µ1 +Mλq + s+ β) · · · · · · −ΨN−5 −ΨN−4

...
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

...
...

...
...

...
. . .

. . .
...

...

0 0 · · · · · ·
. . .

...
...

0 0 · · · · · · · · · (λN−2 + µ1 +Mλq + s+ β) −λN−2

0 0 · · · · · · . . . 0 (λN−1 + µ1 +Mλq + s+ β)


N×N

A2 =



−Φ
S(K) 0 0 . . . . . . 0 0

−Φ
S(K)−1

0 0 . . . . . . 0 0

−Φ
S(K)−2

0 0
. . . . . . 0 0

...
...

...
. . .

. . .
...

...

...
...

...
. . .

. . .
...

...

...
...

... . . .
. . .

...
...

...
... . . . . . . . . .

...
...

−Φ
S(K)−N+2

0 . . . . . . . . . 0 0

−Φ
S(K)−N+1

0 . . . . . . . . . 0 0


N×(L−S(K))

D5 =



−Φ
S(K) 0 0 . . . . . . 0 0

−Φ
S(K)−1

0 0 . . . . . . 0 0

−Φ
S(K)−2

0 0
. . .

. . . 0 0

...
...

...
. . .

. . .
...

...

...
...

...
. . .

. . .
...

...

...
...

...
. . .

. . .
...

...

...
... . . . . . . . . .

. . .
...

−Φ
S(K)−N+2

0 . . . . . . . . . 0 0

−Φ
S(K)−N+1

0 . . . . . . . . . 0 0


N×(L−S(K))
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A1 =



−ΨN−1 −ΨN · · · · · · −ΨS(K)−2 −ΨS(K)−1

−ΨN−2 −ΨN−1

. . . . . . −ΨS(K)−3 −ΨS(K)−2

...
...

. . .
. . .

...
...

...
...

. . .
. . .

...
...

...
...

...
. . .

...
...

−λN−1 −Ψ1 · · · · · · −ΨS(K)−N+1 −ΨS(K)−N


N×(S(K)−N+1)

D4 =



−ΨN−1 −ΨN · · · · · · −ΨS(K)−2 −ΨS(K)−1

−ΨN−2 −ΨN−1

. . . . . . −ΨS(K)−3 −ΨS(K)−2

...
...

. . .
. . .

...
...

...
...

. . .
. . .

...
...

...
...

...
. . .

...
...

−λN−1 −Ψ1 · · · · · · −ΨS(K)−N+1 −ΨS(K)−N


N×(S(K)−N+1)

B1 =



(λN + λ+ µ1 + a+ s+Mλq) −λN Ψ1 −Ψ2 . . . −ΨS(K)−N−2 −ΨS(K)−N−1

−µ1 (λN+1 + λ+ µ1 + a+ s+Mλq) −λN+1 −Ψ1 . . . −ΨS(K)−N−3 −ΨS(K)−N−2

0 −µ1 (λN+2 + λ+ µ1 + a+ s+Mλq) −λN+2 . . . −ΨS(K)−N−4 −ΨS(K)−N−3

...
... −µ1

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

0 0 . . .
. . .

. . . −λS(K)−2 −Ψ1

0 0 . . . 0
. . . (λS(K)−1 + λ+ µ1 + a+ s+Mλq) −λS(K)−1

0 0 . . . 0 0 −µ1 (λS(K) + λ+ µ1 + a+ s)


(S(K)−N+1)×(S(K)−N+1)

E4 =



(λN + β + s+Mλq) −λN −Ψ1 −Ψ2 . . . −ΨS(K)−N−2 −ΨS(K)−N−1

0 (λN+1 + β + s+Mλq) −λN+1 −Ψ1 . . . −ΨS(K)−N−3 −ΨS(K)−N−2

0 0 (λN+2 + β + s+Mλq) −λN+2 . . . −ΨS(K)−N−4 −ΨS(K)−N−3

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

...
0 0 0 0 . . . −λS(K)−2 −Ψ1

0 0 0 0 . . . (λS(K)−1 + β + s+Mλq) −λS(K)−1

0 0 0 0 . . . 0 (λS(K) + β+s)


(S(K)−N+1)×(S(K)−N+1)

G6 =



(λN + µ1 + µ2 + s+Mλq) −λN −Ψ1 −Ψ2 . . . −−ΨS(K)−N−2 −ΨS(K)−N−1

−(µ1+pµ2) (λN+1 + µ1 + µ2 + s+Mλq) −λN+1 −Ψ1 . . . −ΨS(K)−N−3 −ΨS(K)−N−2

0 −(µ1+pµ2) (λN+2 + µ1 + µ2 + s+Mλq) −λN+2 . . . −ΨS(K)−N−4 −ΨS(K)−N−3

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

...

0 0 . . .
. . .

. . . −λS(K)−2 −Ψ1

0 0 . . . 0
. . . (λS(K)−1 + µ1 + µ2 + s+Mλq) −λS(K)−1

0 0 . . . 0 0 −(µ1+pµ2) (λS(K) + µ1 + µ2+s)


(S(K)−N+1)×(S(K)−N+1)

I8 =



(λN + µ′
2 + s+Mλq) −λN −Ψ1 −Ψ2 . . . −ΨS(K)−N−2 −ΨS(K)−N−1

0 (λN+1 + µ′
2 + s+Mλq) −λN+1 −Ψ1 . . . −ΨS(K)−N−3 −ΨS(K)−N−2

0 0 (λN+2 + µ′
2 + s+Mλq) −λN+2 . . . −ΨS(K)−N−4 −ΨS(K)−N−3

...
...

. . .
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
...

...

0 0 . . .
. . .

. . . −λS(K)−2 −Ψ1

0 0 . . . 0
. . . (λS(K)−1 + µ′

2 + s+Mλq) −λS(K)−1

0 0 . . . 0 0 0 (λS(K) + s+ µ′
2)


(S(K)−N+1)×(S(K)−N+1)
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E5 =



−Φ
S(K)−N

0 0 . . . . . . 0 0

−Φ
S(K)−N−1

0 0 . . . . . . 0 0

... 0 0
. . .

. . . 0 0

...
...

...
. . .

. . .
...

...

...
...

...
. . .

. . .
...

...

...
...

...
. . .

. . .
...

...

−Φ2 0 . . . . . . . . . 0 0

−Φ1 0 . . . . . . . . . 0 0

−λ
S(K) 0 . . . . . . . . . 0 0


(S(K)−N+1)×(L−S(K))

I6 =



0 0 0 0 · · · 0 0

−µ′
2 0 0 0 · · · 0 0

0 −µ′
2 0 0 · · · 0 0

...
...

...
...

...
...

...

...
...

...
. . .

. . .
...

...

...
...

...
...

...
...

...

0 0 · · · · · ·
. . . 0 0

0 0 · · · · · · −µ′
2 0 0

0 0 · · · · · · 0 −µ′
2 0


(S(K)−N+1)×(S(K)−N+1)

G7 =



−Φ
S(K)−N

0 0 . . . . . . 0 0

−Φ
S(K)−N−1

0 0 . . . . . . 0 0

... 0 0
. . .

. . . 0 0

...
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

...
...

...
...

...
. . .

. . .
...

...

−Φ2 0
...

...
... 0 0

−Φ1 0
...

...
... 0 0

−λ
S(K) 0

...
...

... 0 0


(S(K)−N+1)×(L−S(K))

I9 =



−Φ
S(K)−N

0 0
...

... 0 0

−Φ
S(K)−N−1

0 0
...

... 0 0

... 0 0
. . .

... 0 0

...
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

...
...

...
...

...
. . .

. . .
...

...

−Φ2 0
...

...
... 0 0

−Φ1 0
...

...
... 0 0

−λ
S(K) 0

...
...

... 0 0


(S(K)−N+1)×(L−S(K))
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F5 =



(λ
S(K)+1

+ s + β) −λ
S(K)+1

0 . . . . . . 0 0

0 (λ
S(K)+2

+ s + β) −λ
S(K)+2

. . . . . . 0 0

0 0 (λ
S(K)+3

+ s + β)
. . .

. . . 0 0

...
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

...
...

...
...

...
. . .

. . .
...

...

0 0 . . . . . . . . . 0 0

0 0 . . . . . . . . . (λL−1 + s + β) −λL−1

0 0 . . . . . . . . . 0 0


(L−S(K))×(L−S(K))

J9 =



(λ
S(K)+1

+ s + µ′
2) −λ

S(K)+1
0 0 · · · 0 0

0 (λ
S(K)+2

+ s + µ′
2) −λ

S(K)+2
0 · · · 0 0

0 0 0 0 · · · 0 0

...
...

...
. . .

. . .
...

...

...
...

...
. . .

. . .
...

...

...
...

...
. . .

. . .
...

...

0 0 · · · · · ·
. . . 0 0

0 0 · · · · · · 0 (λL−1 + s+µ′
2) −λL−1

0 0 · · · · · · 0 0 0


(L−S(K))×(L−S(K))

C2 =



(λS(K)+1 + θ + a+ s+ µ1) −λS(K)+1 0 . . . . . . 0 0

−µ1 (λS(K)+2 + θ + a+ s+ µ1) −λS(K)+2 . . . . . . 0 0

0 −µ1 (λS(K)+3 + θ + a+ s+ µ1)
. . .

. . . 0 0
...

...
...

. . .
. . .

...
...

...
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

...
...

0 0 . . . . . . . . . −λL−2 0

0 0 . . . . . . . . . (λL−1 + θ + a+ s+ µ1) −λL−1

0 0 . . . . . . . . . 0 0


(L−S(K))×(L−S(K))

H7 =



(λS(K)+1 + µ1 + µ2+s) −λS(K)+1 0 . . . . . . 0 0

−(µ1+pµ2) (λS(K)+2 + µ1 + µ2+s) −λS(K)+2 . . . . . . 0 0

0 −(µ1+pµ2) (λS(K)+3 + µ1 + µ2+s)
. . .

. . . 0 0
...

...
...

. . .
. . .

...
...

...
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

...
...

0 0 . . . . . . . . . 0 0

0 0 . . . . . . . . . (λL−1 + µ1 + µ2+s) −λL−1

0 0 . . . . . . . . . 0 0


(L−S(K))×(L−S(K))
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B2 =



−Φ
S(K)−N

0 0 . . . . . . 0 0

−Φ
S(K)−N−1

0 0 . . . . . . 0 0

... 0 0
. . .

. . . 0 0

...
...

...
. . .

. . .
...

...

...
...

...
. . .

. . .
...

...

...
...

...
. . .

. . .
...

...

−Φ2 0 . . . . . . . . . 0 0

−Φ1 0 . . . . . . . . . 0 0

−λ
S(K) 0 . . . . . . . . . 0 0


(S(K)−N+1)×(L−S(K))

J7 =



0 0 0 0 · · · 0 0

−µ′
2 0 0 0 · · · 0 0

0 −µ′
2 0 0 · · · 0 0

...
...

...
. . .

. . .
...

...

...
...

...
. . .

. . .
...

...

...
...

...
. . .

. . .
...

...

0 0 · · · · · ·
. . .

. . . 0

0 0 · · · · · · −µ′
2 0 0

0 0 · · · · · · 0 0 0


(L−S(K))×(L−S(K))

B6 = diag
(
− θ,−θ,−θ, . . . ,− θ

)
(S(K)−N+1)×(S(K)−N+1)

C7 = diag
(
− θ,−θ,−θ, . . . ,− θ, 0

)
(L−S(K))×(L−S(K))

A3 = diag[−α,−α,−α, . . . ,−α]N×N

B4 = diag
(
− α,−α,−α, . . . ,−α

)
(S(K)−N+1)×(S(K)−N+1)

C5 = diag
(
− α,−α,−α, . . . ,−α, 0

)
(L−S(K))×(L−S(K))

D0 = diag
(
− β,−β,−β, . . . ,−β

)
N×N

F2 = diag
(
− β,−β,−β, . . . ,−β, 0

)
(L−S(K))×(L−S(K))

E1 = diag
(
− β,−β,−β, . . . ,−β

)
(S(K)−N+1)×(S(K)−N+1)

G8 = diag
(
− pµ2,−pµ2,−pµ2, . . . ,−pµ2

)
(S(K)−N+1)×(S(K)−N+1)

H9 = diag
(
− pµ2,−pµ2,−pµ2, . . . ,−pµ2, 0

)
(L−S(K))×(L−S(K))

B0 =
(
bij

)
(S(K)−N+1)×N

=


−µ1, i = 1, j = N

0, otherwise

C1 =
(
cij

)
(L−S(K))×(S(K)−N+1) =


−µ1, i = 1, j = S(k) −N + 1

0, otherwise
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G0 =
(
gij

)
(S(K)−N+1)×N

=


−(µ1+pµ2), i = 1, j = N − 1

0, otherwise

H6 =
(
hij

)
(L−S(K))×(S(K)−N+1) =


−(µ1+pµ2), i = 1, j = S(k) −N + 1

0, otherwise

I0 =
(
Iij

)
(S(K)−N+1)×N

=


−µ′

2, i = 1, j = N − 1

0, otherwise

J6 =
(
Jij

)
(L−S(K))×(S(K)−N+1) =

−µ′
2, i = 1, j = S(k) −N + 1

0, otherwise
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Table 9. Effect of α, µ1, α2 and α3 on MTTF system

α λc = 0.1 λc = 0.2 λc = 0.3 µ1 λc = 0.1 λc = 0.2 λc = 0.3
0.01 191.98 130.75 94.38 0 65.99 44.70 32.18
0.02 190.89 130.05 93.90 0.005 104.37 70.71 50.92
0.03 189.81 129.35 93.42 0.01 191.98 130.75 94.51
0.04 188.75 128.66 92.95 0.015 477.12 331.75 243.20
0.05 187.69 127.98 92.48 0.02 2912.96 2269.18 1804.02
0.06 186.65 127.31 92.02 0.025 10788.40 4836.64 2754.29
α1 λc = 0.1 λc = 0.2 λc = 0.3 α3 λc = 0.1 λc = 0.2 λc = 0.3
0 3226.44 2463.85 1933.16 0 3811.38 2911.47 2267.21

0.01 2915.58 2269.18 1804.02 0.01 3608.93 2765.35 2162.43
0.02 2653.05 2099.90 1689.37 0.02 3418.44 2628.68 2064.19
0.03 2428.83 1951.53 1587.00 0.03 3239.69 2500.84 1971.99
0.04 2235.47 1820.56 1495.10 0.04 3072.25 2381.20 1885.41
0.05 2067.28 1704.24 1412.19 0.05 2915.58 2269.18 1804.02
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