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Abstract

When we study any queuing system, the performance measures reflect different features of the system. In the classical
M/M/1 queuing system, traffic intensity is perhaps the most important performance measure. We propose a fresh and simple
estimator for the same and show that it has nice properties. Our approach is frequentist. This approach has the dual advantage
of practical usability and familiarity. Our proposed estimator is attractive as it possesses desirable properties. We have shown
how our estimator lends itself to testing of hypothesis. Confidence intervals are constructed. Sample size determination is
also discussed. A comparison with a few similar estimators is also performed.
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1. Introduction

Over the last few decades, there has been growing interest in the statistical inference of parameters,
performance measures and related parametric functions in the context of queuing systems. This interest
has particularly grown in the last three decades or so. Even though the queuing theory has been in
vogue for about one hundred years or so, the emphasis so far has largely been on the development of
probability models to stochastically describe the myriad variety of practical queuing systems existing in
real life and design their performance measures. However, when it comes to the actual implementation
of these theoretical models to analyse practical queuing situations occurring in day-to-day life, practising
queuing specialists have been facing a dilemma. In the absence of scientifically designed estimators
of different queuing parameters and performance measures, they have had to resort to ad hoc methods.
Decision-making has suffered in the sense that proper methods of statistical inference are still in the
developmental phase in the context of queuing theory.
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Whenever any queuing analyst is required to analyse any live queuing situation, numerical determi-
nation of the performance measures becomes paramount. Medhi [26] stated that analysis of performance
measures is very important as it helps in the identification of various queuing issues.‘The main objective
of any queuing study is to assess some well-defined parameters through which the nature of the quality
of service can be studied. These parameters are known as performance measures. Performance mea-
sures are important as issues or problems caused by queuing situations are often related to customers’
dissatisfaction with service or maybe the root cause of economic losses in a business. Analysis of the
relevant performance measures of queuing models allows the cause of queuing issues to be identified and
the impact of proposed changes to be assessed’ (Choudhury and Medhi[13]).

Therefore, the need to apply theoretical queuing models to analyse real-life situations has led to de-
mands for appropriate methods and techniques for the construction of estimators and its related aspects
as well as matters relating to testing of hypothesis – all of which are constituents of statistical inference.
This is the research gap that this paper shall address.

In general, statistical inference problems can be divided into two types namely parameter estimation
and distribution selection. In the first type, a pre-specified stochastic model is selected and then its param-
eters are estimated. In the latter type, the collected data is examined to determine a particular probabilistic
model. In the context of queuing theory, we are usually interested in statistical inferential problems of the
first type more specifically we will be interested to know about the methods of construction of estimators
of the performance measures.

In this paper, we propose a method for estimating the traffic intensity of the M/M/1 queuing model.
The most powerful critical region for testing the traffic intensity is given. The confidence interval for the
estimator is evaluated. An approach is shown for the determination of the sample size. The proposed
estimator is compared with similar frequentist estimators. In the paper, Section 2 contains the literature
review. Section 3 describes the M/M/1 queue. Section 4 contains the procedure for estimating the traffic
intensity. Section 5 contains hypothesis testing. Section 6 contains the confidence interval construction.
The technique of sample size determination is given in section 7. Section 8 contains the discussion and
the comparison of estimators with other frequentist estimators. Section 9 concludes the paper.

2. Literature review

The literature of statistical inference has developed in two branches viz. frequentist and Bayesian. In
frequentist framework, the pioneering work is due to Clarke [17] who first obtained the maximum likeli-
hood estimates of the arrival rate and service rate of the M/M/1 queuing model. Lilliefors [25] estimated
the confidence intervals for the M/M/1 traffic intensity from the maximum likelihood estimates given
by Clarke [17]. Bhat and Rao [9] proposed a technique based on statistical quality control to control
traffic intensity in M/G/1 and GI/M/1 queues. Dave and Shah [20] derived estimators for arrival and
service rates in an M/M/2 queuing model with heterogeneous servers using the maximum likelihood
principle. Basawa and Prabhu [7] studied the moment estimates and maximum likelihood estimates for
non-parametric and parametric models for a single server queue. They also investigated the limiting dis-
tribution of these estimators. Schruben and Kulkarni [30] considered stationary M/M/1 queuing model
and showed that estimates of arrival rates and service rates result in a notable discrepancy between the
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estimated parameters for the model and actual parameters of the system. They have shown that the
mean for the model does not exist even when the traffic intensity is restricted to be strictly less than one
and also found out that the expected value of the estimator of popular measure is infinite regardless of
the value of the actual traffic intensity. Basawa and Prabhu [8] discussed the problems of large sample
estimation and tests for parameters in a single server queue and presented asymptotic properties for per-
formance measures. Basawa et al. [6] developed estimates of inter-arrival and service time distribution
in GI/G/1 model by developing estimating function involving waiting time data. They also compared
the estimates with those obtained by maximum likelihood estimates. Zheng and Seila [38] extended the
work by Schruben and Kulkarni [30] and have shown mathematically the nonexistence of standard errors
and expectations of the common estimators of performance measures in an M/M/1 model. In turn, they
proposed a method to construct estimators for the performance measures of the M/M/1 model which have
desirable properties.

Srinivas et al. [33] discussed uniform minimum variance unbiased estimators (UMVUE) and max-
imum likelihood estimators of the various characteristics of M/M/1 queue. They also compared these
estimates using the asymptotic expected deficiency (AED) criterion where they suggested the use of uni-
form variance unbiased estimators over maximum likelihood estimators for some measures. Srinivas
and Udupa [34] considered M/M/1 queue and developed the best-unbiased estimation and CAN property
for performance measures. They derived various UMVU estimators of performance measures using the
Lehmann–Scheffe theorem. They also derived the probability distributions of UMVU estimators. Meth-
ods to construct asymptotic confidence intervals for traffic intensity and other performance measures are
also suggested by them. Srinivas and Kale [32] studied the M/D/1 queuing system where they devel-
oped maximum likelihood estimation and UMVU estimation of traffic intensity and other performance
measures. CAN property of maximum likelihood estimators is established. They also compared the max-
imum likelihood estimators with the UMVU estimators. Suyama et al. [35] considered M/M/s queuing
model and derived MLE of ρ. They also showed that the estimate is equivalent to the moment estimator.
Choudhury and Basak [11] derived an ML estimator of traffic intensity by exploiting the relationship
between M/M/1 process and Bernoulli process. They also discussed the determination of sample size
for the estimation of traffic intensity using a randomized testing procedure. Dutta and Choudhury [23]
considered the M/M/1 queuing model where they extended the work of Zheng and Seila [38] to give
a guiding principle about the use of alternative estimators for M/M/1 queuing model.

The Bayesian approach in queuing theory largely developed due to the work by Armero and Bayarri
[2–4]. Choudhury and Borthakur [12] derived Bayesian estimates and credibility intervals of traffic in-
tensity. They also presented the predictive distribution of system size at the departure epoch. Chowdhury
and Mukherjee[14] discussed the estimation of waiting time in the M/M/1 queuing model in the form of
its right tail area called exceedance probability. They evaluated the MLE of rate parameters λ and µ and
also the exceedance probability. Moreover, their large sample properties were also studied. Chowdhury
and Mukherjee [15] considered M/M/1 queuing model and constructed the Maximum Likelihood and
Bayes estimator of traffic intensity. They also compared their frequentist and Bayesian estimators of traf-
fic intensity using simulation. Jose and Manoharan [24] considered M/M/1 queuing model and obtained
the arrival rate, service rate, and traffic intensity by using a bivariate prior distribution of arrival rate and
service rate. They also obtained posterior distribution and the credible region for the traffic intensity.
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Predictive distribution for system size was also obtained. Chowdhury and Mukherjee [16] considered
the M/M/1 queuing model and obtained the Bayes estimator of traffic intensity and various other perfor-
mance measures under the squared error loss function (SELF) and precautionary loss function (PLF) with
beta-Stacy distribution as prior. They also performed a simulation study and observed that beta-Stacy as
prior yields stable estimates of the queuing performance metrics (QPMs).

Cruz et al. [19] considered Bayesian estimation in the M/M/S model by using beta distribution as prior
for ρ. They presented a closed-form expression for the predictive distribution of the number of customers
in the system at the departure epoch. Almeida and Cruz [1] studied M/M/1 model and considered Jeffreys
before obtaining the posterior distributions of some parameters of interest. Cruz et al. [18] studied
M/M/1/k queuing model where they used Bayesian inference and Monte Carlo simulation techniques
to evaluate estimators under finite samples. Deepthi and Jose [21] considered M/M/R queuing model
and derived the conditional posterior densities of mean arrival rate and mean service rates by assuming
multivariate gamma distribution as prior for service rates and gamma distribution as prior for arrival rates.
They also used the Markov chain Monte Carlo method to obtain the Bayes estimate and credible interval
for M/M/3 queuing model as a particular case of M/M/R model under various loss functions. Deepthi and
Jose [22] considered M/Ek /1 queuing model and described the Bayesian estimation of queue parameters
and various queue performance measures by using Mckay’s bivariate gamma distribution as prior under
entropy loss function and squared error loss function. They also obtained the closed expressions for the
Bayes estimators. They performed a simulation study to compute Bootstrap Bayes estimate and credible
regions of various queue characteristics and compared them with those obtained using Markov Chain
Monte Carlo method. Basak and Choudhury [5] considered the estimation of traffic intensity in a M/M/1
queuing model. They derived the Bayes estimator of ρ under squared error loss function assuming two
forms of prior information on ρ. They also compared their proposed Bayes estimators with the estimators
based on the maximum likelihood principle.

3. The M/M/1 queuing system

The single-server Markovian queuing model, also known as the M/M/1 model in Kendall’s notation, is
the simplest non-trivial queue [36], yet is possibly the most widely used. In this model, it is assumed that
customers arrive into the system at the rate of λ, and the time between successive arrival of customers
follows an exponential distribution. There is just one server and the rate at which the server offers service
is µ. The time required to serve each customer (by the server) is also random and follows an exponential
distribution. Service times of customers are independent of each other. There is no restriction on the
waiting space, and customers are served first come first served principle. The calling population is
assumed to be infinite.

One of the important parameters of this model is traffic intensity ρ, which is defined as the ratio of
arrival rate λ to service rate µ. To ensure the equilibrium and stability of the model, this parameter must
be less than one. Assuming equilibrium is very frequent in queuing theory [4]. The restriction that traffic
intensity should be less than one implies that λ < µ which is both a necessary and sufficient condition.
The length of the queue would otherwise "explode" as the number of customers would go on increasingly
indefinitely. Even if case this assumption is not initially met, operational manager(s) usually tweak the
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system and see to it that the queue size does not go on increasing indefinitely. This in turn ensures that
the restriction on traffic intensity is met.

When analysing any real-life queuing phenomenon, various features are generally of interest so as to
know about the effectiveness of the queuing system. These are captured by what are called performance
measures. Generally, there are three types of such measures of interest viz. (1) some measure of the
waiting time that a typical customer might endure, (2) some measure of the number of customers that
may accumulate in the queue or system, and (3) a measure of the idle time of the servers. Since most
queuing systems have stochastic elements, these measures are often random variables, so their probability
distributions – or at least their expected values – are sought [31]. For the M/M/1 system, the widely used
performance measures are:

• mean system size Ls =
λ

µ− λ
,

• mean queue size Lq =
λ2

µ(µ− λ)
,

• average waiting time in the system Ws =
1

µ− λ
,

• average waiting time in a queue Wq =
λ

µ(µ− λ)
,

• traffic intensity ρ =
λ

µ
.

4. Estimation of traffic intensity

We consider two data streams, one each from the arrival process and the service mechanism. Let
x1, x2, . . . , xn1 be a random sample of inter-arrival times drawn from the queuing model. Because
of the assumptions of the model (outlined in Section 3), these inter-arrival times would be independent
and identically distributed samples drawn from expλ. Similarly, let y1, y2, . . . , yn2 be a random sample
of service times of the server of the model. Again because of the assumptions of the model, this random
sample will be independently and identically distributed from expµ. Since inter-arrival and service times
are independent of each other, it is also assumed that x1, x2, . . . , xn1 and y1, y2, . . . , yn2 are mutually
independent.

We now define z1 =

n1∑
i=1

xi ∼ γ (n1, λ) and z2 =

n2∑
j=1

yj ∼ γ (n2, µ). Then, the distributions of z1

and z2 are given by [28]

f (z1) =
λn1

Γ (n1)
e−λz1z1

n1−1, z1 > 0

f (z2) =
µn2

Γ (n2)
e−µz2z2

n2−1, z2 > 0

The joint distribution of z1 and z2 is

f (z1, z2) =
λn1

Γ (n1)

µn2

Γ (n2)
e−λz1−µz2 z1

n1−1z2
n2−1, z1 > 0, z2 > 0 (1)
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We now make the following transformation

u =
z2
z1

and v = z1 (2)

We have from (1)

f (u, v) =
λn1

Γ (n1)

µn2

Γ (n2)
e−v(λ+µu)vn1+n2−1un2−1, u > 0, v > 0

After some elementary algebra, it can be shown that the distribution of u is

f (u) =
λn1

Γ (n1)

µn2

Γ (n2)
un2−1 Γ (n1 + n2)

(λ+ µu)n1+n2
, u > 0 (3)

Therefore,

E (u) =
n2

n1 − 1

λ

µ

Thus, the mean of this distribution is
n2

n1 − 1

λ

µ
and it is now possible to construct an unbiased estimator

of traffic intensity ρ using the result

E

(
n1 − 1

n2

u

)
=

λ

µ
(4)

Hence,
n1 − 1

n2

u is an unbiased estimator of ρ.

Again, after some algebra, it can be shown that,

E

(
n1 − 1

n2

u

)2

=
(n2 + 1)(n1 − 1)

n2(n1 − 2)

(
λ

µ

)2

(5)

Relations (4) and (5) now give us

V

(
n1 − 1

n2

u

)
=

(n1 + n2 − 1)

n2(n1 − 2)

(
λ

µ

)2

∴ V

(
n1 − 1

n2

u

)
→ 0 as n1 → ∞, n2 → ∞

Hence,
n1 − 1

n2

u is a consistent estimator of ρ.

Again from (3),

f (u) =
λn1

Γ (n1)

µn2

Γ (n2)
un2−1 Γ (n1 + n2)

(λ+ µu)n1+n2
, u > 0

=

(
1

ρ

)n2 1(
1 +

u

ρ

)n1+n2

Γ (n1 + n2)

Γ (n1)Γ (n2)
un2−1, u > 0

= g (t, ρ)h (u) where t = u

(6)
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Hence, by using Neyman factorisation theorem, u is a sufficient estimator of ρ, i.e.,
n1 − 1

n2

u is a suf-

ficient estimator of ρ. Our estimator
n1 − 1

n2

u is promising. It is not only unbiased but is also consistent

and sufficient for ρ.

5. Testing the hypothesis

Having constructed an estimator, we outline a method to test the hypothesis on ρ. We have from (6),

f (u) =

(
1

ρ

)n2 1(
1 +

u

ρ

)n1+n2

Γ (n1 + n2)

Γ (n1)Γ (n2)
un2−1, u > 0

Let
n1 − 1

n2

u = w

∴ f(w) =

(
1

ρ

)n2 1(
1 +

n2w

(n1 − 1)ρ

)n1+n2

Γ (n1 + n2)

Γ (n1)Γ (n2)

(
n2

n1 − 1

)n2

wn2−1, w > 0 (7)

Let us consider the problem of testing a simple hypothesis: H0 : ρ = ρ0 against a simple alternative
hypothesis H1 : ρ = ρ1

According to the Neyman–Pearson lemma, the most powerful critical region is given by [28]

f(w, ρ1)

f(w, ρ0)
> k =⇒

(
ρ1
ρ0

)n1
(
(n1 − 1)ρ0 + n2w

(n1 − 1)ρ1 + n2w

)n1+n2

> k

Case 1. If ρ1 > ρ0

(n1 − 1)ρ0 + n2w > k1((n1 − 1)ρ1 + n2w) =⇒ w > k2

Therefore, the critical region is W = (w : w > k2).

Case 2. If ρ1 < ρ0

(n1 − 1)ρ0 + n2w < k3((n1 − 1)ρ1 + n2w) =⇒ w < k4(say)

Therefore, the critical region is W1 = (w : w < k4).
The constants k2 and k4 are so chosen that the size of the critical region is α. Thus, k2 is determined.

So that taking
n2w

(n1 − 1)ρ0
= t in equations (8)–(10) we arrive at:
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P [w ∈ W |H0] = α =⇒ PH0 (w > k2) = α

=⇒
∞∫

k2

(
1

ρ0

)n2 1

(1 + t)n1+n2

Γ (n1 + n2)

Γ (n1)Γ (n2)

(
n2

n1 − 1

)n2

wn2−1dw = α

=⇒ Γ (n1 + n2)

Γ (n1)Γ (n2)

∞∫
n2k2

(n1−1)ρ0

tn2−1

(1 + t)n1+n2
dt = α

(8)

The integral in (8) is an incomplete beta integral which can be solved using standard techniques. k4
can be determined from the incomplete beta integral given below

Γ (n1 + n2)

Γ (n1)Γ (n2)

n2k4
(n1−1)ρ0∫

0

tn2−1

(1 + t)n1+n2
dt = α

6. Estimation of the confidence interval

Let U and L be the upper limit and lower limits, respectively, for the estimator given in (4), the distribu-
tion of which is given in (7). Then U and L can be evaluated using the following equation

P (w > U) =
α

2
and P (w < L) =

α

2

where

P (w > U) =
α

2
=⇒

∞∫
U

(
1

ρ0

)n2 1

(1 + t)n1+n2

Γ (n1 + n2)

Γ (n1)Γ (n2)

(
n2

n1 − 1

)n2

wn2−1dw =
α

2

=⇒ Γ (n1 + n2)

Γ (n1)Γ (n2)

∞∫
n2U

(n1−1)ρ0

tn2−1

(1 + t)n1+n2
dt =

α

2

(9)

P (w < L) =
α

2
=⇒

L∫
0

(
1

ρ0

)n2 1

(1 + t)n1+n2

Γ (n1 + n2)

Γ (n1)Γ (n2)

(
n2

n1 − 1

)n2

wn2−1dw =
α

2

=⇒ Γ (n1 + n2)

Γ (n1)Γ (n2)

n2L
(n1−1)ρ0∫

0

tn2−1

(1 + t)n1+n2
dt =

α

2

(10)

The integrals in (9) and (10) are incomplete beta integrals which can be solved using numerical
techniques.
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7. Determination of sample size

We proposed a frequentist estimator for traffic intensity (ρ) in (4). It has a number of desirable properties
viz. unbiasedness, consistency and sufficiency. It lends itself to testing of hypothesis on ρ. The sampling
distribution is also tractable – a major characteristic which many frequentist estimators lack. The sam-
pling scheme is also straightforward to implement and therefore, any queuing practitioner would find our
estimator appealing. The only issue that remains to be settled is some guidelines regarding what should
be the sample size. In this section, we shall deal with this issue.

The guideline that we shall prescribe should work for a range of ρ’s. Since in most cases ρ > 0.5 [15],
we carried out the simulation for three typical choices of λ and µ.

1) λ = 12, µ = 15, thereby implying that ρ = 0.80,
2) λ = 10, µ = 16, thereby implying that ρ = 0.625,
3) λ = 16, µ = 18, thereby implying that ρ = 0.88.

We recall that we need two samples for practically implementing our estimator. One of these is the
sample of inter-arrival times of size n1 and the other is the sample of service times of size n2. We shall
provide a guiding rule for what should be n1 and n2 using simulation. To this end, we shall compare
various choices of n1 and n2 as follows:

n1 = (25, 50, 75, 100, 125, 150) andn2 = (25, 50, 75, 100, 125, 150).

In practice, we have 36 pairs of sample sizes to compare:

(25, 25), (25, 50), . . . , (25, 150), (50, 25), ..., (150, 150).

We shall perform tests of homogeneity between them. Essentially, we are interested in testing equiv-
alence between these pairs. Equivalence testing is a statistical method designed to provide evidence
that groups are comparable by demonstrating that the mean differences found between groups are small
enough that they are considered practically unimportant [29]. Homogeneity of variance testing is a
statistical method designed to provide evidence that groups are comparable by demonstrating that the
variations found between groups are small enough that they are considered practically insignificant [27].
If for any two pairs, our test shows non-significant results, then we will accept the hypothesis of equality
of variance. There will be no need to increase the sample size beyond that. The specific pair for which
no significance is attained shall be our recommended sample size.

We perform the Brown–Forsythe test for homogeneity of variance. Our choice is dictated by the fact
that it is more robust and is relatively insensitive to departures from normality (Brown and Forsythe [10]).

To begin, we shall compare the pairs (25, 50) and (25, 75) for the case λ = 12, µ = 15. For this pur-
pose, we generate a random sample of inter-arrival times using a simulation technique under Markovian
setup with parameter λ = 12. Similarly, we generate a random sample from service time using a simu-
lation technique under Markovian setup with parameter µ = 15. The simulation technique for drawing
random numbers is the method of inverse transformation, discussed by Taha [37]. Using this procedure,
we simulate 10,000 estimates of the traffic intensity for each pair of sample sizes using the estimator (4).
The tables presenting the results of our analysis are given in the Appendix (Tables A1–A3).
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8. Discussion

Tables A1–A3 in the appendix contain the summary of results from the Brown–Forsythe test for λ = 12,
µ = 15 (ρ = 0.80), λ = 10, µ = 16 (ρ = 0.625), and λ = 16, µ = 18 (ρ = 0.88), respectively.
The null hypothesis of homogeneity of variance is accepted for n1 and n2 pairs (100, 25) and higher or
(25, 100) and higher. Thus there will be no need to increase the sample size beyond that. We compared
our estimators with those given in [5] and [15]. The expression of maximum likelihood estimator of ρ
obtained by Basak and Choudhury [5] is

ρ̂ML =

√
n2
2 + 4 (y + 2n) (y + n2)− n2

2 (y + 2n)

where y =

n2∑
i=1

xi, n is the number of the M/M/1 queues observed, xi is the non-empty queue size of n2

observations.
We first computed our estimator (given in (4)) for different sample sizes and ρ. The process was

repeated 5,000 times to evaluate the mean square errors (MSE). The simulation repeated 5,000 times by
us corresponds to that carried out by Basak and Choudhury [5]. The results of our calculations are given
in Table 1 (columns 2–4) together with the results from Basak and Choudhury [5] (columns 5–7).

Table 1. Estimates and (MSEs) of ρ using estimators given in (4) (columns 2–4) and [5] (columns 5–7)

ρ
n
50 100 200| 50 100 200

0.5 0.500080 0.498276 0.499000 0.492379 0.496542 0.498042
(0.010559) (0.005057) (0.002443) (0.002954) (0.001402) (0.000708)

0.8 0.797365 0.798926 0.801630 0.795285 0.797708 0.798164
(0.026612) (0.012399) (0.006503) (0.000815) (0.00035) (0.000158)

0.9 0.898658 0.898810 0.900996 0.890558 0.892443 0.899422
(0.034092) (0.015888) (0.008266) (0.000276) (0.000169) (0.00011)

The maximum likelihood estimator for ρ obtained by Chowdhury and Mukherjee [15] is

ρ̂mle =
B ±

√
B2 − 4AC

2A

where

A = N + n00 + n10 − n0 − 1

B = N +
∞∑
i=2

∞∑
j=i−1

(j − i+ 1)nij + n00 + n10 +
∞∑
j=0

j(n0j + n1j) + 1

C = n0 +
∞∑
j=0

j (n0j + n1j) +
∞∑
i=2

∞∑
j=i−1

(j − i+ 1)nij

N =
∞∑
i=2

∞∑
j=i−1

nij, n00 =
∞∑
j=0

n0j, n10 =
∞∑
j=0

n1j

and nij is the observed number of transitions in Nt from state i to state j.
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For comparison with the maximum likelihood estimator of ρ given by Chowdhury and Mukher-
jee [15], we followed their simulation procedure. We first computed our estimator (cf. (4)) for dif-
ferent sample sizes and ρ. The process was repeated 1000 times to evaluate the root mean square errors
(RMSE). The simulation repeated 1000 times by us corresponds to that carried out in [15]. The results
of our calculations are given in Table 2 (columns 2–4) together with the results of [15] (columns 5–7).

Table 2. Estimates and (RMSEs) of ρ using estimators given in (4) (columns 2–4) and [15] (columns 5–7)

ρ
n
30 50 100 30 50 100

0.5 0.498067 0.497466 0.496688 0.4823 0.4941 0.4956
(0.133917 (0.101799) (0.076015) (0.0234151) (0.0169929) (0.0102145)

0.7 0.700486 0.701708 0.700464 0.6739 0.6812 0.6998
(0.181277) (0.144778) (0.096699) (0.0314587) (0.0214703) (0.0154366)

0.9 0.900931 0.895995 0.899186 0.8688 0.8809 0.8912
(0.232086) (0.175890) (0.125476) (0.0245871) (0.0124587) (0.0095487)

From Table 1, a trade-off can be observed. While our estimator provides estimates closer to actuals
compared to those reported in [5], we lose out on MSE. A similar trade-off can be observed from Table 2.
Our estimator provides estimates much closer to actuals compared to those in [15], but we lose out on
RMSE. From these two tables, we can conclude that our estimator provides estimates of traffic intensity
which are closer to actuals and hence are better than those available in the literature. The other advantage
is the ease of implementation.

9. Conclusions

A method of estimating the traffic intensity of the M/M/1 queue has been presented. The advantage of
the method lies in its simplicity. The estimator is shown to satisfy a number of properties of a good
estimator. Confidence intervals are constructed. The most powerful critical region for the estimator of
traffic intensity is also constructed. Regarding sample size, from the above discussion, the hypothesis of
homogeneity of variance is accepted for n1 and n2 pairs (100, 25) and higher or (25, 100) and higher.
Thus the hypothesis of homogeneity of variance can be accepted for a total sample of size approximately
125. We, therefore, prescribe that a minimum total sample size of 125 may be used in such a manner that
one of the components (n1 or n2) is at least 25.

A caveat is in order. The conclusion that we have drawn is on the bases of simulation. We invite other
researchers to carry out similar exercises and confirm or improve upon our conclusion.
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Appendix

Table A1. Summary of the results of the Brown–Forsythe test for λ = 12, µ = 15 (ρ = 0.80)

Sample size
pairs compared
(n1, n2)

p-value Conclusions

(25, 50) and (25, 75) 5.429e–08
We can reject our null hypothesis of variance
and conclude that two sample size pairs are not equivalent.

(25, 75) and (25, 100) 0.0179
We can reject our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are not equivalent.

(25, 100) and (25, 125) 0.09428
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.

(25, 125), (25, 150) 0.7801
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.

(50, 25) and (75, 25) 5.894e–08
We can reject our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are not equivalent.

(75, 25) and (100, 25) 7.763e–06
We can reject our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are not equivalent.

(100, 25) and (125, 25) 0.1677
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.

(125, 25) and (150, 25) 0.6176
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.

Table A2. Summary of results of the Brown–Forsythe test for λ = 10, µ= 16 (ρ= 0.625)

Sample size
pairs compared
(n1, n2)

p-value Conclusions

(25, 50) and (25, 75) 7.387e–09
We can reject our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are not equivalent.

(25, 75) and (25, 100) 0.04051
We can reject our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are not equivalent.

(25, 100) and (25, 125) 0.05696
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.

(25, 125), (25, 150) 0.6952
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.

(50, 25) and (75, 25) 6.88e–13
We can reject our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are not equivalent.

(75, 25) and (100, 25) 6.341e–05
We can reject our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are not equivalent.

(100, 25) and (125, 25) 0.1407
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.

(125, 25) and (150, 25) 0.5794
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.
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Table A3. Summary of results of the Brown–Forsythe test for λ = 16, µ=18 (ρ= 0.88)

Sample size
pairs compared
(n1, n2)

p-value Conclusions

(25, 50) and (25, 75) 6.448e–09
We can reject our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are not equivalent.

(25, 75) and (25, 100) 0.002814
We can reject our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are not equivalent.

(25, 100) and (25, 125) 0.1815
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.

(25, 125), (25, 150) 0.7496
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.

(50, 25) and (75, 25) 2.437e–10
We can reject our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are not equivalent.

(75, 25) and (100, 25) 0.00057
We can reject our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are not equivalent.

(100, 25) and (125, 25) 0.2155
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.

(125, 25) and (150, 25) 0.1414
We can accept our null hypothesis of homogeneity of variance
and conclude that two sample size pairs are equivalent.
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