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Abstract

Decision-making is a tedious and complex process. In the present competitive scenario, any incorrect decision may excessively
harm an organization. Therefore, the parameters involved in the decision-making process should be looked into carefully as
they may not always be of a deterministic nature. In the present study, a multiobjective nonlinear transportation problem is
formulated, wherein the parameters involved in the objective functions are assumed to be fuzzy and both supply and demand
are stochastic. Supply and demand are assumed to follow the exponential distribution. After converting the problem into an
equivalent deterministic form, the multiobjective problem is solved using a neutrosophic compromise programming approach.
A comparative study indicates that the proposed approach provides the best compromise solution, which is significantly better
than the one obtained using the fuzzy programming approach.
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1. Introduction

Transportation is one of the primary components of supply chain management. The costs of service and
time play crucial roles in firms being competitive. Thus, improving transportation provides a firm an
edge over others. The transportation problem, as a mathematical problem, was first introduced by Hitch-
cock [18]. The work done by Koopsman [20] was instrumental in initial studies on the transportation
problem. Later on, Shetty [29] formulated and solved a transportation problem with nonlinear costs.
Thereafter, a floodgate was opened for research in this field. At present, any supply chain problem is
incomplete without considering and addressing the transportation problem. In recent years, many novel
ideas and mathematical approaches have been introduced to address the problem of transportation.

Rani and Gulati [27] introduced a new approach to solve an unbalanced transportation problem in
an imprecise environment. Goczyła and Cielątkowski [15] investigated a routing problem in a public
transportation network over a given timeframe. Bandopadhyaya and Puri [5] studied the impairment
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of flows in a multi-index transportation problem with axial constraints. Biswas et al. [8] investigated a
multiobjective fixed charge transportation problem in crisp and interval environments. Gupta et al. [16]
worked on a multiobjective capacitated transportation problem and solved it using an α-cut approach.
Ahmad and Adhami [3] studied the transportation problem with varying supply and demand, and with a
probabilistic cost function.

Multiobjective transportation problems form a special class, which usually involve multiple, con-
flicting, and incommensurate objective functions. Several exhaustive studies have been conducted on
multiobjective linear transportation problems. Among them, Zimmermann [34] fuzzy programming is
remarkable for obtaining the optimal compromise solution to a multiobjective transportation problem. In
recent years, Nomani et al. [25] developed an approach for multiobjective transportation problems. Gupta
et al. [17] carried out a case study on multiobjective capacitated transportation problems in an uncertain
environment. Roy et al. [28] investigated a multiobjective multi-item fixed-charge solid transportation
problem in a fuzzy-rough environment for a transportation system. As mentioned above, most transporta-
tion problems (TP) involve multiple, conflicting, and incommensurate objective functions. However, in
real life applications, it is not always viable to determine the exact values of the different parameters
involved in a problem. Insufficient information is generally available based on previous know-how and
experiences, resulting in uncertainty. Therefore, parameters can take different forms of uncertainty, such
as fuzzy numbers and random variables with known mean and variance. If the parameters are random
variables following some probability distribution, then such problems may be solved using a stochas-
tic programming approach. Fuzzy techniques can be used if the uncertainties are due to vagueness or
ambiguity.

Only a few approaches have been described in the literature to solve transportation problems that in-
volve both stochasticity and fuziness and even fewer for those also involving multiple objectives. Chanas
and Kuchta [9] introduced a concept for the optimal solution of a transportation problem with fuzzy cost
coefficients. Liu and Kao [21] solved a fuzzy transportation problem by employing the extension prin-
ciple. Daneva et al. [11] compared various methods for solving probabilistic transportation problems.
Gi and Ishii [14] studied transportation problems with different types of uncertainty. Najafi et al. [24]
proposed a method for solving fuzzy linear programming problems. Also, Das et al. [13] developed an
approach for fully fuzzy fractional programming problems. Ahmad and Adhami [2] developed a neu-
trosophic programming approach to the multiobjective nonlinear transportation problem with fuzzy pa-
rameters. The goal programming technique for solving fully interval-valued intuitionistic fuzzy multiple
objective transportation problems was studied by Malik and Gupta [23]. Adhami and Ahmad [1] pro-
posed an approach based on a Pythagorean-hesitant fuzzy decision set for multiobjective transportation
problems. Recent contributions related to this area can be found in [6], [10], [19], [26], [32] and [33].

With the development of fuzzy sets, neutrosophic sets (NSs) have recently emerged. Smarandache [31]
introduced the concept of an NS. "Neutrosophic" literally means knowledge of neutral thoughts, Mahap-
atra [22]. Das [12] considered a transportation problem with pentagonal neutrosophic numbers where the
supply, demand and transportation are uncertain. The neutrality/indeterminacy concept involved in the
NS directed the premises for future research in this area. The neutrosophic compromise programming
approach (NCPA), based on NS, was developed to obtain an optimum solution for multiobjective opti-
mization problems. The NCPA considers three parameters, namely truth maximization (belongingness),
indeterminacy (belongingness to some extent), and falsity minimization (non-belongingness). A perusal
of the literature reveals that one missing development is an approach to solving transportation problems,
when there are both fuzzy parameters and stochastic parameters. Such an approach would be especially
benificial in the case of multiobjective nonlinear transportation problems. The present study aimed to fill
this gap.

The paper is designed as follows. An introduction and literature review are included in Section 1,
the definitions of a fuzzy set and neutrosophic set are presented in Section 2. Section 3 is dedicated to
presenting the multiobjective nonlinear transportation problem. In Section 4, the exponential distribution
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and its involvement in the constraints of transportation problems is discussed. Also, it is explained how
problems involving the exponential distribution can be converted into a deterministic form. In Section 5,
a mathematical model of a multiobjective transportation problem, wherein the parameters involved in the
objective functions are fuzzy in nature and the parameters involved in the constraints are stochastic, is
presented. Section 6 describes the neutrosophic compromise programming approach, which is used to
obtain a solution to such multiobjective transportation problems. An illustrative example to demonstrate
the proposed approach is given in Section 8. In Section 10, some conclusions and the advantages of the
approach used in the study are presented and future directions for research are given.

2. Definitions

2.1. Fuzzy set (FS)

Definition 1 ([7]). Let Y be a universal set and let y ∈ Y . A fuzzy set X in Y is a function X : Y →
[0, 1].

Often µX(y) is used to denote the function X , and it is said that the fuzzy set X is characterized by
the membership function µX(y) : Y → [0, 1]. The value µX(y) is interpreted as the degree to which y
belongs to X .

Definition 2 ([7]). The triplets X̃(p, q, r) denoting the lower, middle, and upper value of a member-
ship function, is said to be a parabolic fuzzy number if its membership function is given by

µX̃(y) =



(
y−p
q−p

)2
if p ≤ y ≤ q

1 if y = q(
r−y
r−q

)2
if q ≤ y ≤ r

0 otherwise

The process of finding a crisp or deterministic value of a fuzzy number is called defuzzification [2].
The defuzzified value function d of the parabolic fuzzy number X̃(p, q, r) is given by

d(X̃) =
(p+ 2q + r)

4
(1)

2.2. Intuitionistic fuzzy set (IFS)

Definition 3 ([4]). Let Y be a universal set. Then, an IFSW in Y , is given by the ordered tripletW =
{y, µW (y), vW (y)|y ∈ Y }, where µW (y) : Y → [0, 1], vW (y) : Y → [0, 1], under the condition 0 ≤
µW (y)+ vW (y) ≤ 1, where µW (y) and vW (y) denote the membership and non-membership functions of
the elements y ∈ Y in the set W .

Definition 4 ([30]). An intuitionistic fuzzy number W̃ is said to be a trapeziodal intuitionistic fuzzy
number (TrIFN) if the membership function µW̃ (y) and non-membership function vW̃ (y) are given by

µW̃ (y) =


y−a1
a2−a1 if a1 ≤ y ≤ a2
1 if a2 ≤ y ≤ a3
a4−y
a4−a3 if a3 ≤ y ≤ a4
0 otherwise

and

vW̃ (y) =


a′2−y
a′2−a′1

if a′1 ≤ y ≤ a′2
0 if a′2 ≤ y ≤ a′3

y−a′3
a′4−a′3

if a′3 ≤ y ≤ a′4
1 otherwise
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where a′1 ≤ a1 ≤ a′2 ≤ a2 ≤ a3 ≤ a′3 ≤ a4 ≤ a′4.

2.3. Neutrosophic set (NS)

Definition 5 ([31]). Let Y be a universal set, such that y ∈ Y , then a neutrosophic set A in Y is
defined by three membership functions, viz., truth TA(y), indeterminancy IA(y), and falsity FA(y) and is
denoted by the following form:

A = {〈y, TA(y), IA(y), FA(y)〉|y ∈ Y }

where TA(y), IA(y), and FA(y) are real standard or non-standard subsets belonging to ]0−, 1+[ also given
as TA(y) : Y →]0−, 1+[, IA(y) : Y →]0−, 1+[, and FA(y) : Y →]0−, 1+[. Also, there is no restriction on
the sum of TA(y), IA(y), and FA(y), so we have

0− ≤ supTA(y) + IA(y) + supFA(y) ≤ 3+

Definition 6 ([31]). A single valued neutrosophic set (SVNS) A, over a universal set Y , is defined as

A = {〈y, TA(y), IA(y), FA(y)〉|y ∈ Y }

where TA(y), IA(y), and FA(y) ∈ [0, 1] and 0 ≤ TA(y) + IA(y) + FA(y) ≤ 3, for each y ∈ Y .

Definition 7 ([31]). Let A and B be two SVNSs. Then the union of A and B is also a single valued
neutrosophic set C, that is C = (A ∪ B), whose truth TC(y), indeterminacy IC(y) and falsity FC(y)
membership functions are given by

TC(y) = max(TA(y),B (y))

IC(y) = max(IA(y), IB(y))

FC(y) = min(FA(y), FB(y))

for each y ∈ Y .

Definition 8 ([31]). Let A and B be two SVNSs. Then the intersection of A and B is also a single
valued neutrosophic set C, that is, C = (A ∩ B), whose truth TC(y), indeterminacy IC(y) and falsity
FC(y) membership functions are given by

TC(y) = min(TA(y), TB(y))

IC(y) = min(IA(y), IB(y))

FC(y) = max(FA(y), FB(y))

for each y ∈ Y .

3. Multiobjective nonlinear transportation problems

The classical transportation problem can be described as a special case of the linear programming prob-
lem and its model is applied for determining the number of units of some commodity to be transported
from each origin to various destinations, satisfying the supply and demand constraints while achieving
the prescribed objective(s). In the present study, a multiobjective transportation problem with K objec-
tives is considered. There are m origins with availability of ai, i = 1, . . . ,m) units and n destinations
with demand of bj , j = 1, . . . , n units. The cost associated with the kth objective is represented by ckij .
The decision variables are the number of units to be transported from the ith origin to the jth destination,
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i = 1, . . . ,m, j = 1, . . . , n, and denoted by xij . Thus, the model for the multiobjective transportation
problem is given as follows:

min Zk =
m∑
i=1

n∑
j=1

ckijxij

s.t.
n∑

j=1

xij ≤ ai i = 1, . . . ,m

m∑
i=1

xij ≥ bj j = 1, . . . , n

m∑
i=1

ai ≥
n∑

j=1

bj

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

Maity and Roy [28] argued that due to the instability of various players in the market, there may
exist cases where the cost parameter per unit of commodity changes according to the number of goods
delivered to a destination from the point of origin, along with the source capacity of the supply. Because
of this, an extra cost is incurred, which can be given as follows:

Extra cost =
ai − goods transported from ith origin to jth destination

availability of goods at ith origin

ckij =
ai − xij
ai

ckij

After incorporating this change, the multiobjective nonlinear transportation problem becomes

min Zk = 2
m∑
i=1

n∑
j=1

ckijxij −
m∑
i=1

1

ai

n∑
j=1

ckijx
2
ij

s.t.
n∑

j=1

xij ≤ ai i = 1, . . . ,m

m∑
i=1

xij ≥ bj j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

In the above problem, the cost function is nonlinear if at least one
∑n

j=1 xij ≤ ai, i = 1, . . . ,m is
satisfied, otherwise the cost function is linear.

3.1. Multiobjective nonlinear transportation problem with fuzzy parameters

As discussed in Section 1, uncertainty plays a pivotal role in formulating a model for decision making,
and uncertainty can be probabilistic or fuzzy. Fuzziness in the parameters is due to the vagueness caused
by the non-exact estimates of the parameters provided by the decision maker. In such circumstances,
this uncertainty should also be considered while solving the problem. In this study, it is assumed that
the cost parameter involved in the objective function is of the fuzzy type. This fuzziness is transformed
into a crisp or deterministic number by using ranking function techniques based on fuzzy set theory. The
fuzzified transportation problem under consideration can be given as follows:
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min Zk = 2
m∑
i=1

n∑
j=1

c̃kijxij −
m∑
i=1

1

ai

n∑
j=1

c̃kijx
2
ij

s.t.
n∑

j=1

xij ≤ ai i = 1, . . . ,m

m∑
i=1

xij ≥ bj j = 1, . . . , n

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n

The cost parameter involved in the objective function of the above problem is assumed to be a
parabolic fuzzy number and can be defuzzified using equation (1).

min Zk = 2
m∑
i=1

n∑
j=1

d(c̃kij)xij −
m∑
i=1

1

ai

n∑
j=1

d(c̃kij)x
2
ij

s.t.
n∑

j=1

xij ≤ ai i = 1, . . . ,m

m∑
i=1

xij ≥ bj j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

where d(c̃kij) is the defuzzified value of c̃kij .

4. Multiobjective nonlinear transportation problem with exponentially
distributed constraint parameters

In this section, we consider a stochastic model for multiobjective nonlinear transportation problems
where supply and demand follow exponential distributions.

min Zk = 2
m∑
i=1

n∑
j=1

d(c̃kij)xij −
m∑
i=1

1

ai

n∑
j=1

d(c̃kij)x
2
ij

s.t. P

(
n∑

j=1

xij ≤ ai

)
≥ 1− αi i = 1, . . . ,m (2)

P

(
m∑
i=1

xij ≥ bj

)
≥ 1− βj j = 1, . . . , n (3)

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

where 0 < ai < 1 and 0 < βi < 1, i = 1, . . . ,m, j = 1, . . . , n.
Let ai, i = 1, . . . ,m, be independent exponential random variables with known means θi. The proba-

bility density function (pdf) and distribution function (df) of ai are given by

f(ai) =
1

θi
e
− 1
θi
ai , ai ≥ 0 and θi > 0

and
F (ai) = 1− e

1
θi
ai , ai ≥ 0 and θi > 0 (4)
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Inequality (2) can be expressed as

P

(
ai ≤

n∑
j=1

xij

)
≤ αi

Using (4), we get
1− e

1
θi

∑n
j=1 xij ≤ αi (5)

After simplification of (5), we obtain equivalent deterministic constraints, as given by

n∑
j=1

xij ≤ θi ln(1− αi) i = 1, . . . ,m

Similarly, let bj , j = 1, . . . , n, be independent exponential random variables with known means µj , the
pdf and df of bj are given by

f(bj) =
1

µj

e
− 1
µj

bj
, bj ≥ 0 and µj > 0

and
F (bj) = 1− e

− 1
µj

bj
, bj ≥ 0 and µj > 0 (6)

Using (6), inequality (3) can be transformed into deterministic constraints given by

m∑
i=1

xij ≥ −µj(ln βj) j = 1, . . . , n

5. Multiobjective nonlinear transportation problem with fuzzy
and stochastic parameters

Before coming to the final model, the case when all the parameters are fuzzy numbers is discussed. The
multiobjective nonlinear transportation problem with fuzzy parameters can be mathematically presented
as follows:

min Zk = 2
m∑
i=1

n∑
j=1

d(c̃kij)xij −
m∑
i=1

1

ai

n∑
j=1

d(c̃kij)x
2
ij

s.t.
n∑

j=1

xij ≤ ãi i = 1, . . . ,m

m∑
i=1

xij ≥ b̃j j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

The cost, supply and demand parameters involved in the objective function of the above problem are
assumed to be parabolic fuzzy numbers and can be defuzzified using equation (1). Now it is assumed that
both types of parameters, supply and demand, follow an exponential distribution. It is also assumed that
the mean and variance of ai and bj are known and defined as previously. Considering the properties of the
exponential distribution discussed in Section 4, the model for the multiobjective nonlinear transportation
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problem with fuzzy and stochastic parameters will be given as follows:

min Zk = 2
m∑
i=1

n∑
j=1

d(c̃kij)xij −
m∑
i=1

1

ai

n∑
j=1

d(c̃kij)x
2
ij

s.t. P

(
n∑

j=1

xij ≤ ai

)
≥ 1− αi i = 1, . . . ,m

P

(
m∑
i=1

xij ≥ bj

)
≥ 1− βj j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

The equivalent deterministic form, as discussed in Section 4 of the above problem, is given as follows:

min Zk = 2
m∑
i=1

n∑
j=1

d(c̃kij)xij −
m∑
i=1

1

ai

n∑
j=1

d(c̃kij)x
2
ij

s.t.
n∑

j=1

xij ≤ θi ln(1− αi) i = 1, . . . ,m

m∑
i=1

xij ≥ −µj(ln βj) j = 1, . . . , n

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

6. Neutrosophic compromise programming approach (NCPA)

An approach has been proposed to solve multiobjective nonlinear transportation problems with fuzzy and
stochastic parameters. In this approach, three membership functions are considered, namely maximiza-
tion of the degree of truth, maximization of indeterminacy, and minimization of the falsity membership
function. If a fuzzy decision is denoted by F, fuzzy goal by D, and fuzzy constraints by C, then the
neutrosophic decision set, denoted by FN , can be defined as

FN = (∩Kk=1Dk)(∩Ll=1Cl) = (x, TF (x), IF (x), DF (x)) (7)

where

TF (x) = max

{
TD1(x), TD2(x), TD3(x)

TC1(x), TC2(x)

}
∀x ∈ X (8)

IF (x) = max

{
ID1(x), ID2(x), ID3(x)

IC1(x), IC2(x)

}
∀x ∈ X (9)

DF (x) = min

{
FD1(x), FD2(x), FD3(x)

FC1(x), FC2(x)

}
∀x ∈ X (10)

where TF (x), IF (x), andDF (x) are the truth membership function, indeterminacy membership function,
and falsity membership function of the neutrosophic decision set FN .The lower and upper bounds for
each objective function at different levels can be obtained as follows. Firstly, under given constraints, the
objective function at a given level is derived. A set of K solutions is obtained by solving the problem
for a given set of constraints with an objective at each level. Let these solution sets be denoted by
X1, X2, · · · , XK . These solutions provide lower and upper bounds for each objective as follows:

Uk = max[Zk(X
k)] and Lk = min[Zk(X

k)], k = 1, . . . , K (11)

The lower and upper bounds can now be obtained as follows [2]. For truth membership

UT
k = Uk, L

T
k = Lk (12)
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For indeterminacy membership
U I
k = LT

k + sk, L
I
k = LT

k (13)

For falsity membership
UD
k = UT

k , L
D
k = LT

k + tk, (14)

where sk and tk ∈ (0, 1) are predetermined real numbers assigned by the decision makers. Using these
lower and upper bounds, under a neutrosophic environment the linear membership functions are defined
as follows:

Tk(Zk(x)) =


1 if Zk(x) < LT

k

1− UTk −Zk(x)
UTk −L

T
k

if LT
k ≤ Zk(x) ≤ UT

k

0 if Zk(x) > UT
k

(15)

Ik(Zk(x)) =


1 if Zk(x) < LI

k
UIk−Zk(x)
UIk−L

I
k

if LI
k ≤ Zk(x) ≤ U I

k

0 if Zk(x) > U I
k

(16)

Dk(Zk(x)) =


1 if Zk(x) < LD

k

1− zk(x)−LDk (x)

UDk −L
D
k

if LD
k ≤ Zk(x) ≤ UD

k

0 if Zk(x) < LD
k

(17)

For all the objective functions, L(.)
k 6= U

(.)
k . If L(.)

k = U
(.)
k , then the value of the corresponding

membership function will be equal to 1. Using the approach described in Bellman and Zadeh [7], the
problem can be presented as follows:

max min
k=1,...,K

Tk(Zk(x))

max min
k=1,...,K

Ik(Zk(x))

min max
k=1,...,K

Dk(Zk(x))

s.t.
n∑

j=1

xij ≤ θi ln(1− αi) i = 1, . . . ,m (18)

m∑
i=1

xij ≥ −µj(ln βj) j = 1, . . . , n (19)

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

The above problem can be transformed into the following form, using auxiliary parameters.
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max α (20)
max β (21)
min γ (22)
s.t. TK(Zk(x)) ≥ α (23)

IK(Zk(x)) ≥ β (24)
DK(Zk(x)) ≤ γ (25)

n∑
j=1

xij ≤ −θi ln(1− αi) i = 1, . . . ,m (26)

m∑
i=1

xij ≥ −µj(ln βj) j = 1, . . . , n (27)

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

With the help of a linear membership function, the above problem can further be written as follows:

max α + β − γ (28)

s.t.
n∑

j=1

xij ≤ −θi ln(1− αi) i = 1, . . . ,m (29)

m∑
i=1

xij ≥ −µj(ln βj) j = 1, . . . , n (30)

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

Zk(x) + (UT
k − LT

k )α ≤ UT
k (31)

Zk(x) + (U I
k − LI

k)β ≤ U I
k (32)

Zk(x)− (UD
k − LD

k )γ ≤ LD
k (33)

α ≥ β, α ≥ γ, α + β + γ ≤ 3 (34)
α, β, γ ∈ (0, 1) (35)

Thus, the above model gives a compromise solution to the multiobjective nonlinear transportation
problem with fuzzy and stochastic parameters.

7. Stepwise algorithm for NCPA

A summary of the steps involved in the proposed approach can be presented as follows:
Step 1. Formulate the multiobjective nonlinear transportation problem with fuzzy and stochastic pa-
rameters as discussed in Section 5.
Step 2. Using the defuzzification method, as given in equation (1), convert the problem into a crisp and
deterministic form, as discussed in Section 5.
Step 3. Construct a payoff matrix by deriving the objective function for the set of constraints at each
level individually.
Step 4. For each level, determine the upper and lower bounds for each objective function.
Step 5. Define the upper and lower bounds, as in equations (12)–(14), for the truth, indeterminacy, and
falsity membership functions.
Step 6. Under a neutrosophic environment, define the linear membership function as in equations
(15)–(17).
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Step 7. Formulate the neutrosophic problem defined in equations (18)–(27) and transform it into a
neutrosophic compromise programming problem as desribed in equations (28)–(35).
Step 8. Solve the transformed multiobjective nonlinear transportation problem with fuzzy and stochas-
tic parameters using an optimization software package.

8. Illustrative example

To demonstrate the proposed approach, an illustrative example is considered, using the method described
in Ahmad and Adhami [2], with some modifications. A new product is launched from four outlets a1,
a2, a3, a4, to retailers at four sites b1, b2, b3, b4. Since the product is being launched for the first time,
the decision makers are in a dilemma over the costs incurred in transporting the product. For the same
reason, supply and demand are non-deterministic in nature. Due to the lack of appropriate information,
the decision makers assume that the cost parameters are fuzzy and the supply and demand parameters are
stochastic. The proposed NCPA approach is applied to solve a multiobjective nonlinear transportation
problem with fuzzy and stochastic parameters with three different objectives. The transportation cost per
unit from different sources to various destinations (c̃ij), is given in Table 1. The means of the exponential
random variables, together with specified probability levels of supplies and demands, the supply and
demand data, is given in Table 2 and Table 3, respectively.

Table 1. Transportation cost per unit c̃ij in Thousand

b1 b2 b3 b4
a1 (2.04, 2.08, 2.12) (1.6, 1.9, 2.2) (2.4, 2.5, 2.6) (2.5, 3.5, 4.5)
a2 (1.2, 2.2, 3.2) (1.4, 1.8, 2.2) (2.8, 3.8, 4.8) (0, 2, 4)
a3 (0, 2, 4) (2, 2.5, 3) (1.2, 1.7, 2.2) (1.4, 1.6, 1.8)
a4 (2, 2.2, 2.4) (2.5, 2.9, 3.3) (2.2, 2.8, 3.4) (2.2, 2.4, 2.6)

Assuming that the means of the exponential random variables, together with specified probability
levels of supplies and demands, the supply and demand data, is given in Table 2 and Table 3, respectively.

Table 2. Mean and probability level of supply

Mean Specified probability level
E(a1) = θ1 = 950 α1 = 0.03
E(a2) = θ2 = 637 α2 = 0.04
E(a3) = θ3 = 623 α3 = 0.05
E(a4) = θ4 = 452 α4 = 0.06

Table 3. Mean and probability level of demand

Mean Specified probability level
E(b1) = µ1 = 950 β1 = 0.06
E(b2) = µ2 = 637 β2 = 0.07
E(b3) = µ3 = 623 β3 = 0.08
E(b4) = µ4 = 452 β4 = 0.09

Table 4. Pay-off matrix

Decision variables Objective function values
Z1 Z2 Z3

(0, 0, 29, 0, 0, 22, 0, 0, 0, 32, 22, 0, 0, 0) 235.856 2909.68 117.973
(0, 0, 29, 0, 22, 0, 0, 2, 0, 0, 0, 32, 0, 22, 0, 0) 264.71 2898.98 112.497
(22, 0, 0, 7, 0, 0, 0, 26, 0, 0, 29, 1, 0, 22, 0, 0) 286.435 3166.87 76.6186
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As discussed in Section 6, the problem can be formulated as follows:

min Z1 = 2
4∑

i=1

4∑
j=1

d(c̃kij)xij −
4∑

i=1

1

ai

4∑
j=1

d(c̃1ij)x
2
ij

min Z2 = 2
4∑

i=1

4∑
j=1

d(c̃2ij)xij −
4∑

i=1

1

ai

4∑
j=1

d(c̃2ij)x
2
ij

min Z3 = 2
4∑

i=1

4∑
j=1

d(c̃3ij)xij −
4∑

i=1

1

ai

4∑
j=1

d(c̃3ij)x
2
ij

s.t.
4∑

j=1

xij ≤ θ1 ln(1− α1)

4∑
j=1

xij ≤ θ2 ln(1− α1)

4∑
j=1

xij ≤ θ3 ln(1− α1)

4∑
j=1

xij ≤ θ4 ln(1− α1)

4∑
i=1

xij ≥ −µ1 ln(1− β1)

4∑
i=1

xij ≥ −µ2 ln(1− β2)

4∑
i=1

xij ≥ −µ3 ln(1− β3)

4∑
i=1

xij ≥ −µ4 ln(1− β4)

xij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

After deriving the payoff according to each individual objective, the crisp model of the multiobjective
nonlinear transportation problem with fuzzy and stochastic parameters gives the pay-off matrix shown in
Table 4

As discussed in Section 6, the upper and lower bounds for truth, indeterminacy, and falsity func-
tions are obtained and the membership function for the three objectives based on neutrosophic sets are
constructed. The simplified neutrosophic model for the multiobjective nonlinear transportation problem
with fuzzy and stochastic parameters is then formulated and solved using LINGO 16.0, on Intel(R) core
i5-4210U CPU @1.7 GHz, and 8 GB of RAM. The results are shown in Table 5.

Table 5. Optimal solution
Decision variables Objective values

x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 x41 x42 x43 x44 Z1 Z2 Z3

5 22 0 2 17 0 0 9 0 0 29 3 1 0 0 1 236.856 2899.98 77.6186
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9. Comparative study

The solution of the neutrosophic model for the multiobjective nonlinear transportation problem with
fuzzy and stochastic parameters is obtained using NCPA. Three membership functions are considered,
viz., truth, indeterminacy, and falsity. This provides more elasticity in decision making and is ultimately
able to improve the solution. To demonstrate the efficiency of the NCPA approach more rationally, the
problem discussed in Section 8 is compared with the fuzzy programming approach (FPA) developed by
Ahmad and Adhami [2]. These results are compared in Table 6.

Table 6. Comparison of the solutions derived by NCPA and FPA. Decision variables and objectives

Decision variables and objectives Solution using NCPA Solution using FPA
x11 5 0
x12 22 22
x13 0 1
x14 2 0
x21 17 22
x22 0 0
x23 0 0
x24 9 2
x31 0 0
x32 0 0
x33 29 0
x34 3 32
x41 1 0
x42 0 0
x43 0 28
x44 1 0
Z1 236.856 249.942
Z2 2899.98 2912.66
Z3 77.6186 89.3642

10. Conclusion

The transportation problem plays an important role in the overall profitability of any manufacturing firm.
Insufficient consideration of the variability involved in the transportation problem can result in chaos,
due to which the firm may well lose both money and the goodwill of its clients. In the present study, un-
certainties regarding the parameters in a mathematical model of a multiobjective transportation problem
are considered. These uncertainties are of both fuzzy and stochastic types and are shown to be efficiently
resolved. Thus, NCPA is proposed to obtain the best compromise solution, which is significantly bet-
ter than the one obtained using the FPA as shown in Table 6. The main contribution of this paper is
summarized below:

• Both fuzzy and stochastic parameters are considered in the model, which may be suitable for many
real-life problems.

• To the best of the authors’ knowledge, neutrality/indeterminacy is an area that is not well-explored.

• A comparative study of the proposed approach (NCPA) with an existing approach (FPA) indicates
that the NCPA is significantly better than FPA.

• The proposed approach can be very efficiently applied to the problem of selecting suppliers, adver-
tizing problem, and portfolio selection problem.

This study was limited to consideration of supply and demand that follow the exponential distribu-
tion. In addition, fuzzy parameters may be replaced by intuitionistic parameters. As future directions
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for research, the proposed approach should be applied in conjunction with different distributions and
intuitionistic sets.
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